
 

 

Low-frequency band gap in cross-like holey phononic 

crystal strip 

Shan Jiang1,2, Hongping Hu1,2* and Vincent Laude3 
1 Department of Mechanics, Huazhong University of Science and Technology, 

Wuhan 430074, P. R. China 
2 Hubei Key Laboratory of Engineering Structural Analysis and Safety 

Assessment, Huazhong University of Science and Technology, Wuhan 430074, 

P. R. China 
3 Franche-Comté Electronique Mécanique Thermique et Optique, CNRS UMR 

6174, Université de Bourgogne Franche-Comté, Besançon 25030, France 

*Corresponding author, E-mail: huhp@hust.edu.cn 

Abstract. A silicon-based cross-like holey phononic crystal strip is proposed for the 

control of elastic waves in the field of Micro-electro-mechanical systems (MEMS). The 

goal is to obtain a broad bandgap at low frequencies with a lightweight structure. In this 

respect, the effects of varying the in-plane and the out-of-plane geometry parameters are 

discussed. After design, a gap-to-midgap ratio of 47% is obtained with an intermediate 

filling fraction of the solid material and a small thickness of the strip. The band gap can 

be moved to an extremely low frequency range while keeping the strip significantly 

smaller than previously reported phononic crystal strips. The transmission property 

through a finite number of periods agrees well with the band structure of the infinite 

system. The proposed phononic crystal strip could for instance be used as an isolating 

anchor for elastic wave resonators in MEMS. 
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1. Introduction  

Phononic crystals (PnCs) have experienced great development during the past decades. 

The most salient trait of PnCs is the existence of frequency band gaps, within which the 

propagation of elastic waves is forbidden whatever the polarization and wave vector. They have 



 

 

potential application in many fields like vibration attenuation, acoustic isolation, sound 

collimation, wave filtering, etc. [1]. Previous works have shown that band gaps are determined 

by several factors, such as the material properties of each component, the geometry parameters, 

and the lattice symmetry [2]. In general, for a given lattice constant, a wider band gap at lower 

frequencies means PnC devices can be made more compact and lightweight. Many studies have 

been correspondingly conducted to lower and widen band gaps [3-17], which can be boiled 

down to three different strategies: Bragg scattering inherent to the periodic structure [3-8], local 

resonances provided by additional material or structure added to the unit cell [9-12], and 

coupling between both approaches [13-15]. Many novel and creative topologies have been 

proposed and optimized to obtain broad band gaps [16, 17]. The study of PnCs has thus become 

one of the most active and fast-growing disciplines in physics (condensed matter physics, wave 

propagation in inhomogeneous and periodic media) and engineering (acoustics, ultrasonic, 

mechanical engineering, electrical engineering) [18, 19].  

In the field of Micro-electro-mechanical systems (MEMS), devices are very sensitive to 

low-frequency elastic waves, including energy loss via supports and anchors, and noise 

contamination from environmental vibration sources. Thus, it is critical for MEMS 

applications to control elastic waves. In recent years, many works have focused on 

silicon-based PnCs to control elastic waves propagating through MEMS [20-30]. Yet, 

researchers still face the challenge that highly integrated MEMS design imposes strict 

restrictions on area and volume of structures. Establishing topologies that optimize the 

performance of PnCs and meet application demands of MEMS remains a salient problem. 

Compared with the more commonly used two-dimensional PnC plates, one-dimensional 

PnC strips can save more space and are compatible with integration, making them prospective 

candidates for vibration shielding and energy loss reduction in MEMS. By now, research on 

PnC strips has mainly focused on two kinds of structures: pillared PnC strips and holey PnC 

strips [24-27, 31]. Pillared PnC strips (and corresponding plates) comparatively received more 

attention due to their additional property of local resonance [14, 32-36]. However, hard, heavy, 

and tall pillars are required to obtain wide band gaps basing on strong material contrast with the 

supporting beam. It was observed that when the ratio of the pillar height to the thickness of the 

beam is close to 3, a band gap begins to open, and that when the ratio increases to 10, the band 



 

 

gap reaches its maximal width [32]. These requirements not only bring puzzle regarding size 

and space, but also result in fabrication and stability challenges.  

