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Abstract 
 

Capacitive micromachined ultrasonic transducers (CMUTs) are microelectromechanical systems 
used for the generation of ultrasounds. The fundamental element of the transducer is a clamped thin 
metallized membrane that vibrates under voltage variations. To control such oscillations and to 
optimize its dynamic response it is necessary to know the modal parameters of the membrane such as 
resonance frequency, damping and stiffness coefficients. The purpose of this work is to identify these 
parameters using only the time data obtained from the membrane center displacement. Dynamic 
measurements are conducted in time domain and we use two methods to identify the modal 
parameters: a subspace method based on an innovation model of the state-space representation and 
the continuous wavelet transform method based on the use of the ridge of the wavelet transform of the 
displacement. Experimental results are presented showing the effectiveness of these two procedures 
in modal parameter identification.  

 
 
Keywords : Modal parameters,  CMUT, subspace method, wavelet transform method, experimental 
identification. 

 

1 Introduction 

Capacitive micromachined ultrasonic transducers (CMUTs) introduced in 1994 constitute a good 
alternative to conventional piezoelectric transducers in terms of broader bandwidth, better transduction 
efficiency and the possibility of on-chip integration with electronics components. Basically, a CMUT 
cell is a capacitor structure composed of a thin flexible membrane, metallized or not metallized, and a 
bottom fixed plate. If an alternating voltage, applied between the membrane and the back plate, is 
superimposed on the bias voltage the modulation of the electrostatic force moves the membrane 
which generates ultrasonic waves. Fig. 1 shows a schematic cross-section of a CMUT elementary cell. 
A CMUT cell uses the deformation of a suspended thin membrane to transmit ultrasonic waves and 
the dynamic analysis of a CMUT has been studied in time domain using a FEM package [1, 2]. They 
determined the normal displacement at the center of the membrane by finite element analysis and by 
experimental tests. The idea of generating acoustic waves by the electrostatic attraction force between 
the plates of a capacitor is very old and a tutorial can be obtained in [3]. Dynamic and acoustic 
modelization of capacitive micromachined ultrasonic transducers have been proposed in [4] where the 
acoustic pressure emitted by a CMUT is estimated by taking into account explicitly the dynamics of 
each membrane of the network.  

 
 
 

mailto:joseph.lardies@univ-fcomte.fr,%20gilles.bourbon
mailto:@femto-st.fr,%20patrice.lemoal@femto-st.fr,%20najib.kacem@univ-fcomte.fr,%20vincent.walter@univ-fcomte.fr
mailto:@femto-st.fr,%20patrice.lemoal@femto-st.fr,%20najib.kacem@univ-fcomte.fr,%20vincent.walter@univ-fcomte.fr
mailto:thien-phu.le@sigma-clermont.fr


Mechanics&Industry 

 

  
 

Fig. 1. A conceptual cross-section of a capacitive micromachined ultrasonic transducer 

 
CMUTs are fabricated using silicon processing routes, leading to a thin (0.5 – 2 µm thick) silicon 

nitride or polysilicon membrane above a small gap (typically about one micron in depth) to result in a 
capacitive structure. In general, such CMUTs tend to be less than 0.2 mm in diameter. We note R the 
membrane radius, tm the membrane thickness and tg the gap (or cavity) thickness.  

 A good design of a capacitive ultrasonic sensor requires a large displacement of the membrane 
and an optimum energy coupling between the membrane and the air that are achieved when the 
membrane vibrates at its mechanical resonance frequency. Stiffness is an important property and is 
vital to define both the sensitivity of CMUTs sensors and the dynamic behavior of the device that is 
strongly dependent on material characteristics and on clamping conditions of the membrane. The 
quality factor is also fundamental, as it provides immediate quantification of dissipations, which are 
generally addressable to air damping and internal friction in the material. In the paper the membrane 
displacement of a CMUT cell is reduced to a single degree of freedom and only the first vibration 
mode is considered. Higher order modes are neglected in our model and one objective of the paper is 
to identify the parameters of the first vibration mode from output data only. 

