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Linking hyperbolic and parabolic p.d.e.’s.

Hans Zwart, Yann Le Gorrec and Bernhard Maschke

Abstract—In this article we show that from the existence friction in the material converting vibrational energy ant

and uniqueness of solutions to a hyperbolic partial differetial  heat. In this case the vibrating string is modeled by
equation (p.d.e.) existence and uniqueness of parabolic dn

other hyperbolic p.d.e.’s can be derived. Among others, wehew 0w 0 Ow

that starting with the (undamped) wave equation we obtain p(C)W@’t) T A T(<)3_<(<’t) +

existence and uniqueness of solutions for the uniform ellix 92 1o

p.d.e’'s and for the Schibdinger equation. bo—— _w(g t) (2)
ocz ot

| INTRODUCTION wherep(() is the linear mass densit¥;(¢) is the elasticity

Studying control theory for partial differential equat®on modulus (taking values in a compact interval(6f o)) and

(p.d.e’s), the first question normally encountered is thg s the (positive) structural damping coefficient.
guestion of existence and uniqueness of solutions for the Defining the state as — p%—?) the p.d.e. (2) may be

ow

(homogeneous) p.d.e. Since the p.d.e. is linear we have to. o\ ac
show the existence of a strongly continuous semigroup. I\Hntten as the p.d.e. (1) with:

many cases it is known from the physical problem formula- H(C) = ( p(lc) 0 ) 7= ( 0 1 > g

tion that any solution will not increase in norm (energy). a 0o T )’ 1 0 )oac

This leads to the problem of showing that the operatog

associated to the p.d.e. generates a contraction semigroup

this paper we show that knowing that one operator generatesg,, — ( 1 > ﬁ, Gh=— ( 1 0 ) 27 S = k..

a contraction semigroup implies that many other operators 0 ) o¢ ¢

generate a contraction semigroup as well. This goes mugh this example the perturbation term indeed corresponds to
further than the well-known bounded perturbation result fosome physical dissipation of energy, and whgn= 0, or
semigroups. Among others, we show that the existence aeduivalently whenS = 0, we have a hyperbolic p.d.e. ®
unigueness of the diffusion equation and of the Schrodinge

) . . Equation (1) can be seen as the linear control system
equation can be obtained from the same wave equation.

&(t) = THx(t) + Gru(t) (©)]
[I. MOTIVATIONS AND PROBLEM STATEMENT y
. y(t) = GrHx(t), (4)
Consider the p.d.e.
which has conjugated input and output in the sense that the
i(t) = (J — GrSGR) (Hz(1)) , (1) input and output maps are defined by the adjoint operators

Gr andGy,. It defines a so-called port-Hamiltonian system,
see [3]. The p.d.e. (1) may then be regarded as closing
the loop of the linear control system (3)—(4) with{t) =
—Sy(t). If the control system (3)—(4) is well-posed, then
the p.d.e. (1) possesses a solution according to Staffjns [2
a parabolic p.d.eJ will be zero. We illustrate this with a and ngss [4]. The precise defiqiti_on of well-posedness is
not so important here. However, it is important to state that

simple one-dimensional p.d.e. I q i molies that is th ‘ hich is th
Example 2.1:Consider the one-dimensional wave equa\—Ne -posedness implies that s the operator which is the

tion on the spatial domaifu, b]. One cause of damping is most unboundgd_. or putting it more_smplj, W'." be the
structural damping. Structural damping arises from irgern operator containing the highest spatial derivatives. Ay ma
be seen from the following example, this is too restrictive.

The contribution of Y. Le Gorrec and B. Maschke has been daittginw Example 2.2 (Heat equation)et 2 be bounded open
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where 7 is formally skew-adjointGy, is the formal adjoint
of Gr, andS is non-negative and is positive. Furthermore,
x(t) is for everyt a function of the spatial variablg €
with Q a subset ofR?. In many p.d.e’s we can recognize
the form (1). For a hyperbolic p.d.es, will be zero, and for

whereA denotes the Laplacian, i.e\x = i;” + iﬁ? + i@”.
acz T a2 T a2
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with Vo = (£ 2. 42)" anddivf = 3 + g-—g + 5. Furthermore,S is a bounded operator fromi, to X,. We
It is well-known that—V is the (formal) adjoint of the make the following assumptions throughout the rest of the
divergencediv, and so if we choose¢/ = 0, H = I, paper.

