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Abstract

A visual servoing scheme consists of a closed-loop control approach which uses visual information
feedback to control the motion of a robotic system. Probably the most popular visual servoing method
is image-based visual servoing (IBVS). This kind of method uses geometric visual features extracted
from the image to design the control law. However, extracting, matching and tracking geometric visual
features over time significantly limits the versatility of visual servoing controllers in various industrial
and medical applications, in particular for "low-structured” medical images, e.g., ultrasounds and opti-
cal coherence tomography modalities. In order to overcome the limits of conventional IBVS, one can
consider novel visual servoing paradigms known as “direct” or “featureless” approaches. This paper
deals with the development of a new generation of direct visual servoing methods in which the signal
control inputs are the coefficients of a multiscale image representation. In particular, we consider the
use of multiscale image representations that are based on discrete wavelet and shearlet transforms. Up
to now, one of the main obstacles in the investigation of multiscale image representations for visual ser-
voing schemes was the issue of obtaining an analytical formulation of the interaction matrix that links
the variation of wavelet and shearlet coefficients to the spatial velocity of the camera and the robot. In
this paper, we derive four direct visual servoing controllers: two that are based on subsampled respec-
tively non-subsampled wavelet coefficients and two that are based on the coefficients of subsampled
respectively non-subsampled discrete shearlet transforms. All proposed controllers were tested in both
simulation and experimental scenarios (using a 6 degrees-of-freedom (DOF) Cartesian robot in an eye-
in-hand configuration). The objective of this paper is to provide an analysis of the respective strengths
and weaknesses of wavelet- and shearlet-based visual servoing controllers.
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1 Introduction

1.1 Motivation

Vision-based control is a technique which uses visual features extracted from images, provided by one or
multiple vision sensors, to control the motion of a robot in a closed-loop scheme (Hutchinson et al., 1996;
Chaumette and Hutchinson, 2006). The past thirty years have seen rapid advances in this field with applica-
tions in industrial manipulation (Lippiello et al., 2007), medical robotics (Krupa et al., 2003; Abolmaesumi
et al., 2002) or, more recently, drone navigation (Barajas et al., 2013; Mathé et al., 2016). Generally, the goal
of a vision-based control law is to make a positioning task succeed by minimizing the difference between a
set of desired visual features s* and a set of current ones s(¢) to zero. The first visual features considered in
visual servoing were geometric features such as points (Chaumette and Boukir, 1992), lines (Renaud et al.,
2002) and image moments (Tahri et al., 2015). While controlling a robot using visual feedback is referred to
as visual servoing, the continuous measurement of the visual features over time is known as visual tracking.
However, most visual servoing approaches strongly depend on the ability to detect, extract and track visual
features during the control process.

Recently, new methods emerged that allow avoiding the challenging visual tracking tasks by directly using
global image information as direct signal control inputs. Accordingly, several types of global information
were investigated such as image intensities (Silveira and Malis, 2012; Tamadazte et al., 2012), mutual in-
formation (Dame and Marchand, 2011), the sum of conditional variance (Richa et al., 2011), the Fourier
transform (Marturi et al., 2014, 2016) or Gaussian mixtures (Crombez et al., 2015). Such techniques, which
are typically referred to as direct visual servoing schemes, are often considered to be more accurate and
robust than visual servoing approaches that are based on the extraction of geometric features. This is essen-
tially due to the redundancy of visual information considered in the control loop.

The work described in this paper deals with the development of new direct visual servoing approaches
where the input control signals consist of time-frequency multiscale coefficients. The latter are obtained
by applying wavelet- and shearlet-based image decompositions. Generally, multiscale representations of
an image are obtained by repeatedly smoothing and subsampling an image signal while also storing the
detail information lost at each stage of this process. Such decompositions are not only useful for defining
increasingly coarse approximations of images, but also to obtain sparse representations which means that
most coefficients describing the detail information lost in each transformation step are typically close to zero.
A widely used multiscale image representation scheme is the so-called Laplacian pyramid, introduced in
1983 by Burt and Adelson (Burt and Adelson, 1983), which is based on repeated applications of a Gaussian
blurring kernel. The Laplacian pyramid was later extended by Simoncelli ef al. (Simoncelli and Freeman,
1995) to yield improved representations of oriented features such as curves and edges. Another way of
defining multiscale image representations can be found in the realm of applied harmonic analysis, which
originates from classical Fourier analysis and time-frequency analysis and has grown to be one of the major
research areas in modern applied mathematics. Indeed, one of the main goals in applied harmonic analysis is
to construct systems of basic building blocks that are provably optimal for describing features and structures
typically occurring in certain classes of signals like “natural” images. Such systems of building blocks are
often characterized by an inherent multiscale structure and thus yield efficient multiscale representations of
the image signal.

Certainly, one of the “biggest success stories” of applied harmonic analysis can be found in the develop-
ment of "wavelet” transforms. A wavelet transform can localize features simultaneously in the time and the
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frequency domain. This is a significant advantage over the Fourier transform, which only yields information
about which frequencies are present in a signal but cannot identify when they are occurring in the time
domain. The first definition of a wavelet was given in 1910 by Alfred Haar (Haar, 1910). However, it was
the ground-breaking work of pioneers like Ingrid Daubechies (Daubechies, 1988), Stéphane Mallat (Mallat,
1989) and Yves Meyer (Yves Meyer, 1992), in the late 1980s and early 1990s, that made discrete wavelet
transforms applicable in many areas of engineering and applied mathematics and led to the development of
a new generation of multiscale image representations. Wavelet-based multiscale image decomposition have
since been invaluable tools in several digital image processing tasks such as compression (e.g., JPEG2000),
filtering, feature detection and tracking. While wavelets are well suited for describing transient features
such as singularities in 1-dimensional signals, they are not necessarily optimal for fitting the curvilinear fea-
tures occurring in a 2-dimensional problem (Donoho, 2001). This motivated the investigation of multiscale
transforms based on anisotropic (i.e. directionally sensitive) basis functions such as curvelets (Candes and
Donoho, 2000), contourlets (Do and Vetterli, 2003) or more recently shearlets (Labate et al., 2005; Kutyniok
and Labate, 2012b). These recent tools have since found various applications in image processing tasks such
as image denoising (Easley et al., 2009), inpainting (King et al., 2013) or edge detection (Yi et al., 2008;
Kutyniok and Petersen, 2015; Reisenhofer et al., 2016).

Despite their prominent role in digital image processing, the use of multiscale coefficients as signal con-
trol inputs in a vision-based control scheme has only recently been considered. A 6 DOF visual servoing
approach based on the low-pass approximation of an image obtained from a discrete wavelet transform
was proposed in (Ourak et al., 2016a,b). In parallel, the shearlet transform was considered in the context
of medical image-guided tasks, that is, a 6 DOF ultrasound-based visual servoing method was proposed
for automatically positioning an ultrasound probe carried by a robotic arm (Duflot et al., 2016a,b). In this
previous work, the link between the time-variation of the shearlet coefficients and the probe velocity was
obtained by a numerical approximation method. These preliminary investigations already demonstrate the
feasibility and the potential benefits of considering such visual information in a visual servoing scheme, in
particular in unfavorable conditions (image noise, partial image occlusions, illumination changes). In fact,
using multiscale image decompositions could serve as an interesting compromise between purely geomet-
ric feature-based approaches and image-intensity-based (e.g., photometry) ones. The coarse approximation
of an image yielded by a multiscale representation scheme is basically a smoothed version of the original
image and thus robust to noise. In addition, the detail coefficients obtained at the different decomposition
levels are highlighting basic image features, such as edges or curves, and can thus be seen as implicit visual
feature detectors.

1.2 Summary of Contributions

Up to now, one of the main obstacles in the investigation of multiscale image decompositions in visual
servoing fields was the issue of obtaining an analytical formulation of the interaction model that links the
variation of the wavelet or shearlet coefficients to the camera/robot spatial velocity. This interaction model
is well-known in the visual servoing community as the “interaction matrix”. In this paper, we analytically
derive interaction matrices for control laws based on both wavelet and shearlet coefficients. That is, the
variation of the wavelet respectively shearlet coefficients in the visual feature vector is analytically linked to
the camera velocity twist vector. In both the wavelet and the shearlet cases, we are considering subsampled
and non-subsampled transforms. The difference between subsampled and non-subsampled transforms will
be discussed in Section 2. In total, we propose four visual control laws which are:

* subsampled wavelet-based control law (s-wavelet)



* subsampled shearlet-based control law (s-shearlet)
* non-subsampled wavelet-based control law (ns-wavelet)
* non-subsampled shearlet-based control law ( ns-shearlet)

Moreover, all proposed control laws were tested in both simulation and experimental scenarios (using a
6-DOF Cartesian robot in an eye-in-hand configuration). The objective was to provide a wide qualitative
and quantitative analysis of their respective strengths and weaknesses. In particular, numerous experiments
under favorable (nominal conditions) and unfavorable (partial occlusions, unstable illumination) working
conditions were carried out. It can be highlighted that wavelet as well as shearlet-based visual servoing
approaches provide good performances with regards to accuracy and robustness to external disturbances.
Furthermore, experimental evidence suggests that the control laws based on subsampled transforms outper-
form those that are based on non-subsampled ones.

1.3 Plan

Section 2 gives a short introduction to wavelet- and shearlet-based multiscale image representations. Sec-
tion 3 begins with a review of the well-known direct visual servoing approach in which image intensities are
used as the only visual features and describes how it can be modified to obtain wavelet- and shearlet-based
control laws. In particular, Section 3 discusses the mathematical formulation of the respective wavelet and
shearlet-based interaction matrices. Section 4 presents the results obtained from several simulations and
experimental validations under different working conditions, the comparison with the photometry visual
servoing as well as a discussion of the performances of each proposed method.