Numerous papers have been presented on system parameter identification from measured data. 
Ho and Kalman [5] introduced the principle of minimal realization theory in which a state-space model 
has an alternative representation with a sequence of Markov parameters. Zeiger and Mc Ewem [6] 
proposed a concept of combining singular value decomposition (SVD) and minimal realization for 
parameter identification. Based on the developments of SVD and minimal realization algorithm, the 
eigensystem realization algorithm (ERA) was proposed by Juang [7] to identify parameters of a 
system from the noisy input-output measurements. To reduce the noise effect Juang [7] proposed the 
eigensystem realization algorithm with data correlation (ERA/DC). James et al. [8] developed the 
natural excitation technique (NExT) based on the principle that a correlation function measured under 
natural excitation can be expressed as a sum of decaying sinusoids. Each decaying sinusoid has an 
eigenfrequency and a damping ratio that is identical to the one of the structural mode. A time domain-
based stochastic subspace identification (SSI) method has been proposed by Van Overschee and De 
Moor [9] and is based on the state-space model of input/output signals and parameter identification is 
realized by extracting system matrices from input/output signals or output signals only. The key 
concept of SSI, which is very time consuming, is the projection of the row space of the future time data 
into the row space of the past time data. The system parameter identification is also possible in a time-
frequency domain using the continuous wavelet transform (CWT) of signals [10]. The CWT is a time–
frequency representation and applied to the free response of a system allows the identification of 
eigenfrequencies, damping ratios and mode shapes. Indeed, the CWT of a signal results in a complex 
valued form, whose modulus and phase are related to the parameters of the analysed system [11-15].  

In this paper, the dynamic characterization of the metallized membrane is aimed at defining its 
behavior in working conditions, as well as its performances in terms of resonance frequency, stiffness 
coefficient, damping factor, quality factor and half-power bandwidth. Such coefficients are identified 
using two methods: the subspace method derived from a state-space innovation model and the 
continuous wavelet transform (CWT) method based on the use of the ridge of the CWT. These 
methods extract the modal parameters from structural response data only, using the time 
displacement of the membrane center. The procedures presented in the paper can identify closely 
eigenfrequencies that cannot be identified by the traditional Fourier transform. 
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     The paper is organized as follows: the second section is devoted to the modelization of a vibrating 
system and to the generation of a discrete time state-space model. An innovation representation with 
the estimation of the transition matrix is derived in the third section. The continuous wavelet transform 
is presented in section 4. Validity of the modal parameter identification procedures is presented in the 
fifth section with simulated and an experimental test in laboratory. The paper is briefly concluded in 
section 6.  

 

2 Modeling a vibrating mechanical system 

 
     Consider a multivariate continuous time structural dynamic system described by a positive definite 
diagonal mass matrix Mo, a symmetric semi-definite viscous damping matrix Co and a symmetric 
positive definite stiffness matrix Ko. These matrices are (n’xn’). The system is represented by the linear 
differential equation and the observation equation [7] 
 

    Mo
 (t) + Co

 (t) + Ko  (t) =  (t)                                                                                     (eq. 1) 

    y(t) = L  (t)  +  v(t)                                                                                                          (eq. 2) 

where  (t) is the (n’x1) vector of displacement of degrees of freedom;  (t) is the (n’x1) unmeasured 

excitation vector; y(t) is the (mx1) output observation vector; the matrix L (mxn’) specifies which points 
of the system are observed, namely where the sensors are located and v(t) is an (mx1)  additive noise 
disturbance, a vector of measurement errors simulated by a gaussian white noise. The modal 

characteristics ( , )of the system are solutions of: 

 

    Mo 2 + Co +Ko = 0   ;   (Mo 2+Co  +Ko)  = 0                                                 (eq. 3) 

 

where  represents a determinant.    

The system described by (eq. 1) and (eq. 2) is equivalent to the following continuous time state-space 
model : 
 

    x (t) = 
~
A x(t) + 

~
B  (t)                                                                                                     (eq. 4) 

    y(t) = C x(t) + v(t)                                                                                                              (eq. 5)   
 
where x(t) is the vector of dimension 2n’ = n  

    x(t) = 




(t)

(t)








                                                                                                                      (eq. 6) 

and 
~
A , 

~
B  , C are the (2n’x2n’), (2n’xn’) ,(mx2n’) matrices 

  

    
~
A =

0
1 1

I

M K M Co o o o 









 

      ;     
~
B=

0
1Mo











       ;     C = [ L  0]                            (eq. 7) 