As for holey PnC strips, band gaps mainly arise from periodic Bragg scattering. Since the 

geometry parameters are necessarily commensurate with the wavelength, conventional 

topologies can hardly open low frequency band gaps in micro-PnCs. Even at the sacrifice of 

size and space, the band gap width remains far from expectations. Up to now, most researches 

have been limited to convex (such as circular or regular polygonal) holes. Furthermore, for 

convex-holey structures, a small filling fraction of solid material is usually required to obtain a 

relative wide band gap. This fact exacerbates fabrication and mechanical stability issues that 

already exist in MEMS. As an alternative topology, concave holes involve multiple geometry 

parameters that are useful to tune band gaps. More importantly, the introduction of concave 

holes can induce a broad band gap, as was shown for both phononic [4, 5] and photonic crystals 

(PtCs) [37]. Nevertheless, concave-holey PnC strips are still lacking research. 

In this paper, we propose a cross-like holey phononic crystal strip. The primitive cell has 

a cross-like hole in the center and a pair of symmetric stubs on the sides. We aim at obtaining 

low-frequency and wide band gaps with strong attenuation, while at the same time obtaining a 

lightweight structure. After classifying the modal shapes of the unit cell, we broaden the main 

band gap by lowering and flattening the relevant bands. A comparison with conventional 

convex-holey PnC strips is conducted to illustrate the advantages of cross-like holey strips. The 

influence of geometry parameters on the band gaps is further discussed. A gap-to-midgap ratio 

of up to 47% is obtained when the geometry is tailored properly. Finally, in order to evaluate 

the performance of the PnC for isolating vibrations in MEMS, transmission through a finite 

structure is examined by using finite element analysis. In summary, the following advantages 

of the proposed PnC strip are demonstrated: 1) broad band gap, 2) band gap with lower 

frequency than previously published topologies, 3) small size, and 4) intermediate filling 

fraction of the solid material, thus avoiding the shortcomings of strips with either small or 

large filling fraction. 

The paper is organized as follows. The PnC strip model and finite element method (FEM) 

are described in Section 2 where two parameters are defined to describe the properties of the 

strip. Section 3 then presents band structures and eigenmodes for the infinite periodic strip, and 



 

 

transmission spectra for a finite periodic strip. The dependence of the characteristics of the 

PnC upon geometry parameters is further discussed. Finally, conclusions are drawn in Section 

4. 

2. Phononic crystal strip and calculation method 

The cross-like silicon phononic crystal strip with lattice constant a is depicted in figure 1. 

As shown in figure 1 (b), the unit cell consists of a cross-like hole in the center and of four 

entrant square holes at the corners. It is noted that this topology can also be regarded as four 

lumps connected by four narrow connectors. The cross-like hole in the center is described by 

parameters b and c, while the side length of the square hole at each corner is d/2. The width of 

the connectors is thus w = (a-c-d)/2. The thickness of the strip is h. All these parameters are 

normalized against the lattice constant a in the following. The whole strip is made of single 

crystal silicon, the mass density is ρ = 2320 kg/m3 and the elastic constants are c11 = 165.7 

GPa, c12 = 64.1 GPa, and c44 = 79.6 GPa, respectively. The y and x axes of the strip coincide 

with the [010] direction of a (100)-oriented silicon wafer. 

 
Figure 1. (a) Schematic of the cross-like holey PnC strip with the orientation of (100)-oriented 

silicon wafer. (b) Primitive unit cell. (c) Plane view of the unit cell with definition of geometry 

parameters. 

Computations are performed by using the finite element method (FEM) with software 

COMSOL Multiphysics. The model object built in COMSOL is exported and is then imported 

to MATLAB for the benefit of nested loops. This procedure is used to evaluate the effect of 

geometry parameters on the band gaps, notably for cases involving multiple geometry 

parameters. The geometry parameters are normalized by lattice constant a. The 

non-dimensional method is applied in the calculation. 



 

 

The governing equation for propagation of elastic waves in anisotropic material can be 

written as 

  , , , 1,2,3k
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j l

u
c u i j k l

x x


 
  

  
  (1) 

where xj (j=1, 2, 3) correspond to the x, y and the z axes. cijkl is the elastic tensor and ui represents 

the displacement components ux, uy or uz. A superimposed dot denotes derivative with respect to 

time. To compute band structures, Bloch periodic boundary conditions are applied on the two 

opposite sides of the unit cell along the x direction, and other boundaries are left free. The 