1.4 Notation

We use bold non-italic letters to denote vectors (e.g. s) and bold non-italic uppercase letters to denote ma-
trices (e.g. A). Scalar values and continuous-time functions will be denoted by italic letters (e.g. x, resp.
f). Single entries of a vector or a matrix will be denoted using subscript indexes and non-bold italic letters
(e.g. hy, resp. A, m). We use Ay to denote a matrix that is parameterized by k and A(r) to denote a matrix-
valued continuous-time function. The same notation will be applied in the case of parameterized vectors
and vector-valued continuous-time functions. To ensure a consistent discrimination of continuous-time and
discrete objects, we also use the just described vector and matrix notation for elements of the spaces of
square-summable one- and two-dimensional sequences £2(7Z) and ¢2(7Z?). For a better understanding of the
different symbols used in this paper, the reader may refer to the following Table 1.

Notations Description
N and Ny natural numbers set without and with 0, respectively
L*(R") space of real-valued square-integrable n-dimensional functions
2(7) space of square-summable sequences
|| absolute value
[.] ceiling function
{(,.) L?-inner product
x complex conjugate of x
detA determinant of a matrix A
D; and T, dyadic dilation and translation operators on L?(IR?), respectively
,(11) scaling function in L*(R?)




‘lfﬁll)n horizontal wavelet in L%(R?) at scale j and shifted by m
w;z,)n vertical wavelet in L?(R?) at scale j and shifted by m
W531)n diagonal wavelet in L?(R?) at scale j and shifted by m
o scaling function in L?(R)
Y generating wavelet in L?(R)
Wy f wavelet transform of the function f € L*(R?)
handg discrete low-pass and high-pass filters, respectively
\py,zm vertical shearlet in L?(IR?) at scale j, with shearing k and shifted by m
\pﬁzm horizontal shearlet in L?(IR?) at scale j, with shearing k and shifted by m
Dm general geometric transformation operator on L?(R?)
Dy dilation operator on L?(IR?) with scaling matrix A
Ds, shear operator on L?(RR?) with shear ,matrix Si
Syf shearlet transform of the function f € L?(R?)
s and s* current and desired visual features, respectively
r and r* current and desired pose of the robot, respectively
I image observed at time ¢
I (x,y) image intensity at the point (x,y) in the image plane at time ¢

Si (1 = [ph7 w, S])
€; (1 = [ph7 w, S])

photometric, wavelet and shearlet visual features, respectively
photometric, wavelet and shearlet visual error vector, respectively

v velocity twist vector of the camera frame
L, interaction matrix in the photometric case
(L) ™ Moore-Penrose pseudo-inverse of the interaction matrix Lg
L, and isw wavelet-based interaction matrix and its approximation, respectively
L, and issh shearlet-based interaction matrix and its approximation, respectively
Ly(x,y) interaction matrix related to the point (x,y)
Lyw(x,y) interaction matrix related to the point (x,y) in the wavelet case
Lpon(x,y) interaction matrix related to the point (x,y) in the shearlet case
z depth of the image plane
A positive gain parameter
u Levenberg-Marquardt damping parameter

Table 1: List of symbols.

2 Wavelet- and Shearlet-based Image Representations

In this paper, we focus on the investigation of multiscale image representations in the context of visual
servoing. Two representations are considered, namely wavelet and shearlet-based image decompositions,
which are well established mathematical tools widely used in signal and image processing applications. Fur-
thermore, several open-source libraries implementing discrete wavelet and shearlet transforms are available.
Our goal is the design of original, accurate and robust visual servoing schemes in which the control signal
inputs are the coefficients of wavelet- and shearlet-based image representations. The control laws derived in
this paper belong to the family of direct visual servoing approaches. This means that the visual information
used to design the associated interaction matrices consist of global image information, thereby avoiding
the extraction, matching and tracking of specific features over time. In addition, using a wide set of visual
features in the control loop that correspond to redundant information improves the accuracy and robustness
of visual servoing, especially in low structured images (e.g. medical images).

Before discussing the derivation of the proposed direct visual servoing control laws, we will give a short in-



troduction to the basic concepts and notation associated with wavelet- and shearlet-based transforms. While
discrete wavelet transforms have been intensively studied, and applied since the late 1980s, shearlets were
first proposed in 2005 (Labate et al., 2005). In fact, the shearlet image decomposition can be considered as
an extension of the wavelet case. Systems of wavelet and shearlet functions are both constructed by shifting
and dilating a finite number of locally oscillating (hence the name “wavelet”) generator functions. However,
the definition of wavelet- and shearlet-based transforms significantly differ with regards to the type of scal-
ing operator used for dilating a generator function. Wavelet transforms are based on isotropic scaling, that is,
when dilating a generator function, both dimensions are being scaled equally, while shearlets are associated
with an anisotropic (i.e. directionally dependent) scaling operator that dilates one direction more than the
other. Anistropic scaling causes high-frequency shearlets to be strongly directionally sensitive and, in turn,
makes it necessary to introduce a third rotation-like operator that acts on shearlet generators by changing
their preferred orientation. In the shearlet framework, this operator is chosen to be the shear operator (hence
the name “shearlet”). In fact, it can be shown that for a certain type of images, so-called cartoon-like im-
ages, transforms based on anisotropic scaling operators yield optimally sparse image representation (Candes
and Donoho, 2004; Guo and Labate, 2007; Kutyniok and Lim, 2011).

Another major difference between wavelets and shearlets can be found in the respective numbers of co-
efficients that define a wavelet- or shearlet-based representation of a digital image. In contrast to shearlet
transforms, discrete wavelet transforms are naturally associated with a powerful subsampling scheme, which
makes it possible to keep the number of wavelet coefficients equal to the original number of pixel values.
This is due to the elegant structure of the multiresolution analysis (MRA) framework (Mallat, 1989), whose
desirable properties cannot be easily generalized to the shearlet case (Han et al., 2011). Even in the case of
non-subsampled transforms, shearlet transforms yield representations that have a significantly higher degree
of redundancy than wavelet transforms. This means that there is a possible trade-off between the computa-
tional efficiency of the subsampled wavelet transform and the superior sparsity properties of shearlet-based
transforms. These proprieties will be thoroughly discussed in Section 4, where we experimentally inves-
tigate the differences between both subsampled and non-subsampled wavelet- and shearlet-based visual
servoing schemes.

2.1 Wavelet-Based Transforms

Wavelet transforms in the space of square-integrable real-valued 2-dimensional functions L?(R?) can be
constructed by shifting and dyadically scaling certain generating functions. These generating functions are
defined as the tensor products of a 1-dimensional scaling function ¢ € L?(R) and a 1-dimensional wavelet
v € L?(R). While the scaling function ¢ is used to define a “coarse approximation” of a given signal, the
function W, often called the mother wavelet, can be used to encode the “detail information™ of a signal at
different stages of a multilevel processing scheme.

Let us define two operators on L?(R?), namely the dyadic dilation operator

DZf(x>y) = 2f(2x,2y), (1)

and the translation operator
T f(x,y) = f(x—m1,y —my), )

where (x,y) represent the metric coordinates of an image point, (m;,my) a translation vector and f a function
in L2(R?). The dyadic scaling factor 2 is associated with the concept of an MRA, which will briefly be de-
scribed later in this section. In particular, it allows for an efficient implementation of the subsampled discrete
wavelet transform via the so-called fast wavelet transform (FWT) (Beylkin et al., 1991).



A 2-dimensional wavelet system can be constructed as follows:
{oh =Twmol):mez2} U

3
(Wi =DiTmy®: jeNome 22,1 € {1,2,3}}, *
where 1) denotes the low-pass wavelet generating function, y!), y® () denote the vertical, horizontal
and diagonal detail wavelet generating functions respectively, j is a scaling parameter and m a translation
parameter. Note that j determines how often the dyadic scaling operator D, is applied to a generating
wavelet. Broadly speaking, choosing j to be large will yield an extremely squeezed wavelet that is tuned to
pick up the high-frequency components of an image. The effect of repeatedly applying D, is visualized in
the case of digital wavelet filters in Fig. 3a.
The 2-dimensional wavelet generators are given by

00 (x,y) = 0(x)0(»),
v (x,y) = 0(x)y(), @
v (x,y) = y(x)0(),
v (x,y) = W) w(),

where ¢ € L*(R) is a 1-dimensional scaling function and y € L?>(R) a I1-dimensional mother wavelet. In
particular, for generating wavelets \y(l), l|/<2) and \|/<3) defined as above, the family

(Wl = DITwy: jeZme 22 1€ (1,23)) ®

forms an orthonormal basis for L?(IR?). Two popular examples of 1-dimensional mother wavelets that can be
used to define orthonormal bases for L?(R?) are the Haar wavelet (Haar, 1910) and the family of Daubechies
wavelets (Daubechies, 1988), depicted in Fig. 1 alongside their corresponding scaling functions.

1:5 15 15 1:5

1 -1 1 1
1 0 1 2 A 0 1 2 .1 0 1 2 3 4 5 6 -1 0 1 2 3 4 5 6

(a) Haar mother wavelet.  (b) Haar scaling function. (c) Daubechies mother (d) Daubechies scaling
wavelet of order 4 (db4). function of order 4 (db4).

Figure 1: Different mother wavelet functions and their corresponding scaling functions.

For a square-integrable function f € L?(IR?), its wavelet transform Wy f with respect to a “generating func-
tion” y € L2(IR?), is given by the L2-inner products

(W )(J.m) = (- Wm) = [[ £5.9) D Ty drdy, ©®)
R2

where j € Z defines the scale and m € Z? the location of the wavelet ;,m- Note that squeezing and stretch-
ing the generator Y by applying the dyadic scaling operator D} changes the frequency and the degree of



localization at the same time. One can note that higher frequencies correspond to a higher degree of lo-
calization and vice-versa. This behavior characterizes the fundamental difference between wavelet-based
transforms and the short-time Fourier transform (Allen, 1977), in which the window specifying the degree
of localization in the time-domain remains fixed.