Gr = div, andS = I, then (5) is in the form (1). [ ] Assumption 2.3We assume that with the domain (11),

Thus this example shows that the closed-loop point of vievfext 9€N€rates a contraction semigroup &m x Xo. Fur-
is not the correct way of regarding the p.d.e. (1), and hendBermore,s' satisfies
we shall not follow this idea. Instead of this, we decompose
the right hand-side of equation (1) as the operator mapping Re(Sir, ) = 0. (12)
(e1) to (2) defined by We recall that the operatod generates a contraction
semigroup on the Hilbert spac& if and only if A is
< fi ) _ < J  Gr > < e1 ) — < €1 ) (7) dissipative i.e., ReAz,z) < 0 for all x in the domain of
f2 -G, 0 ex ) TN o A, and the range oft — I equalsX. This result is known
as theLumer-Phillips theorem

together with the closure relation ) )
With A.y; and.S we define the operatotg on X, as
e2 = Sfo. (8) .
- 1
Combining these equations it is easy to see fhat (J — Aszr =AM ( S Ao > (13)

GrSGr,)e1, and thus in this way we are able to build new )

p.d.e’s even wher = 0. As explained in [5] the signals With domain

appearing in the closed loop system form always a subset of 71

the signals in the open loop system. However, in our cIosureD(AS): {xl € D(Az1) ( S Ao 11 ) < D(Aext)} - (14)

this does not longer hold, as can be seen in e.g. Example 2.7

in which we transform a hyperbolic p.d.e. into a parabolidhis As is the operator associated 6 — GrSGy, see

one. also Examples 2.7 and 2.10. In the class of p.d.e’s (1),
It may be noted that in the decomposition (7)—(8), théhe operatorH corresponds to the definition of the energy

forma”y Skew_symmetric Operatqﬁext appears. This op- of the SyStem and the dISSIpatIVIty of the phySica| System

erator is related to the extension of Hamiltonian systeni§ naturally expressed with respect to the norm induced by

defined on state spaces endowed with a Poisson brackd® energy. Although this energy characterizes an es$entia

to controlled Hamiltonian systems (callort-Hamiltonian ~Physical property, we show in the following lemma that for

systempdefined on Dirac structures [3]. the proofs of the existence of a contraction semigroup, we
In this paper we study the relation between the p.d.e. (1jay assume thak{ = I without loss of generality.
and the (extended) p.d.ei,g( the Hamiltonian system): Note that the operatdt is coerciveif it is bounded, self-
adjoint, and satisfie$z, Hz) > ¢||=||* for all z and some
icxt (t) = %xtchtxcxt (t) (9) e > 0.

where H,.; is an appropriate positive valued matrix. This Lemma 2.4:Let X be a Hilbert space with inner product

may be replaced by a coercive operator, but we don’t nee(d ) aqu be a coercive operator aki. With this operator
that generality in this paper. As stated in the beginning of¢ define the new inner product

this section, the aim is to show that (1) possesses a unique ,_
solution for any initial condition. For this we need boungar (w1, @2)2 = (w1, Hara). (15)
conditions to the p.d.e. and a space of initial conditionThen the following holds

Putting it differently, we have to define operators assediat

to our p.d.e.’s. By doing sqQ7.xt becomes an operator with

a proper domain. Distinguishing between these cases, we
change the notation and usé, A.. for the operators.
Furthermore, we assume that our linear spaces are complex
valued. Thus we consider the following operator defined on
the product space of two complex Hilbert spacés and

1) The norms induced by, ) and (-, -)», are equivalent.
2) The operatord with domain D(A) generates a con-
traction semigroup onX with respect to the norm
|| - || if and only if the operatorAH with domain

D(AH) = {# € X | Hx € D(A)} generates a
contraction semigroup o’ with respect to the norm
|- 1l

X! A In the sequel, we shall derive conditions, such tAat
Aext = ( A211 0 ) (10) generates a contraction semigroupX®n The above lemma

implies that we may prove this under the assumption that
with A; a linear operator defined oN; x X, and A;; a H = I. We begin by proving that5 is dissipative.
linear operator defined oX;. The domain of this operator | emma 2.5:Let A.; be a dissipative operator and I8t
is given by satisfy (12). The operatod s as defined by (13) and (14) is
dissipative.
D(Aext) = {(w1,72) € Xa X Xz |1 € D(Az) Proof: Since(z,y)+ (y,z) = 2Re (z,y), we only have
and (z1,22) € D(A1)}. (11) g estimate the real part @fdsz1,21). Using its definition,



hal-00720347, version 1 -

we find forz; € D(Ag):

o I T
R6<ASI17«I1> = Re <Acxt < SAQll'l > ) ( 0 >>

o T ZT1

= Re <Acxt < SAQll'l > ) ( SAQll'l )>

— Re (Ag111, SA2121)
<040,

where we have used that.,, is a dissipative operator, and

that S satisfies (12). [ |

Since the adjoint of the operat®f with domain H}(€2)
equals—div with domain Hga;,(2) = {f € L?(;C3) |
divf € L?(Q)}, we have thatA.,; generates a unitary
group. We remark that this operator is associated to the
three dimensional wave equation, which is hold still at the
boundary.

Let Q(¢) € L*(Q;C3*3) be a matrix valued function
such that there exists an> 0

Re(z,Q(¢)2) = elz]1%,

With this function we associate the operator frém(§); C?)

zeC3¢ceQ (20

The following theorem shows thats generates a contrac- to 1,2(Q; C?) defined as

tion semigroup for dissipation terntswith S+ S* coercive.
Theorem 2.6:If A, is the generator of a contraction

(S)(€) = Q) Q). (21)

semigroup, and ifS satisfies R&Sxz,z) > el|z||* for some Tphe operatords becomes, see (13),

¢ > 0, independent of:, then Ag generates a contraction

semigroup.