Bloch-Floquet theorem implies that the displacements have to satisfy the condition 

    ie   k au r a u r   (2) 

where k is the wave vector, r denotes the position vector and a is the lattice vector. All 

eigenmodes can be obtained by sweeping the wave vector k along the edges of the first 

irreducible Brillouin zone, which is here one-dimensional. In the band structures, normalized 

frequencies (ɷa/2πct) are functions of the reduced wavenumber (ka/2π), where ct = 4683 m/s is 

the transverse wave velocity along the [110] direction of silicon. The normalized frequencies 

(ɷa/2πct) and the non-dimensional band gap depend on the normalized geometry parameters, 

but are independent on the lattice constant. For this reason, a larger lattice constant can lead to 

a lower frequency band gap if same normalized geometry parameters are applied. According 

to the non-dimensional calculation results, one can conveniently determine the lattice constant 

a to meet the actual requirements on the frequency and the width of the band gap in the 

practical application. 

In order to evaluate the kinetic energetic ratio in a given direction, we define normalized 

values for the x, y, or z polarization components of elastic wave as 

  2 2 2 2d d , , ,i i x y zV V
e u V u u u V i x y z       (3) 

where ui stands for displacement components ux, uy or uz. V denotes the volume of the unit cell. 

The kinetic energetic ratio can be used to distinguish whether an elastic wave belongs to 

longitudinal wave or transverse wave or their mixture. As an example, when propagating in 

x-direction, the wave is longitudinal wave if 1xe  , or it is transverse wave if 1ye   or 



 

 

1ze  . 

The relative bandwidth BG% is defined as a measure on the performance of the phononic 

crystal and is the ratio of the gap width to the mid gap frequency,  
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where topf  and botf  are the bounding frequencies of the band gap. Frequency dependence 

can be avoided by the non-dimensional parameter. One can consider both the width and 

frequency position of a band gap at the same time. A higher BG% means a wider gap, or a lower 

mid gap frequency, or both. Thus as for the phononic crystal, the higher BG% indicates the 

better performance.  

3. Results and discussion 

Figures 2(a)-2(c) present the band structures of the proposed PnC strip. The geometry 

parameters are set as b/a = 0.625, c/a = 0.25, d/a = 0.325 and h/a = 0.2. The kinetic energetic 

ratios ei along the three spatial axes are plotted in colour for every band. We can distinguish 

every band from the colour of the kinetic energetic ratios along the three spatial axes. A band 

gap range from 0.082 to 0.132 is visible, corresponding to a BG% of 47%. It is well known that 

the uniform slab has three bands starting from ω = 0, two of which have a sagittal polarization 

while the third has a transverse polarization [13]. Nevertheless, for the proposed PnC strip, 

four native bands starts from ω = 0; those can be classified into bending mode with x-axis 

displacement (Bx0), bending mode with y-axis displacement (By0), bending mode with z-axis 

displacement (Bz0), and torsional mode (T0), based on the symmetry decomposition of 

displacements [25]. The other bands can be further categorized according to these four native 

modes. The curve of T1 has discontinuous slopes when ka/2π = 0.125. From the colour of the 

kinetic energetic ratios, we can know the band belongs to another mode when ka/2π < 0.125, 

but not to T1. For a given k, first ten eigen-frequencies are plotted. Hence these two bands have 

not been shown entirely in the figure. 



 

 

 
Figure 2. Band structure of the cross-like holey phononic crystal strip with representation of 

kinetic energy information, for parameters b/a = 0.625, c/a = 0.25, d/a = 0.325 and h/a = 0.2. 

The same band structure is plotted three times with colour representing kinetic energy contents 

of (a) the x, (b) the y, and (c) the z polarizations of the elastic wave. 

 

 

Figure 3. Modal shapes of the first ten frequency bands labeled in Figure 2 with normalized 

frequency ka/2π = 0.25. (a) By0, (b) Bz0, (c) T0, (d) Bz1, (e) Bx0, (f) By1, (g) Bx1, (h) Bz2, (i) T1, (j) 

Bx2. 

Figure 3 shows the modal shapes of the first ten frequency bands of figure 2, for 

normalized wavenumber ka/2π = 0.25. Modal shapes are named in the figure according to 

their deformation shape. The modal shapes in figures 3(a) and 3(f) are for bending modes 

with y-axis displacement (By-mode). Figures 3(b), 3(d) and 3(h) are for bending modes with 

z-axis displacement (Bz-mode). Torsional modes (T-mode) appear in figures 3(c) and 3(i). 

Figures 3(e), 3(g) and 3(j) are for bending modes with x-axis displacement (Bx-mode), they 



 

 

are longitudinal modes because they are mainly polarized in the propagation direction. 