  

After sampling with constant period  t and transformation of the 2n’ first order differential equations 
(4) into a discrete time equation, we obtain the following discrete time state-space model and the 
discrete time observation equation [7, 15] 
 
    xk+1 = A xk + uk                                                                                                                  (eq. 8)  

    yk = C xk + vk                                                                                                                    (eq. 9)  
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where xk represents the unobserved state vector of dimension n; A = e
~
A t

 is the (nxn) discrete time 

state-space matrix or discrete time transition matrix and uk is given by 
 

    uk = e B t s dss
~ ~

( )A
t

 0


                                                                                                (eq. 10) 

 
The excitation is not measured and can be considered (a priori) as a centred random process. Note 
that uk and vk are mutually uncorrelated. The matrix C is (mxn) and is called the observation matrix 
and yk is an (mx1) vector of observations.  

The eigenvalues  and eigenvectors 


of the discrete time transition matrix A are related to the 

modal characteristics (3) by [15]     
 

    e t
     and     C 


 = L                                                                                       (eq. 11) 

                                                                                                

and the global modal parameters: the natural frequencies fi and damping ratios  i of the vibrating 

system can be determined by    
 

    fi=
1

2 4 2

2

1 2



   

 t

i i i i

i i

[ln( )]
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*



                                                        (eq. 12)  

                                                                          

     i =
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2
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                                                             (eq. 13)                                                                          

 

for i = 1,2,. . .n’ 

Since the state vector xk of dimension n = 2n’ is not observable we estimate it and transform (eq. 8) 

and (eq. 9) into a state-space innovation form, before we can obtain the transition matrix A. 

 

3 State-space innovation model 

      We estimate xk by its orthogonal projection onto the subspace spanned by the stacked vector of 

past data vectors noted  y k-1

-
 = [ y’k-1 , y’k-2 , . . . ]’. Here, the superscript ’ denotes the transpose 

operation and we use the notation zk = E[xk y k



1 ] to denote this orthogonal projection. We obtain zk+1 

using properties of orthogonal projections given by M. Aoki [16]   
 

   zk+1 = E[xk+1 y k


] = E[xk+1 y k



1 , ek] = A E[xk y k



1 ] + Bek = A zk + B ek                      (eq. 14) 

 

where ek = yk - E[yk y k



1 ]  is called the innovation component in the data vector yk . It is an (mx1) 

stochastic vector with zero mean and covariance matrix Q = E[ek e’k]. Note that ek is uncorrelated with 

y k-1

-
 and hence with zk by construction, and that the elements of {ek} are serially uncorrelated. zk is an 

(nx1) vector of unobservable states.  The (nxm) matrix B is called the Kalman gain. Since  
 

   E[xk+1 ek ] = E[xk+1 ek’](E[ek ek’])-1 ek                                                                             (eq. 15) 
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we have : 
 
   B = E[xk+1 ek’](E[ek ek’])-1                                                                                                (eq. 16) 
  

Note that by assumption E[uk y k



1 ] = 0 and E[vk y k



1 ] = 0. Using the definition of ek and (eq. 9), we 

obtain the discrete time observation equation which contains the innovation vector  
 

   yk = E[C xk + vk y k



1 ] + ek = C zk + ek                                                                         (eq. 17) 

                                                        
The set of equations (eq. 8) and (eq. 9) is now replaced by  
  
    zk+1 = A zk + B ek                                                                                                            (eq. 18) 
    yk = C zk + ek                                                                                                                  (eq. 19) 

                                                                                                                                 
Such representation is called state-space innovation representation of the data generating process 
(eq. 8)-(eq. 9). The state-space innovation model in (eq. 18)-(eq. 19) is a suitable representation for 
the synthesis of temporal samples. 