Proof: By Lemma 2.4, we know thatl s is dissipative.

By the Lumer-Phillips theorem it remains to show thatAg
is surjective.

Since S satisfies Ré&z,z) > ¢||z|?, we see that
Re(y,S71y) > €]|S7'l? = eyl So there exists a

§ € (0,1) is such that R&S 1, z) > dz|?.
Let P be defined as

P—< (1_06)1 g1 g1 >

L0 (L dey
(Ase) (O =) . (; W(C)@(C)) : (22)

k=1
with domain

D(As) = {e1 € H'(Q) | SVe; € Hyn ()
ande; = 0 on 9Q}.

By condition (20) we see tha$ is coercive, and so by
Theorem 2.6 As generates a contraction semigroup on
L?(Q). The operatords with S satisfying (20) is known to
be auniformly elliptic operator written indivergence form

By the choice ofs we see that Rz, r) > 0. Thus the see e.g. [1]. We remark that f@)(¢) = I3, we obtain the
bounded perturbation ol given by A..; — P generates a heat equation of Example 2.2.

contraction semigroup. By the Lumer-Phillips Theorem this So for S + S* > I > 0, the operatords generates a

implies that for allf € X; there exists &x1,x2) € D(Aext)
such that

(5):[6I—Aext+P]<i;>. (16)

f=21— A1 (%) a7
0=0x9 — Ag121 + 871172 — 0o (18)

Hence

From equation (10) we see that = S A, 2 and thuse; €
D(Ag). Combining this with equation (9), we find

f=21— A1 (sda, ) = (I = As)1. (19)
ThusI — Ag has full range, and so we conclude thag
generates a contraction semigroup. |

We apply this result on uniformly elliptic p.d.e.’s
Example 2.7:Let Q be bounded open connected seRih

with smooth boundary. From Example 2.2, we see that the

choice forA.y; Is

0 div
Acxt—<v 0 )

As domain we choose

D(Acxt) = {( 21 )e L3(Q) x L*(Q;C?) | e2 € Hgiv (Q),

2
e1 € H(Q) ande; = 0 on 00}.

contraction semigroup. The following example shows that
this does not hold whe§ + S* =0

Example 2.8:Let Ay be a bounded, injective, positive,
self-adjoint operator on the Hilbert spadg), and assume
further that the (algebraic) inverse df, is unbounded. Let
this operator definel; = Xo = X¢ ® Xo,

—1
A12=(A21 f(l)o), A21:<_?40 AOO )
(23)
It is easy to see thafl.,; := (AO21 Agz) is skew-adjoint, and
hence it generates a unitary group.

For S we take the operator

5:(_0[ é) (24)

CalculatingAg gives

AS:A12SA21
(0 A 0 I 0 Ayt
A4t o0 -1 0 — Ay 0
[ —Ay 0 0 —Ay!
R e ~Ag 0
(0 I
“\ -1 0 )"

Hence it is a bounded operator. However, by definition, the
domain of Ag is a subset of the domain of,;. The domain
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is dense, but unequal t&; @& X,. Hence the operatadg
is not closed and therefore cannot be the generator of a
semigroup. [ |

So if S+ S* > 0, then Theorem 2.6 does not need to
hold. However, we still have the following result.

Theorem 2.9:Let Aoy = () “4*) with domain
D(Acxt) = D(A21) @ D(A;12) generate a contraction semi-
group, thendg := —i A2 Ao with domainD(Ag) = {z; €
D(A21) | A2121 € D(A12)} generates a group ol .

We apply the above result on the Schrodinger equation.

Example 2.10:Let Q2 be bounded open connected set in
R3 with smooth boundary. Thd.,, of Example 2.7 satisfies
the condition of Theorem 2.9. Choosin§) = il we the
associated equation given by

Ag = i/,
with domain

D(As) = {e1 € H(Q) | Ve1 € Hgio(Q)
ande; = 0 on 9Q}.

By Theorem 2.9 we know that this generates a unitary group
on L?(Q2). Since positive constants will not effect this, the
Schroddinger equation oft for a free particle given by

0 . h
568 =iz=Aa(C), (e 20, alpa =0, (25)

where# is the reduced Planck constant, the mass of the
particle, has a unique solution with constait(€2)-norm.
This corresponds to a particle trapped in a potential well.

IIl. CONCLUSION

In this paper we have presented a new idea for proving
existence and uniqueness of p.d.e.’s. We showed thatgtarti
from the same wave equation all uniformly elliptic p.d.e.’s
and the Schrodinger equation can be recovered. However,
much more is possible, starting from two Schrodinger equa-
tions the double Laplacian-A%? = A - T - iA can be
constructed. Furthermore, the characterization of allnibleu
ary conditions for which a hyperbolic p.d.e’s generates a
contraction semigroup can be obtained.
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