Up to this point, we have only considered wavelet transforms in the continuous setting. While the derivation
of wavelet- and shearlet-based visual servoing schemes in Section 3 will also be carried out in the continu-
ous realm, any real-world implementation will eventually be based on discrete and finite input signals. It is
thus important to ensure a faithful transition between the theory established in the continuum and its imple-
mentation in the discrete realm. A powerful framework, which connects the continuous theory of wavelets
with discrete filter-based multiscale decompositions of images is the so-called MRA, which was introduced
by Mallat and Meyer (Mallat, 1989). In an MRA framework, the scaling function ¢ € L?>(R) and the mother
wavelet y € L2(R) are chosen to satisfy the scaling relations

ox) = V2 ho(2x—n) (7)

nez

yix) = V2Y gi0(2x—n), (8)

nez

where h € (%(Z) represents a discrete low-pass filter and g € ¢>(7Z) a discrete high-pass filter.
By viewing a given discrete image I € /2(7Z?) as a coarse approximation of a square-integrable function 1
depending on the scaling function ¢(!) at a fixed scale j € Z, that is,

I(x,9) = Y Iy 270" (27x — 11,27y — ma), )

ncZ?

the MRA framework makes it possible to compute the wavelet coefficients of the image /, which is defined
in the continuum, by successively convolving the discrete image I with the filters h and g.

Fig. 2 depicts the first and second stage of a wavelet-based multiscale decomposition of a digital image.
While the number of coefficients remains basically constant, the multiscale representation contains both
a coarse approximation of the original image as well as several levels of details (horizontal, vertical and
diagonal).

It should be highlighted that wavelet transforms are not optimal to model anisotropic features that play an
important role in 2-dimensional signals such as images. This is due to the isotropic nature of the dilation
operator D, defined in (1). As D; is treating both dimensions equally, high-frequency (i.e. highly squeezed)
2-dimensional wavelets are not well suited for fitting anisotropic (i.e. directionally dependent) singularities
like edges. As we already noted, this drawback can be remedied by considering anisotropic dilation oper-
ators. One important class of functions based on anisotropic dilations has been developed in the theory of
shearlets, whose construction and properties will be discussed in the following Section 2.2.

2.2 Shearlet-Based Transforms

A system of shearlets, which were first introduced in (Labate et al., 2005), can be obtained by anisotropically
dilating, shifting and shearing a finite number of generating functions. Formally, these operations are carried
out in the space of square-integrable functions L?(R?) by applying the translation operator already defined
in (2) and the general geometric transformation operator Dyy given by

D f(x) = |detM|"/? f(Mx), where M € R2*2, (10)
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Figure 2: Wavelet decompositions of a digital image at level 1 and 2. Each pixel in 2b and 2c corresponds to
the inner product of the image 2a with a discrete wavelet filter. The coefficients associated with the low-pass
scaling function ¢(!) define a coarse approximation of the original image. The coefficients associated with
the high-pass wavelet functions qf(l), 1|1(2), and IV(3) highlight horizontal, vertical and diagonal edges, re-
spectively. Wavelet transforms often yield sparse representations of images, which is indicated by the large
number of zeros in 2b and 2c.

with |detM| denoting the absolute value of the determinant of the matrix M. Choosing M to be the
anisotropic dilation matrices A or A yields the dilation operators D4 and Dz, with

2 0 . V2 0
Az(O ﬁ)’ and A:<O 2) (11

while setting M to be the shear matrix Sy gives the shear operator Dg,, with

Sk = <(1) ]1(> , Where k € Z. (12)

The factors 2 and v/2 define a so-called parabolic scaling operator D . There exist generalizations in which
\/- can be replaced with an exponent a € [0, 1] (Grohs et al., 2016) and which are not restricted to the dyadic
scaling factor 2 (Genzel and Kutnyiok, 2014). However, these generalizations are beyond the scope of this
work and will not be considered further in this paper. The difference between isotropic scaling, which is
used for wavelets, and anisotropic scaling, which is applied in the construction of shearlet-based systems,
is illustrated in Fig. 3. Using the shear operator Dg, instead of the rotation operator applied by the curvelet
transform (Candes and Donoho, 2000) is a significant advantage for discretization, as the integer lattice is
invariant under the shear operator for any k € Z.

For a 2-dimensional scaling function ¢(!) € L>(R?) and generating shearlets y(!) y(?) € L2(R?), a so-called
cone-adapted shearlet system can be defined analogously to the wavelet system (3) as the following union:

{q)f,l) — Tmo :m e Zz} U
{\pﬁ‘gm — D), Ds, Tm W) 1 j € Ny, k| < [2% ,m € Zz} U (13)

{w;%,z’m =D Dg,r T W : j € No, k] < {2%] m e Zz} ,
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(a) Discrete 2D wavelet filters. (b) Discrete 2D shearlet filters.

Figure 3: Comparison of discrete 2D wavelet and shearlet filters at different scales. Due to the anisotropic
scaling, the high-frequency shearlet filters in the last row of 3b are elongated and better adapted to fit edges
in images than the high-frequency wavelet filters in the last row of 3a. The frequency spectrum of each filter
is depicted in the right columns of 3a and 3b.

with [-] denoting the ceiling function. Note that the condition |k| < [Zﬂ prohibits shears of the generating

shearlet that would change the preferred orientation by more than 45°. This forces the essential support of a
shearlet in the frequency domain to remain within the cones in which the corresponding generating shearlet
is located (hence the name “cone-adapted”, cf. Fig. 4). In turn, this means that for a cone-adapted shearlet
system to cover the whole frequency plane, it is important to choose the generating shearlets W(l) and \|I(2)
such that they are supported in different frequency cones. In particular, this can be ensured by defining the
functions ¢"), y() and y® analogously to equation (4) as tensor products of 1-dimensional scaling and
wavelet functions, which leads to the construction of so-called separable shearlet systems. The tiling of the
horizontal frequency cones induced by the system (13) is schematically depicted in Fig. 4.
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Figure 4: The tiling of the horizontal frequency cones induced by the shearlet system (13). &; and &;

Like in the wavelet case, the shearlet-based transform Sy f* of a square-integrable 2-dimensional function

10



f € L*(R?) with respect to a generating function y € L?*(R?) that is essentially supported in the horizontal
frequency cones is given at a scale j € Z, with a shear parameter |k| < Pﬂ and a translation parameter

m € Z? by the inner products

(Sy)(Gokom) = (£ 5m) = / / F(x,y) D Ds, T W(x,) dxdy. (14)
RZ

For shearlet generators that are in the vertical frequency cone, A and Sy have to be replaced in (14) with A
and S;T respectively. The reader is invited to refer to (Kutyniok and Labate, 2012a) for more details about
the theory and applications of shearlet-based transforms.

During the past decade, several libraries implementing different types of shearlet transforms for finite and
discrete data have been developed

* Fast Finite Shearlet Transform (FFST) (Héuser and Steidl, 2012), which implements non-subsampled
transforms based on band-limited shearlets,

* ShearLab (Kutyniok et al., 2012), which implements a subsampled transform based on separable
compactly supported shearlets,

» ShearLab 3D (Kutyniok et al., 2016), which contains both two-and three-dimensional non-subsampled
shearlet transforms that are based on non-separable and compactly supported shearlets.

Fig. 5 shows the coefficients of a non-subsampled shearlet-based transform of a digital image after two stages
of decomposition. Comparing Fig. 2 and Fig. 5 also illustrates the difference between subsampled and non-
saubsampled decompositions. The main advantage of subsampled shearlet- and wavelet-based transforms
is that the total number of coefficients is almost equal to the original number of pixel values, while non-
subsampled transforms often introduce a significant amount of redundancy.

256
1 1 1 1 1 1 1 256
(c) Coarse ap-
\ proximation
256 256 256 256 256 256 -
1 256 1 256 1 256 1 256 1 256 1 256

j=1,k=—1 j=1,k=0 j=1Lk=1 j=1k=2 j=1,k=0 j=1,k=1

(a) Horizontal frequency cones (b) Vertical frequency cones

Figure 5: Non-subsampled shearlet decomposition at level 2 of the 256 x 256 digital image shown in Fig. 2a.
The parameter j denotes the scale of the corresponding shearlet filter while the shear parameter k controls
its orientation. All coefficient matrices have the same size as the input image. The depicted decomposition
is thus highly redundant with a redundancy factor of 13.
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3 Direct Visual Servoing Schemes

3.1 Photometric-based Visual Servoing

Before discussing wavelet- and shearlet-based visual servoing control laws, we will briefly revisit the well-
known photometric-based visual servoing approach in order to recall some basic concepts and notation.
The objective of a visual servoing scheme is to control the motion of a robot such that a set of N € N visual
features s € RY depending on the robot’s pose r(¢) € SE(3) at time t matches a set of desired features s* € RV
obtained at the desired pose r*. While the feature vector s should technically be viewed as a function of the
robot pose, to simplify our notation, we will treat the set of visual features as a function of time by setting
s(t) :==s(r(t)).

For the remainder of this paper, we will use I(x,y,7) € R>( to denote the image intensities at the coordinates
(x,y) observed at time ¢. Furthermore, we write I;(x,y) := I(x,y,t) to denote the 2-dimensional image
observed at time ¢. This notation will be helpful in unambiguously stating mathematical expressions that
contain operations which are only defined for 2-dimensional functions such as 2D wavelet and shearlet trans-
forms. The control laws derived in this paper will eventually be based on the spatial gradient VI, as well as
wavelet and shearlet transforms of the 2-dimensional image /;, that is, W\VI, and Sy/;. Note that formally,
these objects are only defined in the continuum. Consequently, the corresponding visual servoing schemes
described in this section are also derived in the continuous realm. In practice, however, we cannot observe
the complete continuous-time image /; but only a discretized approximation I, that is typically obtained by
spatial averaging and sampling. This means that in any actual implementation of the proposed control laws,
the spatial gradient as well as the wavelet- and shearlet-based transforms of I; need to be approximated in
the discrete realm. This can be achieved by convolving I, with gradient filters and by computing the discrete
wavelet and shearlet transforms of I;.