Denote the covariance matrix of the stacked vector y k-1

-
 by  R- = E[



1ky '

1ky

 ]. This matrix is 

theoretically infinite-dimensional, although in any actual implementation we cut off the stacked vector 
at yk-p for some positive integer p. We use the hat to denote an estimate based on finite amount of 

data. Thus R̂ -  is (mpxmp). We develop the state vector zk  
 

    zk=E[xk y k



1 ]=E[xk 
'

1ky

 ](E[


1ky '

1ky

 ])-1 

1ky  = K R-
-1 



1ky                                        (eq. 20) 

 

where K = E[xk 
'

1ky

 ] is called the controllability matrix. This is a reduced form expression for the state 

vector. At the moment equation (21) is not operational since we do not know the matrix K, which will 
be shown to be determined by a suitable factorisation of the block Hankel matrix defined later. Since K 

= E[xk 
'

1ky

 ] = E[zk 
'

1ky

 ] it is also a matrix with a theoretically infinite number of columns 

 
   K = [ G   AG   A2G . . . ]                                                                                                  (eq. 21) 
 
where we define the covariance matrix between zk and yk-1 as G = E[zk yk-1’]. 

 To estimate K it is necessary to introduce the stacked vector of future data vectors noted 


ky = [y’k , 

y’k+1 , . . .]’ = [y’
k, y+’

k+1]’, then from equations (19) and (20) we obtain  
 

   


ky  = O zk + F e+
k                                                                                                           (eq. 22) 

 
where the matrix O is the observability matrix of the model (19),(20) and has the form 
         

   O = 























.

.

CA

CA

C

2
                                                                                                                  (eq. 23) 

 
which theoretically has an infinite number of rows and F is a lower block triangular matrix formed by 
the matrices  0m , Im , A , B and C. 
Then the covariance matrix between the future and the past is  
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    H = E[


ky '

1ky

 ] = O E [zk y-’
k-1] = O K                                                                          (eq. 24) 

 
The matrix H, called the block Hankel matrix, is formed of (mxm) covariance matrices R i=E[yk+i y’

k] as 
submatrices i=1,2... and is factored as the product of two matrices O and K. Note that sample 
covariance matrices calculated from data yk, k=1,..,T    
 

   
iR̂  = T-1 







iT

1k

'

kik yy        ,    i = 1, 2, ..                                                                         (eq. 25)  

 

are used to construct a sample block Hankel matrix Ĥ which is factored into the estimated 

observability and controllability matrices Ô  and K̂ .  

 

 Ĥ   = O K                                                                                                                     (eq. 26) 

                                                                                                                               
A second factorisation of the estimated block Hankel matrix is obtained using the singular value 

decomposition of H  
 

   H =   U S V ’                                                                                                                (eq. 27) 

where Û and V contain the singular vectors of H . The singular values of H  are contained in 

descending order in the diagonal matrix S . When estimating a model with n states, only the n largest 

singular values are used. Setting the smallest singular values to zero constitutes the set of exclusion 
restrictions used to identify the model. Denote the approximation to the block Hankel matrix created by 

enforcing these exclusion restrictions by  
nĤ  . The S.V.D. of  

nĤ  is  

 

   
nĤ  = nU


nŜ '

nV̂                                                                                                         (eq. 28) 

                                                                                                                    

In the above the estimated singular values smaller than the cut-off value nŝ  are all replaced by zero, 

and only the columns vectors of Û and V  corresponding to the included singular values are retained 

as  nU


 and 
nV̂ . The model specification problem has been made an approximation problem. The two 

factorizations of the block matrix nĤ   are 

 

nĤ  = nU


nŜ '

nV̂  = ( nU


1/2

nŜ )(
1/2

nŜ '

nV̂ )                                                                            (eq. 29)                                                            

and     nĤ =  O Kn n                                                                                                          (eq. 30)  

 
We have formed the two factors 
 

         On
= nU


  
1/2

nŜ                                                                                                         (eq. 31) 

and     K n
=

1/2

nŜ '

nV̂                                                                                                        (eq. 32) 

 
with generalised inverses  
  

          
#
nO


  =  

1/2 -

nŜ  '

nÛ                                                                                                       (eq. 33) 

         
#
nK̂   =  nV̂  

1/2 -

nŜ                                                                                                 (eq.34) 
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 Other factorisations are possible, however the representation that corresponds to the choice of (equ. 

31) and (eq. 32) is called balanced since the gramians are equal, we have 
'

n
Ô On

=
'

nK̂ K n
= 

nŜ .                   