In figure 4, the band structure of the cross-like holey phononic crystal strip is compared to 

two previously published models. Figure 4(a) presents the band structure of a “I”-like PnC strip 

cut from the square lattice holey PnC plate, with dimensions r/a = 0.36 and h/a = 0.75 [24]. The 

band structure of a similar strip cut from the hexagonal lattice holey plate is displayed in figure 

4(b), with dimensions a/d = 31/2, r/d = 0.45, and h/d = 0.75 [26]. Figure 4(c) is a copy of figure 

1(a) shown for comparison. In order to eliminate the misinterpretation, the maximum values of 

vertical axis are written by a large bold font. The BG% of main band gaps in figures 4(a)-4(c) 

are 10%, 48%, and 47%, respectively. Comparing with figure 4(a), figure 4(b) has a wider and 

lower band gap. The only difference is that the first strip is cut from the square lattice while the 

second is cut from the hexagonal lattice. Hence, the model in figure 4(b) has one more 

geometry parameter than the one in figure 4(a). Comparing with the strip in figure 4(b), the 

proposed PnC strip in figure 4(c) has a much lower band gap while keeping about the same 

BG%. The band gap of the proposed PnC strip has actually a much lower normalized center 

frequency than that of previously published PnC strips. Moreover, the thickness is only h/a = 

0.2, while the strips in figures 4(a) and 4(b) require the larger thicknesses h/a = 0.75 and h/d = 

0.75 (h/a = 0.433), respectively. In addition, Pennec et al. discussed a strip whose unit cell 

contains a circular hole in the middle and two symmetric stubs on the sides. Thickness h/a = 

0.44 was applied to induce a maximum BG% of 14.8% [38].  

An example is given to show intuitively. Three kinds of strips in figure 4 are designed to 

meet the working frequency from 7.24 MHz to 8.11 MHz of the acoustic microwaveguide 

[39]. For the strip in figure 4(a), a = 385 μm, the band gap appears from 7.28 MHz to 8.06 

MHz. So the band gap is not broad enough to meet the requirement; For the strip in figure 

4(b), a = 200 μm, the band gap locates from 6.77 MHz to 11.09 MHz; For the proposed strip 

in figure 4(c), a = 60 μm, the band gap spans from 6.40 MHz to 10.30 MHz. Therefore, as for 

the structural size, the proposed strip is smaller than one-third of the strip in figure 4(b). On 

the other hand, with a same lattice constant (a = 200 μm), the proposed strip can induce a 

much lower frequency band gap from 1.92 MHz to 3.09 MHz than the strip in figure 4(b). 

Consequently, the proposed PnC strip has at least three advantages over previously reported 

PnC strips: a broader or equivalent band gap, a lower frequency band gap, and a smaller size. 



 

 

 

Figure 4. Band structures of (a) the PnC strip cut from the square-lattice holey PnC plate (r/a = 

0.36, h/a = 0.75), (b) the PnC strip cut from hexagonal-lattice holey PnC plate (a/d = 31/2, r/d = 

0.45 and h/d = 0.75), and (c) the proposed PnC strip (b/a = 0.625, c/a = 0.25, d/a = 0.325 and 

h/a = 0.2). Colour bars represent the kinetic energy content in the x-axis polarization of the 

elastic wave. 

To obtain the largest value of BG%, the optimization of geometry parameters was 

conducted inductively. Geometry parameters can be divided into two groups as in-plane 

parameters and out-of-plane parameter. The in-plane geometry parameters include dimensions 

of holes b, c and d. The thickness h is the out-of-plane geometry parameter. The in-plane 

parameters have an important influence on all modes at the same time. However, the 

out-of-plane parameter only has a significant impact on out-of-plane modes, Bz-modes and 

T-modes. Therefore, we consider the effect of the geometry parameters on the band structure, 

from the dimensions of the cross-like hole b and c, to the length of square holes d, and finally to 

the thickness h of the strip. 