In photometric visual servoing, introduced in (Collewet and Marchand, 2011), the visual feature vector at
time ¢ can be considered as a finite set of individual image intensities sampled at successive 2D points
(Xn, Yn)nsn C R?:

SPh<t) = (I(xlyylat)al(x27y2at)v .. -7I(XN7yN7t))T' (15)

In order to reach the desired robot’s pose s*, a control law is applied to minimize the visual error given by
eph(t) :sph(t)_sigh (16)

towards zero over time by moving the robotic system. In order to find a camera velocity twist vector
V = (Vx, Vy, vz, 0y, @y, 0;) T which decreases the error, it is necessary to link the time-variation of the visual
features sy, (defined in the image frame) to the camera movement. In (Collewet and Marchand, 2011), the
authors formalize this relationship by linearly describing the time-derivative of the image intensities in terms
of the camera spatial velocities via a so-called interaction matrix L, . Thereby, it becomes possible to relate
the camera motion (expressed in the camera frame) to the image intensities through

dspn (2)
dr

= L, (1)v(?). (17)

By assuming temporal luminance constancy and applying the optical flow constraint equation (OFCE) in-
troduced in (Horn and Schunck, 1981), we can write

ol(x,y,1) T(dx dy\'
EEE (i) <dt,dt> . (18)
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Using the velocity twist vector, the relation (18) can be written as

PN (V15.)) Lple)vie), (19)

where L (x, y) denotes the interaction matrix of the 2D image point (x,y) C IR? corresponding to the perspec-
tive projection of a 3D point of the scene into the image plane, as proposed in (Chaumette and Hutchinson,
2006). The matrix L;, is defined as

1 2
-~ 0 xy —(1+x y
Lp(x,y) = [ OZ 1 ( )

1+y? —xy —x |’ 20)

V4

NI=NI=

where Z € R is the depth of the observed 3D point expressed in the camera Cartesian frame. The depth Z is
generally approximated as constant and equal for all the image points. Other variants were reported in the
literature that consist of estimating Z at the current or desired positions or by considering an average value.

Merging (17) and (19), we can explicitly compute the interaction matrix L, ata point in time  as follows:

(VA1) Lol
LSph(t) = = ' @D
(Vlt (xvaN)) TLp (XN, YN)

Finally, the camera velocity twist vector at a time ¢ is obtained by
+
v(t) = —A(Ley () (1), (22)

where A > 0 is a control gain and (LSph (t))+ denotes the Moore-Penrose pseudo-inverse of the interaction
matrix Lg, .

To increase the domain of convergence, the traditional Gauss-Newton optimization approach (22) can be
replaced by the Levenberg-Marquardt method. Thus, the control law (22) becomes

v(t) = —k(H(z) + udiag (H(t))) - (Lsph (t))Teph(t), (23)

where H(t) = (L, (1)) "L, (1) and diag (H(r)) denotes the diagonal matrix given by the diagonal entries of
H(z). Note that a high value for u (e.g. u = 1) yields a gradient descent method, whereas choosing u close
to zero (typically u = 1073) is equivalent to the Gauss-Newton optimization approach.

3.2 Wavelet-based Visual Servoing

Instead of the pixel intensities used in (15), we will now consider the design of a visual servoing scheme in
which the visual features are defined as the coefficients of a wavelet-based multiscale representation of an
image.

Let us consider a finite set of L € N generating wavelets (y(/ ))ISL C L?(R?), which typically consists of a
total of four separable generators constructed from one-dimensional wavelet and scaling functions as defined
in (4). The wavelet-based feature vector for a set of N € N triples (L, jn,m,),<y C {1,...,L} x N x Z2,

13



where [, specifies a wavelet generator, j, defines the scale and m,, the translation parameter is given at a
time ¢ as

sw(t) = ((qunlz)(jl ), (W) (j2,m2), ..., (qumlt)(jzv,mzv)) " (24)

The goal is now to derive an interaction matrix Ls, € RV*® that relates the camera motion defined by
the 6-dimensional velocity vector v to the time-derivation of the wavelet coefficients vector, such that the

following linearization holds
dsy (1)
=L, (t)v(2). (25)
dr
Let us assume that all wavelet generators as well as the image intensities / are continuously differentiable.
With the 2-dimensional generalization of the Leibniz integral rule, also known as the Reynolds transport
theorem (see for example (Flanders, 1973)), we can express the time-derivative of a single entry of the
feature vector sy, at a fixed point (, j,m) by

. ] \|;
aom o (V) A(x,y,
" : / [ AL 0 ) day 26)

Then, by applying relation (19), we get

Itaw m
e / (VE(63)) "Lp(.3)¥(0) W (x.) dxdy. @7

We can simplify our notation by setting
17 = (VE(x,)) Lp(x, Ve (28)

where i € {1,...,6} and e; € R® denotes the i — th canonical unit vector (note that Ly (x,y)e; is the i-th
column of the matrix Ly (x,y)). In other words, It(l) encodes the correlation of the image gradient with the
movement contributed by the i — th degree-of-freedom. Using (28), the interaction matrix with respect to

the wavelet-based feature vector sy, can be written as:

(W) Grmy) o (W) ()
Ls, (1) = — : : e RV*®, (29)
(Wl ) Givmy) - (W 1) (v, my)

Each column of Lg, represents the wavelet transform of an image I,(i) with respect to the wavelet system
defined by the wavelet generators (\V(l)) 1<z and the sequence (1, j,,m,),<y. Constructing the interaction
matrix Lg  thus corresponds to computing the image gradient of /; and performing six discrete wavelet
transforms. While the FWT is indeed a linear time algorithm, this might still be too much in time-critical
applications. One possibility to limit the computational effort is to reduce the number of considered scales
j. Another approach, which reduces the number of discrete wavelet transforms to two, is given by only
considering an approximation of Lg_ .

Let us assume that all generator functions y(!) are compactly supported in the spatial domain with their

support being centered around the origin. It was already noted in (Bernard, 2001) that in such a setting, the
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dx dy
dt’ dt
of the wavelet wﬁ.{m. This assumption is equivalent with replacing Ly (x,y) inside the integral in (27) with a
matrix Ly (j,m) that only depends on the center of the support set of the wavelet wﬁlfn
any pair of parameters (j,m) € N x Z2. Therefore, Lyw(j,m) can simply be computed by evaluating L;, at
the center of the wavelet, that is

velocities ( ) in the optical flow constraint equation (18) remain approximately constant on the support

)

and is thus fixed for

Low(j,m) = Ly(27/my, 27 /my). (30)

By using (30), an approximation ESW (t) = L, () of the wavelet-based interaction matrix at a time ¢ that only
requires the computation of two discrete wavelet transforms is thus given by

((me%)(h,ml), (Wwan%’)(h,ml)) Lpw(j1,my)
Ly, (1) = — : e RV*6, (31)

((‘W\V(w) %) Giv ), (W) ?T?,)(].NamN)) Lpw (jv,my)
Let us denote the visual error with respect to the wavelet feature vector by
ew(r) =sw(t) —sy. (32)

In order to minimize ey, the following control law is derived
. -1 T
V() = ~A(H() +pdiag (A1) (Ls, (1)) ew(n), (33)

T
where A > 0 is a controller gain parameter, 4 > 0 a damping factor and H(z) = (st (t)) Ls, (7).

The interaction matrix ESW is based on the approximation of the partial derivatives of the 2-dimensional
image I; yielded by a gradient filter. However, by applying integration by parts, INJSW could also be computed
by considering the partial derivatives of the wavelet \pglzn While this approach is of limited practical value,
it has some interesting theoretical aspects and is thus briefly described in Appendix 6.1.

In order to derive a shearlet-based visual servoing scheme, we can follow the same steps as in the wavelet-
based approach.

3.3 Shearlet-based Visual Servoing

Shearlet-based image representations can be used in visual servoing tasks analogously to the wavelet-based
approach described in the previous section. For a finite set of L € N shearlet generators (lll(l Ni<L C L*(R?),
the shearlet-based feature vector for a set of N € N quadruples (L, jn, ky,my, )<y C {1,...,L} x Nx Z x 72,
where [, specifies a shearlet generator, j, defines the scale, k, the shear operator and m,, the translation
parameter, is given as a function of ¢ by

T
Ssh(t) — ((Sw(ll)lt)(jlvklaml)a"'7 (SW(’N)II)(jN)kN)mN)> 3 (34)
where _
(Syoh) (ko) = [ 1) D4 D, Ty . 3)dxd, (35)
R2
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if the generator \|I(l) belongs to the horizontal frequency cone, while
<5vnAXLkany:/yﬁxxm)DgD&rme”Nnyﬁu¢n (36)
R2

if the shearlet generator belongs to the vertical frequency cone.
After repeating the computations carried out in (26) to (28), the interaction matrix associated with the shear-
let coefficient vector Sq, at a time f can be written as

(Syend ) Gnkimy) o (S k™) ok my)
L, (1) = - : - : e RV, 37
(S\V(/N)It(l))(jN7 ky,my) - (5W</N>Iz(6))(jzv, ky,my)

The main formal difference between shearlet- and wavelet-based visual servoing control laws can be found
in the definition of the approximated interaction matrix Essh (which is the core of a visual servoing scheme).
This is due to the fact that the center of a shearlet is not only determined by the scale parameter j, but
also depends on the shear parameter k. Under the assumption that the shearlet generators are compactly
supported in the time-domain with their supports being centered around the origin, we can write

Losn(j,k,m) = L, (2*1' (1 — kmy), 279/ 2m2) , (38)
if the corresponding generator belongs to the horizontal frequency cone and
Lpsh(j,k,m) :Lp<2*j/2m1,27j(m2—km1)), 39)

if the generator belongs to the vertical frequency cone. The approximated shearlet-based interaction matrix
Ls, () = Ls, (¢) is now given by