The unknown transition matrix A may now be found in terms of the known estimated covariance 

matrices  R i with i = 0, 1, . .  and the singular value decomposition of 
nĤ  . The procedure is 

described below. Multiply (eq.18) from the right by z’
k and take expectation to obtain 

 
    E[zk+1 z’

k] = E[(A zk + B ek)z’
k] = A E[zk z’

k] + E[B(ek z’
k)]                                                  (eq. 35) 

 
Dropping the last term since ek and zk are uncorrelated theoretically, we obtain 
 
   E[zk+1 z’

k] = A E[zk z’
k]                                                                                                         (eq.36) 

 

From (eq. 20) we have zk =  K R-
-1 



1ky  and we obtain 

 

   E[zk+1 z’
k] = K R-

-1 
R


 R-

-1 K’                                                                                               (eq. 37)  

 

where 
R


= E[y-

k 
'

1ky

 ] denotes  a shifted version of the block matrix R-  

 

   E[zk z’
k] = K R-

-1 E[


1ky '

1ky

 ] R-
-1 K’ = K R-

-1 K’                                                                    (eq. 38) 

 
From (eq. 36) we get 
  

   K R-
-1 

R


 R-
-1 K’ = A K R-

-1 K’                                                                                               (eq. 39)  

 
and finally the transition matrix is given by 
 

   A= (K R-
-1 

R


 R-
-1 K’) (K R-

-1 K’)-1                                                                                        (eq. 40) 

 
Note that the controllability matrix K can be estimated from (eq. 26) using the generalised inverse of 

the observability matrix On
 

 

    K =  
#
nO

 H  = 
1/2 -

nŜ  
'

nÛ H                                                                                                   (eq. 41) 

 
      With estimates of the transition matrix A in hand we compute its eigenvalues and we can identify 
eigenfrequencies and damping factors of the vibrating system following (eq. 12) and (eq. 13).  
However, all the subspace modal identification algorithms have a serious problem of model order 
determination. When extracting physical or structural modes, subspace algorithms always generate 
spurious or computational modes to account for unwanted effects such as noise, leakage, residuals, 
nonlinearity’s … For these reasons, the assumed number of modes, or model order, is incremented 
over a wide range of values and we plot the stability diagram [15]. The stability diagram involves 
tracking the estimates of eigenfrequencies and damping factors as a function of model order. As the 
model order is increased, more and more modal frequencies and damping ratios are estimated, 
hopefully, the estimates of the physical modal parameters are stabilized using a criterion based on the 
modal coherence of measured modes and identified modes [15]. Using this criterion we detect and 
remove the spurious modes. A numerical example and an experimental tests in laboratory showing 
the effectiveness of the method in modal parameter identification are presented in section 5.  



Mechanics&Industry 

4 The continuous wavelet transform  

Definition and properties 

        The continuous wavelet transform (CWT) gives time and frequency information about the 

analyzed data. For all functions y(t) satisfying the condition  dty(t) 2





 <  , which implies that 

y(t) decays to zero at  , the wavelet transform of y(t) is defined as  [10-15] : 

 

  b))(a,yψW( = 



td )

a

b-t
(*ψy(t)

a

1
                                                                       (eq. 42) 

 

where ψ(t)  is an analyzing function called mother wavelet, a is the dilatation or scale parameter 

defining the analysing window stretching and b is the translation parameter localising the wavelet 
function in the time domain. The CWT represents the correlation between the signal y(t) and a scaled 

version of the function ψ(t) and the idea of the CWT is to decompose a signal y(t) into wavelet 

coefficients using the basis of wavelet functions. The decomposition is obtained locally at different 
time windows and frequency bands. Once the mother wavelet is chosen, the centre of the time 
window is controlled by the translation parameter b while the length of the frequency band is controlled 
by the dilatation parameter a. Hence, one can examine the signal at different time windows and 
frequency bands by controlling translation and dilatation. 
 

Modal parameter identification by the CWT 

         The CWT gives time and frequency information about the analysed data. Any function ψ (t) can 

be used as an analysing wavelet when it satisfies the admissibility condition [10], this condition being 
necessary to obtain the inverse of the CWT. There are a number of different complex and real valued 
functions used as analysing wavelets, but the Morlet wavelet may be the most commonly considered 
and will be used in this communication. The Morlet wavelet is defined in the time domain as 
 

     ψ(t)  = 
t

 o
j ω

e  
/2t

e
2

                                                                                                 (eq.43) 

where  oω  is the oscillating frequency of the analysing wavelet. The Morlet wavelet is basically a 

sinusoidal function, oscillating at the frequency  oω  and modulated by a Gaussian envelope of unit 

width.  In the frequency domain the dilated Morlet wavelet becomes  

    ω) Ψ(a  = π2  
2)

o
ω-ω a (

2

1
-

e                                                                                     (eq.44) 

and the maximum is located at  aω = oω . 