Figure 5 illustrates the effect of geometry parameters of the cross-like hole on the band 

gap. The variation of the band gap is treated as a function of b/a and c/a, where w/a = 0.05 and 

h/a = 0.2 are fixed. Parameter d changes with c due to c + d + 2w = a. As shown in figure 5, 

band gaps with a large BG% (> 40%) are available within a large region of geometry 

parameters b and c. The maximum 47% of BG% locates at the optimal geometry parameters 

(b/a, c/a) equal (0.625, 0.25). For a given c/a, the BG% reaches a maximum at an intermediate 



 

 

value of b/a and decreases as b/a deviates from this value. This is quite different from 

previously reported strips for which the maximum of BG% appears only as the geometry size 

closes to its limit (i.e. r/a ~ 0.5). For the proposed strip, an intermediate b/a means an 

intermediate filling fraction of solid material since the filling fraction of solid material 

decreases with increase of b/a when the other geometry parameters are given. Hence, 

intermediate filling fractions can lead to the maximums of BG%. As a note, intermediate 

filling fractions escape the shortcomings that come with small filling fractions, such as 

mechanical instability and low bearing capacity. Furthermore, they also escape the 

disadvantages that come with large filling fractions, such as overweight.  

 
Figure 5. BG% is illustrated by colour as a function of geometry parameters b/a and c/a, with 

w/a = 0.05 and h/a = 0.2. The maximum 47% of BG% locates (0.625, 0.25). 

 



 

 

 

Figure 6. Variation of center frequency and band gap width as a function of d/a, where b/a = 

0.625, c/a = 0.25, and h/a = 0.2. The maximum value of BG% appears for d/a = 0.65. 

Figure 6 illustrates the variation of the band gap versus the normalized length d/a of the 

square holes at the corners. The other parameters are fixed at b/a = 0.625, c/a = 0.25, and h/a = 

0.2. As d/a increases, the lower and the upper boundaries of the band gap both decrease. 

Actually, an increase in d/a decreases the bending stiffness along the three axes (x, y and z) and 

also decreases the torsion stiffness. Consequently, all bending and torsion bands move down to 

lower frequencies. Nevertheless, different bands have different degrees of descent. Thus the 

lower and upper boundaries of the band gap are sequentially limited by bands of different 

symmetries. Furthermore, as the red dash line reveals, there exists an optimum d/a of 0.325 

with respect to the maximum BG%, further confirming that an intermediate filling fraction can 

induce the maximum BG% for the proposed strip. 



 

 

 

Figure 7. Variation of the band gaps as a function of the parameter h/a, where b/a = 0.625, c/a 

= 0.25 and d/a = 0.65 are fixed. The main band gap reaches maximum width at h/a = 0.2. 

Figure 7 illustrates the effect of the thickness h on the band structure of the PnC strip. The 

in-plane geometry parameters are fixed at b/a = 0.625, c/a = 0.25, and d/a = 0.325. With the 

increase of h/a, two band gaps are formed at first, and then the third band gap appears when 

h/a>0.3. The colours are used to distinguish different band gaps. As noted above, the thickness 

h just affects modes related to z-axis, such as Bz-mode and T-mode. The out-of-plane bending 

stiffness and torsion stiffness both increase with the increase in parameter h, but the in-plane 

bending stiffness is independent of h. As a result, the bands of the Bz-mode and the T-mode 

both change with the variation of h/a, while the bands of the Bx-mode and the By-mode remain 

stationary. Specifically, with an increase of h/a, the bands of the Bz0-mode and the T0-mode 

become steeper, while the bands of higher-order bending and torsion modes move up entirely. 

When the bands of the Bz-mode and the T-mode move inside, the main band gap previously 

determined by the Bx-mode and the By-mode becomes separated into two or three parts. From 

this point of view, the best strategy to obtain the widest band gap is to prevent the bands of the 

Bz-mode and the T-mode from entering the band gap determined by the Bx-mode and the 

By-mode. As shown in figure 7, the first band gap reaches its maximum width at h/a=0.2. When 

h/a>0.3, the main band gap is separated by the bands of the Bz-mode and the T-mode, and more 

gaps appear.  

Next, we investigate the dependence of the band gaps on the width of narrow connectors 



 

 

w/a. In the above discussion, the width of the narrow connectors w/a was fixed as 0.05. This 

parameter is worth much attention since the width of connectors has a significant effect on the 

lumps-connectors system. The maximums of BG% for different widths w/a and the 

corresponding optimal geometry parameters are listed in Table 1. Both the upper and the lower 

edges of band gaps decrease with a decrease in w/a. However, there is an optimal value w/a of 

0.05 which makes the band gap reach the maximum of BG%. Compared to a slim connector 

with a small w/a, a relatively thick connector means robustness of the PnC strip. For the 

corresponding geometry parameters, c/a increases monotonically with decreasing w/a, and the 

optimal h/a is always around 0.2. 