((SWU]) %) (v, ki my), (S\V(ll)%)(jl,ml)) Lipsn(j1,k1,my)
L, (t) = — : eRV6. (40)

((S\VUN) %) (ins ey my), (Sy) %) (v kn, mN)) Lipsh (jn, my)

The visual error with respect to the shearlet-based feature vector

e (t) = ssh(t) — s, 41

can be minimized towards zero by adjusting the velocity twist vector using the following control law
. -1 T
v(t) = —A(H() +udiag (H()) ) (Lsy (1)) en(0), “2)

T
where A > 0 is a gain parameter, u > 0 a damping factor and H(r) = (Lssh (t)) L, (7).
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4 Simulation and Experimental Validations

4.1 Implementation Details

In order to compare both wavelet and shearlet-based visual servoing control laws, different scenarios were
considered. Note that, for each method, there exist two implementation variants, i.e., subsampled and
non-subsampled ones. In fact, in total, we developed four different control laws, i.e., two were based
on the wavelet coefficients as signal inputs in the control loop while the other two use the shearlet ones.
Also, each control law was validated with simulation and experimentally. Simulations allowed also to
compared them (under the same conditions) to the photometry method (using the authors’s code provided in
the Visual Servoing Platfrom (ViSP) library !). The aim was to compare qualitatively and quantitatively the
different laws in both favorable and unfavorable working conditions. To do that, the general framework was
implemented in C++ under the ViSP platform. However, the computation of the the wavelet coefficients (i.e.,
subsampled wavelet: s-wavelet, and non-subsampled wavelet: ns-wavelet) as well as the shearlet coefficients
(i.e., the subsampled shearlet: s-shearlet and the non-subsampled shearlet: ns-shearlet) was performed
under MATLAB. The MATLAB wavelet toolbox > and the Shearlab 3D 3 were called inside the ViSP
framework using a developed function that can compile and retrieve the results of matlab functions directly
into the C++ environment.

s-wavelet | s-shearlet | ns-wavelet | ns-shearlet
interaction matrix Ls, Ly, Ls, L,
I, 208.18 ms | 498.57ms | 39293 ms | 220.65 ms
toop 100 ms 140 ms 700 ms 800 ms
ng 20 059 24 576 262 144 327 680
Nievel 2 2 1 1

Table 2: Some details concerning the different developed methods. f1,: required time to compute each
interaction matrix, #;,,p: duration of one iteration of the control loop, ns: size of the visual feature vector,
Niever: how many levels of wavelet/shearlet coefficients used in the interaction matrix.

Table 2 details the required time of the main steps of each developed control law (e.g., wavelet/shearlet
coefficients computation, interaction matrix, etc.). The respective interaction matrices were computed at
each iteration (new grabbed image) and the Z depth was estimated manually at the desired position and
maintained constant during the visual servoing process. The number of decomposition levels ny,,.;, which
were used to obtain the corresponding feature vector (directly linked to the size ng of the visual feature
vector ) is different in the case of subsampled and non-subsampled transforms. In fact, a compromise has
to be found, the higher the level, the larger the size of s and then the computation time increases. It is for
this reason that only one level of the decomposition was considered for the non-subsampled methods which
contains a large number of coefficients (10 times more than the subampled methods). Furthermore, the visual
feature vectors representations are only subsets of the corresponding transforms, where the high-frequency
coefficients are omitted.

As the main objective of this paper is to provide the methodology to follow in order to obtain the wavelet
and shearlet visual servoing control laws and to demonstrate its feasibility from experimental validations,

Uhttps://visp.inria.fr/
Zhttps://fr.mathworks.com/products/wavelet.html
3http://www.shearlab.org/software
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we do not address here the issue of computation time optimization. However, this issue will be tackled in
future investigations which are more engineering developments than basic research.

Furthermore, for a better convergence behaviour of the different control laws, we have implemented adaptive
gains for A and u (the parameters of the Levenberg-Marquardt optimization algorithm. They are given by

A= IOIOgIO(Ne)_7-5

u= 102*log10(Ne)—17

where the gain u decreases in function of the reduction of the square sum N, of the difference between
the current image I and the desired image I*. This allows a rapid convergence at the beginning of the
positioning task when the initial error is large and vice-versa when the robot approaches the desired position,
the convergence becomes slow and smooth. The value 7,5 and 17 has been chosen empirically.

4.2 Wavelet and Shearlet Coefficients

2000

128
1 256 1 128

256 -500

(a) Original image I. (b) sy in case of s-wavelet.

Figure 6: The feature vector s,, was obtained by performing a discrete wavelet transform at level 3. The
upper left corner in Fig. 6b contains a coarse approximation of the original image of size 32 x 32. The re-
maining pixels correspond to detail coefficients at the second and third stage of decomposition. Note that
the high-frequency detail coetficients from the first stage of decomposition were omitted.

We consider the image shown in Fig. 6a to illustrate what the visual feature vectors obtained from different
image representation methods such as the sub-and non-subsampled wavelet and shearlet transforms look
like.

Indeed, the obtained visual feature vector s,, corresponding to the case of s-wavelet visual servoing control
law is shown in Fig. 6b. This vector includes the vertical, horizontal, and diagonal detail wavelet coefficients
as well as the wavelet coarse ones. Also, the visual feature vector sy, corresponding to the ns-wavelet image
decomposition is depicted in Fig. 7.

Similarly to the wavelet case, the visual feature vectors sg, resulted from the shearlet image decomposition
are depicted in Fig. 8 and Fig. 9. More precisely, the sg, corresponding to the s-shearlet version of the
subsampled shearlet decomposition is depicted in Fig. 8 when the non-subsampled shearlet ns-shearlet
coefficients are represented in Fig. 9.
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Figure 7: sy in case of ns-wavelet. Concatenating the four displayed coefficient matrices yields the fea-
ture vector s,,. The matrices were obtained by performing a non-subsampled wavelet transform at level
4. The first coefficient matrix defines a coarse approximation of the original image. The three remaining
matrices show detail coefficients at the fourth level of decomposition. Similar to the s-wavelet case, the
high-frequency coefficients yielded by the first, second and third stage of decomposition were omitted. Note
that all matrices are of the same size as the original image.

3500

-700

64 64 64

1 64 1 64 1 64

Figure 8: sq, in case of s-shearlet. Concatenating the six displayed coefficient matrices yields the feature
vector sgp. The matrices were obtained by performing a discrete subsampled shearlet transform at level 4.
Each upper left corner contains a coarse approximation of the original image of size 16 x 16 along one of
the six considered directions. The remaining pixels in each matrix correspond to detail coefficients at the
third and fourth stage of decomposition. Note that the high-frequency detail coefficients from the first and
second stage of decomposition were omitted.

4.3 Cost-functions

In order to judge the effectiveness of the developed wavelet and shearlet visual servoing approaches, espe-
cially in term of convergence domain allowing reaching the desired visual features s*, we have computed
the cost-function corresponding to each of the four methods by varying the different robot DOF using the
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Figure 9: s, in case of ns-shearlet. Concatenating the five displayed coefficient matrices yields the feature
vector Sgy. The matrices were obtained by performing a non-subsampled shearlet transform at level 4. The
first coefficient matrix defines a coarse approximation of the original image. Each of the other matrices was
obtained by convolving the input image with a discrete shearlet filter associated with a different orientation.

Note that the high-frequency shearlet coefficients from the first, second and third stage of decomposition
were omitted and that each matrix has the same size as the original image.

following relationship:

C(s) = ((S_S*)T(s_s*))é (43)

3000
2 2000

1000

10

0
y(m) -10 210

y(m) 10 -10

x(m) x(m)

(a) (b)

Figure 10: Cost-function of (a) the subsampled wavelet visual features and (b) the subsampled shearlet
visual features, along the x and y axes.
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Figure 11: Cost-function of (a) the non-subsampled wavelet features and (b) the non-subsampled shearlet
features, along the x and y axes.

As can be seen in Fig. 10 and 11, the global minimum is clearly identified for each method (subsampled and
non-subsampled wavelet/shearlet). This can be considered as a positive point concerning the capabilities
of the developed control laws to converge towards the desired position using a state-of-the-art optimization
method (e.g., the Levenberg-Marquardt algorithm).

4.4 Simulation Validation

(©)

Figure 12: (a) desired image in nominal conditions, (b) under partial occlusions (c) under illumination
variations.

In order to demonstrate that the proposed visual servoing control laws work, first we opted for a simulation
framework. The aim is to test qualitatively the proposed methods in different scenarios without any effect
due to the camera or camera-robot calibrations, measurement errors, etc. To perform this study, each devel-
oped control law was validated in favorable (nominal) conditions (Fig. 12(a)) as well as unfavorable ones
(partial occlusions (Fig. 12(b)) and light disturbance (Fig. 12(c))). The initial pose error ey (ey € SE(3))
for each test (Test; i € [1,2,3]) is reported in Table 3. Also, the images representing the initial intensity
difference between the initial and desired images are depicted in Fig. 13.

In the next, the image of difference, noticed I ¢, between the current and desired images will also be used
to illustrate “visually” the achievement of each positioning task in both the simulation and the experimental
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‘ test H AT, (mm) AT, (mm) AT, (mm) ‘ AR.(deg) AR,(deg) AR;(deg) H figure ‘

test 1 10 —10 100 5 -5 10 Fig. 13(a)
test 2 5 -5 100 -20 10 -5 Fig. 13(b)
test 3 -2 2 -50 5 10 -30 Fig. 13(c)

Table 3: Initial pose error eg between the initial camera pose and the desired one.

validations. Indeed, when the robot reaches, "perfectly”, the desired position, 147 must be completely gray
(i.e. the desired and final images are perfectly superposed). 177 is defined as follows

I-I*)+255
Ly = L2 (44)

We add 255 in the numerator in order to obtain a value of 17 = 128 i.e., a perfect gray image (more
suitable to show an image difference) instead of a black image.