          Consider a modulated signal in amplitude and frequency: x(t)=A(t)cos( )φ(t ). The CWT of x(t) is 

[10-13] 

  b))(a,xψW( =
2

a
  A(b) Ψ *(a )(bφ  ) φ(b)je                                                                     (eq.45)                        

where )(bφ  =d φ(b) /db is the instantaneous frequency of the signal. The dilatation parameter is 

obtained when b) ,(a x) W ( ψ  is maximum, that is a = a(b) = )(bφ / 
o

ω   and we get then 

   b)(a(b), x) W ( ψ  = 2 /a(b)π  A(b) φ(b)je                                                                         (eq.46) 

Now, consider the impulse response of a viscously damped single degree of freedom system 
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    x(t) = B
tωζ

e n
cos( dω t + oχ )                                                                                   (eq.47) 

where dω = nω
2ζ1 is the damped angular frequency and  ξ  the damping factor. It is easy to see 

that A(t) = B
tωζ

e n
 and )φ(t = dω t + oχ  so  )(tφ = dω . The amplitude of the wavelet transform is 

maximum for the constant scale a=a1= d0 ωω and we obtain the ridge of the CWT. Equation (eq. 46) 

becomes 

     b) (a x) W ( ,
1ψ = 2 /aπ

1
B

bωζ
e n )χb(ωj

0de


                                                           (eq.48) 

From (eq. 48) we can deduce  

     Arg ( b) (a x) W ( ,
1ψ ) = dω b + oχ                                                                                   (eq. 49) 

     ln( b),(a x) W (  1ψ ) = bωξ n +constant                                                                       (eq.50) 

        The phase function is a straight line whose slope represents the damped angular frequency. The 

log of the wavelet modulus cross-section is again a straight line whose slope is the decay rate nωξ . 

Once the instantaneous frequency and the decay rate have been estimated we can identify the natural 
frequency and the damping ratio of the vibrating system. 

5 Applications 

Simulated data 

         To prove the effectiveness of the identification procedure based on the subspace analysis we 
consider a two-DOF system with very closely spaced modes. The parameters of the system are f1 = 2 

MHz , f2 = 2,01 MHz, 1ξ  = 0,01 and 2ξ  = 0,02. Fig. 2 (a) shows the free response of the system 

where a Gaussian white noise has been added: the generated data were corrupted by a random 
noise. The sampling frequency is 5 MHz and only 151 time samples are used in the simulation. The 
signal duration is 30 sμ .  

 We convert to the frequency domain this time response by taking the discrete Fourier transform of the 
noisy signal. It is impossible to identify the two frequencies components by using the FFT as shown in 
Fig. 2(b) and (c), where the power spectral density has been plotted.  
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Fig. 2. Time response for the analyzed two-DOF system (a) and its spectrum (b) and (c) 

 
      In our identification procedure by subspaces, we plot the stabilization diagram on eigenfrequencies 
and damping factors. Fig. 3 shows stabilization diagrams with the modal coherence indicator: spurious 
modes have been eliminated and only physical modes are present.  
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Fig. 3. Stabilization diagram on eigenfrequencies and damping factors for the two-DOF system 
 

    Our procedure can separate closely spaced modes and the mean values on identified  
eigenfrequencies and damping factors obtained by an average over the orders of the stabilization 

diagram are 
1

f̂  = 2 MHz; 
2

f̂ =  2,01MHz;  
1
ξ̂ = 0,01 ;

2
ξ̂ = 0,02. A very satisfactory estimation on 

eigenfrequencies and damping factors has been obtained using simulated data.  
 