Table 1. The maximums of BG% for different connector widths w/a and the 

corresponding optimal geometry parameters b/a, c/a, d/a and h/a. 

w/a ftop
 

fbot
 

BG% (b/a, c/a, d/a) h/a 

0.070 0.113 0.174 42.62% (0.625, 0.225, 0.635) 0.20 

0.065 0.108 0.168 43.50% (0.625, 0.225, 0.645) 0.21 

0.060 0.096 0.151 44.21% (0.625, 0.225, 0.655) 0.20 

0.055 0.088 0.140 45.33% (0.675, 0.250, 0.640) 0.20 

0.050 0.082 0.132 46.73% (0.625, 0.250, 0.650) 0.20 

0.045 0.079 0.126 45.40% (0.600, 0.250, 0.660) 0.22 

0.040 0.071 0.112 44.59% (0.625, 0.275, 0.645) 0.20 

0.035 0.064 0.100 44.39% (0.600, 0.275, 0.655) 0.20 

0.030 0.048 0.073 41.79% (0.625, 0.275, 0.665) 0.20 

0.025 0.045 0.069 42.02% (0.600, 0.300, 0.650) 0.20 

According to the Bragg scattering mechanism, the spatial modulation must be 

commensurate with the wavelength in the band gap. Unlike conventional convex holey PnC 

strips, the proposed cross-like holey strip has a folding topology. This folding-type topology 

extends the flexural wave propagation path but the structure size remains small. Alternatively, 

the unit cell can also be regarded as four lumps connected by four narrow connectors. From the 

above discussion, the widest band gap is determined by the Bx-mode and the By-mode. 

Observing those modes in figure 3, it is seen that the lumps vibrate like rigid bodies since their 

bending stiffness is much larger than that of the connectors. The low-frequency flexural wave 

is thus effectively modulated to open a band gap by the lump-connector system, owing to the 

large difference between their bending stiffness.  



 

 

 

Figure 8. Schematic setting used for the computation of transmission through five periods of 

the cross-like holey phononic crystal strip. 

 

Figure 9. Band structure and transmission spectra for elastic wave in the PnC strip with 

parameters b/a = 0.625, c/a = 0.25, d/a = 0.325, and h/a = 0.2. (a) Band structure for PnC strip. 

Colour bar represents kinetic energy content in the x-axis polarization of the elastic wave. (b) 

Transmission spectra of elastic waves through a finite strip structure with five periods, for two 

different wave sources. 

Furthermore, to evaluate performance of the proposed PnC strip on vibration isolation, 

the transmission spectrum is calculated to characterize the excitation response of the PnC strip. 

The transmission spectrum is often used to evaluate wave propagation properties for a finite 

periodic structure. In addition, frequency ranges with large attenuation in the transmission 

spectrum for the finite periodic structure can be directly compared to the band gaps in the 

band structure for the infinite periodic system. 

The analyzed configuration is depicted as figure 8. The polarized line source can be 

selected to have either x-, y-, z-, or mixed-polarization. Perfectly match layers (PML) are 



 

 

added at the two ends of the structure to avoid reflections of outgoing waves [40]. Figure 9(b) 

plots the calculated transmission spectra for a finite PnC strip with five periods. A normalized 

frequency range with strong attenuation from 0.082 to 0.141 can be clearly seen from the 

transmission spectra for a mixed-polarized source and an x-polarized source. This frequency 

range matches fairly well with the band gap from 0.082 to 0.132 predicted by the band 

structure in figure 9(a). The small difference in the upper edge frequencies might be attributed 

to the fact that some modes have not been excited by the polarized line sources, i.e. they are 

deaf. 

4. Conclusion 

A cross-like holey PnC strip has been proposed with cross-like holes in the center and 

square holes at the corners in a square lattice. The band structure, the eigenmodes and the 

transmission characteristics of the PnC strip have been analyzed by using FEM. The maximum 

of the relative band gap width reaches 47% after design. Compared with previously reported 

topologies with the same lattice constant, the proposed strip induces much lower frequency 

band gaps. At the same time, a much smaller thickness is required. Combining the two 

advantages of low-frequency band gap and small size/weight, the proposed PnC strip has a 

potential of application in the field of MEMS. Its intermediate filling fraction overcomes the 

shortcomings of phononic crystal strips with either small or large filling fractions. The 

proposed PnC strip could be applied as a vibration isolator or a noise insulator.  
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