(b)

Figure 13: Difference 1,77 at t = 0: (a) in test 1, (b) in fest 2, and (c) in test 3

4.4.1 Under Nominal Conditions [scenario 1]

Let us consider the scenario 1. As mentioned above, this test aims to study the behavior of the four developed
control laws in nominal working conditions. In practice, for each of the 3 tests (test;) a virtual camera
observing a planar scene is first placed on a desired pose where the desired image is recorded. Its pose is
then changed with respect to the desired one such to obtain the initial pose error e = e( (e € SE(3)) given in
Table 3. Then, the visual servoing is launched and the final pose error e, = e is measured at the end of the
convergence.

Table 4 reports the results obtained for the four proposed methods as well as the photometric approach. At
the convergence, we obtain a final translation error AT; (i = [x,y,7]) around 10~*mm and a rotation error AR;
(i = [x,,7]) around 10~*deg for each method. As can be highlighted, all controllers converge and present
the same performances in term of accuracy. Note that the pixel size of the simulated images is 1 =1.2mm.

4.4.2 Under Partial Occlusions [scenario 2]

The scenario 2 deals with the validation of the four developed control laws and their comparison to the
photometric one in unfavourable working conditions, i.e., partial occlusions. This consists of the study of
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| [ method/test [| AT, AT, AT, | AR, AR, AR,

€ test 1 10 -10 100 | 5 -5 10
e; | photometry || 107* 10°* 107*[10°* -107* 107%
e | s-wavelet | 107* 107* 107* | 107* -107* 107*
es | s-shearlet | 107* 107* 107* | 107* -107* 107*
e | ns-wavelet || 107* 107* 107% | 107* -107% 107*
es | ns-shearlet 107* 107* 1073 | 107° -107* 107*
€ test 2 5 -5 100 | 20 10 -5
e; | photometry || 10°* 107* 10°*[10°* -107* 10°*
e | s-wavelet || 107* 107* 107* | 107* 107* 107*
es | s-shearlet | 107* 107* 107* | 107* 10°* 107*
e | ns-wavelet || 107* 107* 107* [ 1073 107* -107*
es | ns-shearlet 1074 107* 107*|107* 107* 10~
€ test 3 -2 2 50 | 5 10 -30
e; | photometry || 107* 107* 107*[10°* 10°* 10°*
e | swavelet || 107* 107* 107* | 107* 107* 107*
e; | s-shearlet | 107* 107* 107* | 107* 107* 107*
e/ | ns-waveler || 107* 107* 107* | 107* 107* 107*
es | ns-shearlet || 107* 107* 107* | 107* 107* 107*

Table 4: [scenariol] comparison of the different control laws in nominal conditions. AT; (mm), AR; (deg)
e and e represent the initial and final positioning errors, respectively.

the behavior of the control laws when a part of the desired image (%) is hidden during the positioning task
(Fig. 12(b)). The same initial pose as scenario I are considered in this test. As can be seen in Table 5, for
the fest 1, the four controllers as well as the photometric method converge towards the desired pose despite
a static error especially for the out-plane rotations R, and R, and the translation stage 7;. However, the
s-wavelet approach behaves better than the three others, especially along the Z axis. Generally, the methods
based on the wavelet/shearlet image decomposition have a slight advantage over the photometry one. Finally,
in fest 3, all the control laws fail (X) because of the large initial error eg and the partial occlusions.

4.4.3 Under Illumination Changes [scenario 3]

The last simulation scenario aims to evaluate the ability of the tested control laws to work under lighting
disturbances. The desired image I* (Fig. 12(b)) is acquired under a saturated lighting source when the
current images are grabbed in normal conditions. As shown in Table 6, all controllers converge for fest 1.
However, because of the lighting disturbances and the larger error in the out-plane rotations R, and Ry, the
wavelet/shearlet methods converge contrary to the photometric approach. The observed static errors in the
Z-translation, R, and R, rotations can be explained by the fact that even if the proposed approaches are
robust to external disturbances, the control laws were derived from global image information. Indeed, if the
common information between the desired and current images is weak (e.g., due to the lighting disturbances
and/or occlusions), there is a risk of having static errors. Another remark is that where the photometry
approach diverges completely in fest 3 and fest 3, the subsampled s-wavelet and s-shearlet control laws
remain convergent (see fest 3 in Table 6).
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| [test/method [| AT, AT, AT, | AR, AR, AR

€ test 1 10 -10 100 5 -5 10
es | photometry || 0.69 0.01 -4.61 430 -5.64 0.05
er s-wavelet 056 -0.16 0.52 443  -560 0.17
er s-shearlet 056 -0.16 -1.94 431 -551 0.08
es | ns-wavelet 078 -0.14 -2.79 430 -5.60 0.15
er | ns-shearlet 074 -0.14 -2.74 433 554 0.13
€ test 2 5 -5 100 -20 10 -5
es | photometry 1.18 -0.24 -42.84 | -20.29 9.14 -1.50
er s-wavelet 055 206 -11.06 | -20.30 9.17 -1.27
er s-shearlet 0.52 1.18 -2898 | -2040 9.18 -1.50
es | ns-wavelet 1.10 0.10 -31.24 | -20.37 9.18 -1.43
er | ns-shearlet 1.04 0.16 -31.04 | -20.36 9.22 147
€) test 3 -2
es | photometry
ef s-wavelet
es s-shearlet
er | ns-wavelet
es | ns-shearlet

[\
1
wn
(=}
W
-
=}
Ll
(%)
=

> X X X X
> X X X X
> X X X X
> X X X X
> X X X X
xX X X X X

Table 5: [scenario 2] comparison of the different control laws under partial occlusion. AT; (mm), AR; (deg)
¢ and e represent the initial and final positioning errors, respectively. X = fail.

To sum up, the objective of these simulations is the study of the ability of the four developed controllers
to work in different working conditions as well as their comparison with the photometric method. All
controllers work effectively in normal conditions, i.e., without external disturbances and demonstrated high
accuracy. When we introduced external disturbances (by varying the illumination conditions or occluding
a part of the scene), the controllers converged despite a large static error on the out-plane rotation and
translation along Z axis. Also, the photometric method fails twice i.e., for the fest 2 and fest 3 when the
developed approaches remain working despite the external disturbances.

Furthermore, as it has been noticed, the subsampled version of the control laws (s-wavelet and s-shearlet)
stood out in some unfavorable tests compared to the non-sampled ones ns-wavelet and ns-shearlet) and
also comparing to the photometry method. This is due to the fact that subsampled methods integrate a
low-pass filter during the image decomposition allowing to remove intuitively the image high-frequencies
(corresponding to the image noise) from the visual features set s. In addition, the fact that the subsampled
methods use less visual features (dim(s;) << dim(s,s)) to compute the related interaction matrices allows
reducing computation time, i.e., f;oop = 120 ms for the subsampled methods, while 7;,,, = 700 ms for the
non-subsampled methods. Only the subsampled methods will be considered in the following.

4.4.4 Robustness to Intrinsic Camera Parameters Errors [scenario 4]

Simulation allows also to easily study the robustness of each method to intrinsic camera parameter errors.
Thus, the two subsampled methods have been compared. Two parameters were changed: the principal point
coordinates and the focal length. The real principal point coordinates are (g , vo ) = (160, 120) pixels while
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| | efandey || AT, AT, AT, | AR, AR, AR,
€ test 1 10 -10 100 5 -5 10
es | photometry || 0.84 0.57 -31.49 427 -5.61 -0.26
er | s-wavelet 0.10 0.69 -23.48 443 -5.65 -0.10
er | s-shearlet 0.52 0.49 -13.57 426 -5.60 -0.07
es | ns-wavelet || 0.83 0.60 -23.66 426 -5.65 -022
e | ns-shearlet || 0.78 0.59 -22.76 427 -5.62 -0.21
€ test 2 5 -5 100 -20 10 -5
e | photometry X X X X X X
er | s-wavelet 0.34 0.66 -59.68 | -20.27 925 -2.40
er | s-shearlet 0.80 0.89 -52.28 | -20.31 928 -2.12
er | ns-wavelet 1.34 0456 -60.99 | -20.32 933 -2.20
e | ns-shearlet 1.20 0.52 -59.19 | -20.28 9.35 -2.22
€ test 3 -2 2 -50 5 10 -30
e | photometry X X X X X X
er | s-wavelet -5.26 -20.07 -176.26 | 291 10.28 -5.21
er | s-shearlet || 26.50 -22.76 -317.09 | 226 10.73 -0.04
er | ns-wavelet X X X X X X
e | ns-shearlet X X X X X X

Table 6: [scenario 3] comparison of the different control laws under illumination changes. AT; (mm), AR;
(deg) e and e represent the initial and final positioning errors, respectively. X = fail.

the real focal length is p, = p, = 870 pixels. Table 7 shows the robustness of both methods to focal length
error. When the error goes in favor of an increase of the focal length, both methods converge but they take
more iterations. When the error goes in favor of a decrease of the focal length, the subsampled wavelet
method falls into a local minima while the subsampled shearlet method converges in few iterations.

Table 7: Robustness study of the controller against focal length errors for subsampled methods in fest,

Focal length | Percent of error s-wavelet s-shearlet
435px (-50%) X v (190 iterations)
609px (-30%) X v (440 iterations)
696px (-20%) v (700 iterations) v (580 iterations)
870px (0%) v (950 iterations) || v (1030 iterations)
1305px (+50%) v (2970 iterations) || v (3720 iterations)

Since both methods converge when the focal length given in the algorithm is 20% lower than the real one (i.e.
Px = py = 696 pixels), this error is kept for the next test where different false principal point coordinates are
given to the algorithm. The results presented in Table 8 show that there are no striking differences between
both methods which can be therefore considered as robust to camera parameters errors.