We apply now the continuous wavelet transform to our numerical test. Fig.4 presents the continuous 

wavelet transform modulus and its ridge for the two-DOF system. The CWT is a time-frequency representation 

and the two modes appear after 18 sμ  of signal recording. The identified first mode is plot in red dash line 

and the identified second mode is plot in magenta dot-dash-line. The two vertical blue lines 
correspond to the limitations of edge effects. The identified modal parameters for the two dof system 

are
1

f̂  = 1,99 MHz; 
2

f̂ =  2,01MHz;  
1
ξ̂ = 0,44 ;

2
ξ̂ = 0,49. A very satisfactory estimation on 

eigenfrequencies are obtained, however damping factors are not well identified. This is due to the fact 
that the two modes are very close and only 151 time samples are used in the analysis. It is shown in 
[14] that it is necessary to have a long recording time and an important number of time samples to 
identify correctly closely spaced modes. Furthermore, the vibrating system is very quickly attenuated: 
the time response decreases rapidly and, it is shown in [14], the continuous wavelet transform gives 
good results if the time response is not attenuated abruptly. The limitations of the continuous wavelet 
transform concern the low number of time samples used in the identification procedure and the fast 
decay of the time response. 
 

 
Fig. 4. Continuous wavelet transform modulus and its ridge for the two-DOF system 
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An experimental test in laboratory is presented in the following section.   
 

Modal parameter identification of a CMUT membrane 

 
    A CMUT cell is basically a metallized membrane suspended over an electrode and by applying an 
alternating voltage to the parallel plate capacitor, an electrostatic force will cause the deflection of the 
membrane and the generation of ultrasounds. The main purpose is to find the first resonance 
frequency of the membrane, the effectiveness of a CMUT cell being analyzed in terms of resonance 
frequency, stiffness and damping coefficients. It can be reminded that vibration amplitude of the 
membrane is maximized at the mechanical resonance frequency. A CMUT is commonly fabricated by 
means of the surface micromachining technology, using standard integrated circuits techniques. 
Several processes have been reported in the literature to fabricate CMUTs, using different materials 
and film deposition techniques. In our experimental test the CMUTs have been fabricated using the 
anodic bonding technology of a fixed thickness monocrystalline silicon layer of a SOI wafer (Silicon On 
Insulator technology) on a borosilicate glass substrate. The process evolution for each technological 
step and the fabrication runs are not discussed, but details can be found in Bellaredj [17]. Two 
photographs representing a circular CMUT cell and an array of CMUTs are presented in Fig. 5. The 
bonding technology is a particularly promising technique for CMUTs fabrication because it is easy and 
reliable to control and reduces process cost and time. 

 

  
 

Fig. 5. A circular CMUT cell and an array of CMUTs 

      

   The dynamic measurements of a metallized membrane are conducted in the time domain by means 
of a POLYTEC laser vibrometer. The vibrometer is composed of a fiber-coupled vibrometer sensor 
head OFV-534 and an OFV-5000 controller. The controller has a DD300 decoder being able to 
measure displacements up to 150 nm peak to peak at 24 MHz. In our experimental test the external 
force acting in the membrane is a step force and Fig. 6 shows the time response of the membrane 
center, where the sampling frequency of signal is 500 MHz and the duration is 20 sμ . Only a part of 

this time response of the structure is used in the identification procedure (the damped response).   
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Fig. 6. Time response of the membrane center to a step force actuation 

 

      In this paper a single degree of freedom of a spring-mass-damper model is used to study the 
membrane behavior. The model is constituted by the following parameters: the metallized membrane 
mass m concentrated in its center, the damping coefficient c and the stiffness coefficient k. Table 1 
shows the dimensions and material properties of the CMUT cell and the first theoretical resonance 
frequency of the metallized membrane can be computed by the relation given in Rossi [17]  
 

  f = 

)ν - ρ(1

E

R

t 0,467

22

m                                                                                                   (eq.51) 

 

Membrane 
radius R 

Membrane 
thickness tm 

Membrane 
density   

Membrane Young’s 
modulus E 

Membrane 
Poisson’s ratio ν  

Gap 
thickness tg 

60  μm  2,3 μm  2330 kg.m-3 150 GPa 0,17 0,75  μm  

 

Tab. 1. Dimensions and properties of the CMUT cell 

 
      The metallized membrane mass is m= π R2 tm = 6,61x10-11 kg. The membrane stiffness is given 

by k=m (2 π f )2, the damping coefficient is c=4 πm f ξ , the quality factor is Q=1/2 ξ and the half-

power bandwidth of the system is  BΔ = f/Q, where f is the resonance frequency of the membrane and 