4.5 Experimental Validation using a 6 DOF Cartesian Robot

In order to experimentally validate the proposed visual servoing control laws, we used a 6 DOF gantry
robotic system (Fig. 14). A Charge Coupled Device (CCD) camera was mounted in an eye-in-hand config-
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Table 8: Robustness study of the controller against principal point coordinates errors for subsampled meth-

ods in test;

Principal point coordinates | Euclidian distance to the real point s-wavelet s-shearlet
(160,120) 0 v (160 iterations) || v (70 iterations)
(320,240) 200 v (360 iterations) || v (180 iterations)
(160,-100) 220 v (540 iterations) || v (170 iterations)
(-200,120) 360 v/ (310 iterations) || v (330 iterations)
(500,-200) 467 X X
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Figure 14: Photography of the experimental setup for planar scene.

uration. The camera provides 450 x 450 pixels images at 25 frames per second. The grabbed images were
resized into 256 x 256 pixels images to reduce the computation time of the associated interaction matrices.
All the control process and the communication with the robot are performed on a 2.4-GHz computer work-
ing under a LINUX distribution. All the wavelet and shearlet image decompositions are performed using the
MATLAB wavelet toolbox and the open-source SHEARLAB 1.1, respectively. Finally, the related interaction
matrices were computed with an estimated constant depth Z* = 0.8m (approximative distance between the
camera and the observed scene).
Furthermore, as mentioned above, in the experimental validation, only two methods were considered, i.e.,
s-wavelet and s-shearlet-based control laws which outperform the non-subsampled methods in simulation.
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Similarly to the simulation validation framework, we implemented different favourable and unfavourable
scenarios to assess the performances of the proposed control laws. Note that, in each scenario, we used two
tests (with two initial positions) as reported in Table 9. In addition to the scenarios studied in the simulation
framework, we added validation tests in 2D and 3D scenes.

| Test || AT, (mnm) AT, (mm) AT, (mm) | AR(°) AR,(°) AR.(°) |
test 1 5 50 100 5 -5 -4
test 2 20 -30 20 10 2 2

Table 9: Initial error ey between the initial image I and the desired one I* for planar scene.

4.5.1 Nominal Conditions and Planar Scene [scenario 1]

The first experimental validation scenario consists of the test of both s-wavelet and s-shearlet controllers
in nominal working conditions as well as in a planar scene (depth Z is approximatively constant over the
entire observed scene). Fig. 15 depicts the experimental fest I: Fig. 15(a) the desired image I*, Fig. 15(b)
the initial difference image 1,7y between the desired and initial images, while Fig. 15(c) and (d) illustrate
the final difference image at convergence for both s-wavelet and s-shearlet methods, respectively. As can be
highlighted both methods converge accurately (difference images are completely gray) towards the desired
position.

© (d)

Figure 15: [scenario 1, test 1] (a) desired image I* (b) initial difference image I, (c) final difference
image I4;rr in case of s-wavelet method, and (d) final difference image I;77 in case of s-shearlet method.

The final positioning error e (e € SE(3)), in each DOF, was recorded and plotted in Fig. 16. It was computed
from the measures provided by the high resolution robot encoders. The first row of Fig. 16 depicts the
error evolution in the case of s-wavelet method, while the second row presents the one of the s-shearlet
method. As can be seen, all robot DOF converge to their respective desired position. However, the error
decay is not exponential as in a conventional image-based visual servoing (IBVS) approach. This is due
to the optimization method used in this work, namely, the Levenberg-Marquardt algorithm. The numerical
values of the final positioning error in both methods are

e s-wavelet

— translation: mean(AT;) = 0,30 mm

— rotation: mean(AR;) = 0,029 deg

27



* s-shearlet
— translation: mean(AT;) = 0,08 mm
— rotation: mean(AR;) = 0,014 deg

The s-wavelet-based control law reaches the desired position in 700 iterations when the s-shearlet-based
approach converges in less iterations, i.e., 400. In addition, the s-shearlet method demonstrates a better
accuracy in both translation and rotation stages.
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Figure 16: [scenario 1, test I] first row depicts the error e using the s-wavelet control law and the second
row the one of the s-shearlet method.

The achievement of fest 2 is shown in Fig. 17. As can be underlined, both controller reach the desired
position with accuracy demonstrated by the completely gray difference image I;¢¢ as seen in Fig. 17(c) and
Fig. 17(d).

Again, the error e decay in each DOF for the second fest 2 is plotted in Fig. 18. Based on the evolution of the
error, both the s-wavelet and s-shearlet have the same behavior as in the first test /1. Finally, the numerical
values of the final positioning error in both methods are

e s-wavelet

— translation: mean(AT;) = 0,15 mm
— rotation: mean(AR;) = 0,16 deg

* s-shearlet
— translation: mean(AT;) = 0,13 mm

— rotation: mean(AR;) = 0,02 deg
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Figure 17: [scenario 1, test 2] (a) desired image I* (b) initial difference image I, (c) final difference
image I;7r in case of s-wavelet method, and (d) final difference image 1,77 in case of s-shearlet method.
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Figure 18: [scenario 1, test 2] first row depicts the error e using the s-wavelet-based control law and the
second row the one of the s-shearlet-based approach.

4.5.2 Partial Occlusions and Planar Scene [scenario 2]

In this scenario, we tested the proposed control laws under partial occlusions, always using a planar object
as the viewed scene when the one used to hide a part of the image is three-dimensional. Thus, Fig. 19(a)
shows the desired image I* in which we have added an external object (removed during the positioning task
performing). The initial image difference I;s is depicted in Fig. 19(b). Also, Fig. 19(c) and Fig. 19(d)
illustrate the same difference image when the s-wavelet and s-shearlet methods reach the desired position,
respectively.

The error decay for both methods are depicted in Fig. 20. In the same figure, the first row represents the
error evolution in case of the s-wavelet approach while the second row presents the s-shearlet one. As can
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Figure 19: [scenario 2, test 1] (a) desired image I* (b) initial difference image L4 (c) final difference image
for s-wavelet method, and (d) that of s-shearlet method.
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Figure 20: [scenario 2, test 1] first row depicts the positioning error error using the s-wavelet-based control
law and the second row the one of the s-shearlet-based approach.

be highlighted both the control laws converge. However, the final error, as expected, increases with respect
to the results of scenario 1. The numerical values on the accuracy of the proposed methods are

e s-wavelet

— translation: mean(AT;) =2.91 mm

— rotation: mean(AR;) = 0,19 deg
* s-shearlet

— translation: mean(AT;) =7.91 mm
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— rotation: mean(AR;) = 0,49 deg

Another remark can be raised, the s-wavelet method presents a better accuracy in both translation and rota-
tion stages with respect to the s-shearlet approach. Also, the external 3D object added during the positioning
task affects more the translation accuracy than the rotation one.

The validation scenario is repeated a second time (fest 2) with a different initial error and external added
object. Thus, Fig. 21(a) depicts the desired image with partial occlusions and Fig. 21(c) and Fig. 21(d) show
the final difference images at convergence for the s-wavelet and s-shearlet, respectively. It can be noticed
that the desired image and final image are accurately superimposed using the s-wavelet control law when
the s-shearlet method fails.

(a) (b)

Figure 21: [scenario 2, test 2] (a) desired image I* (b) initial difference image 177 (c) final difference image
for s-wavelet method, and (d) that of s-shearlet method.

Indeed, the s-shearlet method converges towards a local minimum by the added external object. Fig. 22
shows the error decay in robot’s stages. Finally, the numerical values of the final positioning error in both
methods are

e s-wavelet

— translation: mean(AT;) = 3.57 mm

— rotation: mean(AR;) = 0.28 deg
* s-shearlet

— translation: X

— rotation: X

4.5.3 Illumination Changes and Planar Scene [scenario 3]

This scenario associates a planar scene with illumination changes which are introduced during the posi-
tioning task. Fig. 23(a) illustrates the desired position grabbed under a saturated illumination source. The
initial difference image is depicted in Fig. 23(b) as well as the final difference images which are shown in
Fig. 23(c) and Fig. 23(d) for both s-wavelet and s-shearlet approaches, respectively. As can be seen, both
methods reach the desired position despite the lighting disturbances. Note that the final difference images
are not completely gray due to the illumination variation effect.

The behaviors of the control laws almost remain the same despite the illumination changes effect. For this
test, the numerical values of the final positioning error in both methods are given below
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Figure 22: [scenario 2, test 2] first row depicts the error e using the s-wavelet-based control law and the
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Figure 23: [scenario 3, test 2] (a) desired image I* (b) initial difference image 177 (c) final difference image
for s-wavelet method, and (d) that of s-shearlet method.

e s-wavelet

— translation: mean(AT;) = 23.5 mm

— rotation: mean(AR;) = 1.3 deg

e s-shearlet

— translation: mean(AT;) =21.3 mm

— rotation: mean(AR;) = 1.3 deg
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4.5.4 Nominal Conditions and 3D Scene [scenario 4]

The scenarios described above were carried out using a planar scene. In this last scenario, we replaced the
photography scene by a 3D scene and we increase the incidence angle between the camera and the 3D object
in the desired position (Fig. 24). Despite the fact that our controller is designed for the general case, our
monocular camera imposes us to consider an approximation of a constant depth Z for all the points of the
image in the equation (20). Therefore the goal of this scenario is to experimentally evaluate the robustness
of our controller to modelling error on the depth of the scene. Two initial error between the initial image I
and the desired one I* were considered (Table 10).

Figure 24: Photography of the experimental setup with 3D scene

| Test || AT, (mm) AT, (mm) AT, (mm) | AR(°) AR,(°) AR.(°) |
test 3 40 30 50 -5 2 3
test 4 -100 -40 -200 3 -3 4

Table 10: Initial error ey between the initial image I and the desired one I* for 3D scene.
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Figure 25: [scenario 4, test3] (a) desired image I"* (b) initial difference image 1,77 (c) final difference image
for s-wavelet method, and (d) that of s-shearlet method.

The numerical values of the final error measured for test 3 are

e s-wavelet
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Figure 26: [scenario 4, test3] first row depicts the error e using the s-wavelet-based control law and the
second row the one of the s-shearlet-based approach.

— translation: mean(AT;) = 0.43 mm

— rotation: mean(AR;) = 0.03 deg
* s-shearlet

— translation: mean(AT;) = 0.15 mm

— rotation: mean(AR;) = 0.02 deg

As can be noticed, both control laws present a high accuracy (less than 1 mm in translation and less than
0.05 deg in rotation) for zest3. In this test, both control laws work with 3D scene similarly as with 2D ones
(the final errors for both cases are in the same order in this case).

In test4, the initial error in translation is enhanced compared to test3, the s-wavelet-based method converges
with high accuracy while the s-shearlet-based method fails (Fig.27). The numerical values of the final error
measured for test 4 are

e s-wavelet

— translation: mean(AT;) = 0.53 mm

— rotation: mean(AR;) = 0.11 deg
* s-shearlet

— translation: mean(AT;) = X
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Figure 27: [scenario 4, test4] (a) desired image I* (b) initial difference image I;s (c) final difference image
for s-wavelet method, and (d) that of s-shearlet method.

— rotation: mean(AR;) = X

This last test shows that the s-wavelet method outperforms the s-shearlet one experimentally. In these two
3D tests, rotations can seem unassuming but it is important to keep in mind that a more than 10 degrees
rotation in any direction makes the 3D object out of the field of view, except if a translation is also done.
Unfortunately, the combination of both a high rotation and a high translation makes our controller fails.
Figure 26 shows also that motions are jerky with a 3D scene. Nevertheless, the convergence can be reached
for a 3D scene for a small initial pose error since in this case the scene behaves like a 2D scene. In opposite,
if the initial pose error is important then considering an approximation of the 3D scene depth as a constant
in the interaction matrix is not suitable and results in a convergence failure.

5 Conclusion

The main objective of this paper was the design of wavelet- and shearlet-based visual servoing schemes.
We recalled the basic mathematical formalism concerning wavelet- and shearlet-based image decomposi-
tions and eventually derived four interaction matrices by considering the subsampled and non-subsampled
wavelet- and shearlet-based multiscale representations of images. The derived control laws are direct visual
servoing schemes and avoid the traditional steps necessary in classical geometrical feature-based visual ser-
voing approaches: visual features detection, extraction and tracking over time. In comparison, the wavelet
(respectively, shearlet) coefficients are directly injected into the control laws loop.

Several simulation and experimental validation scenarios were implemented in order to quantitatively and
qualitatively assess the performance of the different proposed control laws, especially in terms of robustness
and accuracy. The simulation validations have demonstrated a good behavior of all methods allowing an
accuracy of 10~#*mm in translation and 10~*deg in rotation (in nominal working conditions). However, the
subsampled methods demonstrated a better robustness to external disturbances (occlusions, unstable lighting
source) as compared to their non-subsampled counterparts. Based on the experimental validation scenarios,
it was difficult to clearly differentiate the s-wavelet and s-shearlet techniques when dealing with planar
scene. Both work effectively in normal conditions with an accuracy of about 0.4mm in translation and about
0.03deg in rotation. Under external disturbances, it appeared that the s-wavelet approach is more robust than
the s-shearlet method under partial occlusions, while the s-shearlet control law outperforms the s-wavelet
one under illumination variations. Even if the s-shearlet method is more robust to calibration errors, the
experimental validation shows a better robustness to occlusion for the s-wavelet method.
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Among the current drawbacks of the proposed control schemes is the time required for computing the
wavelet- and shearlet-based interaction matrices. Indeed, the computation of wavelet and shearlet coef-
ficients is currently carried out by open-sources libraries implemented in MATLAB. We expect that the
computation time can be decreased by a factor of approximately 10 when using a C++ implementation or
utilizing GPU hardware to parallelize the computations. Our last experimental scenario has also shown that
our method has some difficulties to deal with 3D objects. This is certainly due to the fact that we considered
a constant value of the depth for each image point in the computation of the interaction matrix used in the
control law. This approximation was done since we used a monocular camera that did not provide depth
information. As a result, the convergence of the current image to the desired one in case of a 3D scene can
only be achieved for a small initial pose error, this is also one of the limitations of the direct visual servo-
ing approaches, e.g. photometry-based method. Nevertheless, the formulation of the interaction matrix we
derived is generic and a better adaptation of this matrix in the control law based on the knowledge of the
depth of each image point may probably increase the performances, especially in case of 3D scenes. To
address this limitation, future work will consist of using a RGB-D camera that also provides a depth map
of the scene allowing therefore to online adapt the interaction matrix used in the control law with a good
estimation of Z for each point of the RGB image.

Further work will also be undertaken to improve the developed control laws by investigating complex-
valued generalizations of wavelets and shearlets. The magnitude response of complex-valued wavelet and
shearlet transforms is known to exhibit a certain degree of shift invariance, which should lead to smoother
cost functions and help increase the robustness of the proposed methods, especially with respect to the detail
coefficients. We will also consider the applicability of Compressed Sensing techniques to exploit the sparsity
properties of wavelet- and shearlet-based image representations directly during the data acquisition process.

6 Appendices

6.1 Computing fsw with Derivative Wavelets

Using integration by parts, we can move the partial derivatives in (31) from the two-dimensional image /; to
the respective wavelet and write

(0 0
o o\ _/, Wim )\ _ /[, Wim
<ax Vi ’m> a <It’ ax ) M gy Vim/ = o ad /| @

This means that instead of computing the wavelet transform of an approximation of the image gradient VI,
one can compute the wavelet transform of /; with respect to the partial derivatives of the wavelet generators
\y(l). In particular, for separable two-dimensional wavelet generators, the partial derivatives can easily be
computed by considering the derivatives of the corresponding one-dimensional wavelet and scaling func-
tions (4).

This approach was already investigated in (Bernard, 2001) with the goal of defining an efficient multiscale
transform-based framework for computing optical flows. In particular, Bernard showed that for a sufficiently
smooth scaling function ¢ € L*>(R) and a wavelet y € L?(R) defined by finite impulse response filters
h,g C (>(Z) (cf. equation (8)), an MRA can be constructed that is based on a wavelet ¥ € L?>(R) and a
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scaling function ® € L2(R) that satisfy the following relationships:

_ dy(x)
Y(x) = & 6
Px+1)—P(x) = d(l()lx(x)

In (Bernard, 2001) this was achieved by computing the derivatives of  and ¢ in the frequency domain by
applying the relationship R

f'(0) =iof(w), 47
where f’ denotes the first derivative of a differentiable function f and f the fourier transform of f.
The Fourier transforms of y and ¢ are given by

3(0) = [Tmo2 "w), (48)
n=1
V(o) =m (2" ')p(2 o), (49)

where myg and m are trigonometric polynomials defined by the filter coefficients of h and g, that is,

mo(®) =272 Y hye ™, (50)
nezl

my(®) = 272 Z gne " (51)
nez

Note that (50) and (51) are a consequence of the scaling relations (8) and the convolution theorem, which
states that convolution in the time domain is equivalent to point-wise multiplication in the frequency domain.
Eventually, it was shown in (Bernard, 2001) that the wavelet ¥ and the scaling function @ can be defined
by the trigonometric polynomials

~ N 2m0(0))
mo(0) = 5 e (52)
~ &0 —1
ml((’)) = ) mi (0))3 (53)
in the sense that
o () = [ 02 "), (54)
n=1
P(w)=m (2 '0)P2 ). (55)

The following proposition, which is not part of the original work presented in (Bernard, 2001), gives a
simple rule for constructing filters h,g € ¢%(Z) associated with the trigonometric polynomials 7129 and 7.

Proposition 1 Let \y be a wavelet and ¢ be a scaling function defined by a low-pass filter h and a high-pass
filter g through eqs. (48) to (51), then the derivative wavelet ¥ and the scaling function ® satisfying (46)
are defined by the finite impulse response filters
hy = 2y =1, (56)
g =2, (57)
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and the trigonometric polynomials
mo(0) =272 hpe ", (58)
i (0) =272 ) gue ", (59)

via egs. (54) and (55).

Proof: We use the definitions of mg and mg as well as (52) and compute

Y hye ™0 =277 (e 4 1) g () (60)
nez
1 ~ . ~ .
_ E (Z hne—t(n—l)m+ Z hne—mw> 61)
nez nez
Mot +hn
_ y At v (62)
nez 2

For g, the definitions of the trigonometric polynomials m; and 1, together with (53) lead to

Y Gue 0 =272 (e — 1) my (o) (63)
neZ

_ % (;Zgnei(nl)w _ %“Zgneinw> (64)
_ \ &l T 8n —inw

= ’;Z s " (65)

Proposition 1 provides an analytically interesting perspective on the entries of the matrix isw as coefficients
of an MRA-based representation of the image I;. However, it does unfortunately not yield a straightforward

method to compute isw by simply applying the filters h and g. While d"fT(x) is in fact equal to the deriva-

tive wavelet W, the derivative of the scaling function needs to be computed via %(x) =P(x+1)—D(x)
(cf. equation (46)). Furthermore, the usual assumption when representing a digital image with an MRA-
based transform is that the observed pixel values correspond to coefficients defining a coarse approximation
with respect to the scaling function ¢ (cf. equation (9)). However, when computing the coefficients of
the derivative wavelet-based MRA, we would already assume that the pixel values correspond to a coarse

approximation with respect to ®.

6.2 Index to Multimedia Extensions
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Extension | Type | Description

1 video | video showing the global view of the experimental set-up
used in this work
2 video | video showing the simulation validation

The four methods are tested in three scenari:

scenario 1: nominal condition

scenario 2: under partial occlusions

scenario 3: under illumination changes

3 video | video showing the experimental validation with a planar scene

The two subsampled methods are tested in four scenari:

scenario 1: nominal conditions and planar scene

scenario 2: partial occlusions and planar scene

scenario 3: illumination changes and planar scene

4 video | video showing the experimental validation with 3D object in nominal condition
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