ξ  the damping factor. These two modal parameters are obtained by an average over the orders of the 

stabilization diagram presented in Fig. 7. To our knowledge, it is the first time that the subspace 
algorithm is applied to a microelectromechanical system and in particular to a CMUT cell.  
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Fig. 7. Stabilization diagram on resonance frequency and damping factor for the experimental CMUT membrane 

 
     Fig. 8  shows the modulus of the CWT and the identified ridge obtained from the membrane center 
displacement. From the ridge of the CWT we obtain Fig. 9 and the instantaneous modal parameters of 
the membrane using the slope of straight lines. To our knowledge, it is the first time that the CWT 
algorithm is applied to the membrane of a CMUT cell.  
 

 
 

Fig. 8. Continuous wavelet transform modulus and its ridge for the experimental CMUT membrane center 
 

 
Fig. 9. Amplitude and phase of the ridge of the CWT for the experimental CMUT membrane center 

 
 
     Table 2 and Table 3 show the identified metallized membrane parameters using respectively the 
subspace method and the CWT method. These two methods give very similar results. 
 

Theoretical 
resonance 
frequency 

Experimental 
resonance 
frequency 

Damping 
factor 

Stiffness 
coefficient 

Damping 
coefficient 

Quality 
factor 

Half-power 
bandwidth 
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2,43 MHz 2,12 MHz 1,06% 10754 N.m-1 17,1x10-6 Ns.m-1 47 45 KHz 

 

Tab. 2. Identified parameters of the metallized membrane using the subspace method 

 

Experimental 
resonance 
frequency 

Damping 
factor 

Stiffness 
coefficient 

Damping 
coefficient 

Quality 
factor 

Half-power 
bandwidth 

2,12 MHz 0,91% 10754 N.m-1 14,7x10-6 Ns.m-1 55 38,6 KHz 

 

Tab. 3. Identified parameters of the metallized membrane using the continuous wavelet transform method 

     
          Fig. 10 shows the comparison between the measured time response of the metallized 
membrane and the reconstructed time response obtained using the identified modal parameters 
obtained by the subspace method. In this time response we have only taken in consideration the 

damped response portion between 6,5 μs  and 20 μs . 
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Fig. 10. Comparison between the measured time response of the membrane (in blue) and the reconstituted time 

response (in red) 
 

   An important part of the identification process is to assess the quality of the estimated model 
obtained from the identified parameters. A measure of model quality is obtained using the following 
expression [19] 
 

  Mq = 1 - 











N

1k

N

1k

2
k

y

2
)kyky( ˆ

                                                                                     (eq.52) 
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which is a normalized estimation error of the used model. Increasing values of Mq indicate better fit 
and 1 indicates a perfect fit of the model to the measured data. In this expression yk are the measured 

data and kŷ  the estimated data, obtained from the model. For the metallized membrane we obtain 

Mq = 0,67 which is a satisfactory value. The decay function of the response is expressed by the 

relation g(t) = Gm exp (- β t), where Gm  is obtained by initial conditions and  β  = 2 π  f ξ  is computed 

from the identified modal parameters. This decay function is plotted in Fig. 7. Note that the coefficients 

Gm and β = c/(2m) can also be evaluated directly by interpolating the measured response of the 

membrane and in this case we can obtain the value of the damping coefficient c from β and m. In [20] 

nonlinearities are added in the model to analysis the performances of the CMUT for several DC 
voltages.     

 

6 Conclusion 

           In modal parameter identification the key point is to determine the relationship between the 
system parameters and the measured dynamical data and a particular attention has been paid to 
modal parameter identification when only output measurements are used. Such parameters can then 
be used to improve the ultrasonic generating process by a CMUT, for model validation and for fault 
detection in CMUTs. In this paper, we have proposed two methods for modal parameter identification: 
the subspace method based in the state-space innovation model and the continuous wavelet 
transform method based in the use of the ridge of the CWT. Numerical and experimental results have 
shown the effectiveness of the procedures presented in the paper for modal parameter identification. 
However, the CWT has some limitations: if the number of data points is insufficient or if the vibrating 
system is quickly attenuated closely modes are not well identified in terms of damping factors. 
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