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We model the generation of coherent acoustic beams in a homogeneous solid from the interference of
two oppositely propagating, detuned, optical laser beams. This configuration is reciprocal to Brillouin
light scattering in the backward interaction arrangement. Generation of a confined ultrasound beam is
predicted, close to the Brillouin frequency. Optoacoustic gain spectra and beam shapes are obtained nu-
merically using a finite element model. The acoustic spectra are non-symmetrical, i.e. non-Lorentzian,
and result from excitation of the continuum of bulk elastic waves. The acoustic beam width correspond-
ingly varies with detuning frequency and optical beam waist. © 2018 Optical Society of America
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1. INTRODUCTION

The mixing of two frequency detuned optical waves in a solid
medium offers a means of generating coherent hypersound in
the bulk [1]. Such an electrostriction process relies on the pho-
toelastic effect [2, 3], whereby the square of the optical field
induces a mechanical stress in the medium. When the stress
distribution is phase matched with a particular elastic wave
in the medium, i.e. when the interference wavelength and the
detuning frequency satisfy the relevant dispersion relation, op-
toacoustic generation is in principle at a maximum.

Electrostriction is known to be intimately related to Brillouin
light scattering (BLS) by acoustic phonons, of thermal origin, or
elastic waves, for instance produced by a transducer. Actually,
both effects can be described in a unified manner in energetic
terms, using either a Lagrangian or a Hamiltonian for the cou-
pled optical and elastic wave fields [4–6]. In Brillouin light
scattering experiments, the backward scattering configuration
is often used, as it allows to impose very precisely the acous-
tic wavevector direction and magnitude. BLS spectra can then
be obtained by observing the backscattered light amplitude as
a function of frequency. Shear and longitudinal phonons ap-
pear as Lorentzian peaks centered on the Brillouin frequency
ωB = 2nV/λ, with n the effective refractive index, V the acous-
tic phase velocity, and λ the vacuum wavelength of light. The
factor 2 is typical of backscattering and the phonon wavenumber
is twice the optical wavenumber in the medium, or q = 4πn/λ.
The same backscattering configuration is used for BLS measure-

ments in optical fibers and waveguides. In this case, n is the
effective index of a guided optical mode and V is generally inter-
preted as the phase velocity of an elastic mode of the waveguide.

In this paper, we consider photoelastic generation of hy-
persound in the backward interaction arrangement. This ar-
rangement has been considered in recent years in optical fibers
and waveguides, and many fascinating observations have been
made, including the existence of hybrid phonons in photonic
crystal fibers [7], nanoscale optical waveguides [8–10], surface
acoustic waves in microwires [11], or light storage in integrated
photonic circuit waveguides [12, 13]. The specificity of our work
is that we consider optoacoustic generation in the bulk of ho-
mogeneous media, i.e. in the absence of any waveguide for the
generated elastic waves. The absence of a waveguide implies
the non existence of a basis of guided elastic modes, and hence
the non applicability of descriptions of optoacoustic gain relying
on overlap integrals [14, 15].

In the following, we propose a photoelastic generation model
adapted to the case of bulk homogeneous media, in the case
that the interaction length of the two counterpropagating optical
Gaussian beams can be considered very long. We find that elec-
trostriction leads to the generation of confined beams of elastic
waves, centered on the optical stress distribution and whose
lateral extension depends on the angular-spectrum contents of
the optical beams and on the frequency detuning. Optoacoustic
spectra are argued to be formed from the continuum of bulk
elastic waves of the propagation medium.
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Fig. 1. Schematic representation of the model of photoelas-
tic generation of hypersound in a homogeneous dielectric
medium. (a) Two counterpropagating, detuned optical Gaus-
sian beams interfere and create a moving spatial stress distri-
bution. In the plot, the waist is w = 5 µm and the period of
the interference pattern is 0.5 µm. (b) Simple 2D disk-shaped
domain in the transverse plane. (c) 2D disk-shaped domain
terminated by a perfectly matched layer (PML) approximating
an open medium.

2. ELECTROSTRICTION MODEL

We consider a homogeneous dielectric, solid medium. For sim-
plicity, the medium is considered to be optically isotropic though
anisotropic for elastic waves. In the Results Section, we consider
either silica or silicon. The magnetic fields of the two optical
beams are linearly polarized and have a transverse Gaussian
dependence, according to

Hi(x, y, z; t) = H0hi exp(−(x2 + y2)/w2) exp(j(ωit− kiz)) (1)

with i = 1, 2, H0 the magnetic field magnitude, hi a transverse
unit vector, and w the beam waist. ωi and ki are the angular
frequency and wavevector, with |ki| = nωi/c and c the vacuum
velocity of light. The power transported by the Gaussian beam
is in the paraxial approximation

P0 =
πw2

4nε0c
H2

0 . (2)

The two optical beams are counterpropagating and have
a relatively small adjustable detuning ω = ω1 − ω2. Hence
the difference of their wavenumbers q = k1 − k2 ≈ 2k1. The
square of the optical field thus contains a term proportional to
exp(j(ωt− qz)) that can be phase-matched with an elastic wave
providing q ≈ ω/V with V the phase velocity of the elastic
wave. The relevant term in the electrostriction stress tensor
is Tes

kl = − 1
2 ε0 pijkl D(1)

i D(2)∗
j with D the electric displacement

vector and pijkl the photoelastic tensor. Note that all indices of
tensors run from 1 to 3 and that we use the notation (x1, x2, x3) =
(x, y, z). The electric displacement vector is easily obtained for

the magnetic field vector by ∂D
∂t = ∇×H. Figure 1(a) illustrates

the interference of the two optical Gaussian beams.
Given the particular form of the driving electrostriction stress,

the displacement of the forced elastic wave can be assumed to
be of the form [16]

ui(x, y, z; t) = ûi(x, y) exp(j(ωt− qz)). (3)

This equation looks similar to a guided mode but actually de-
scribes a different situation: the driving stress oscillates in time
and space along a preferred direction and the forced solution fol-
lows those oscillations while adapting its shape in the transverse
plane to satisfy the appropriate boundary conditions.

We obtain the displacements ûi(x, y) by solving the elastody-
namic equation using finite element analysis. The weak form of
the equation is [5]

−ω2
∫

Ω
ρv̂∗i ûi +

∫
Ω

S(v̂)∗I cI JS(û)J =
∫

Ω
S(v̂)∗I Tes

J , (4)

with cijkl the elastic tensor and ρ the mass density. Ω is the
domain on which ûi(x, y) is defined, v is a set if test functions
satisfying the decomposition of Eq. (3), I = (ij) and J = (kl) are
contracted indices for pairs of symmetric indices running from 1
to 6. The strains are defined as

S1(û) =
∂û1
∂x1

, (5)

S2(û) =
∂û2
∂x2

, (6)

S3(û) = −jqû3, (7)

S4(û) =
∂û3
∂x2
− jqû2, (8)

S5(û) =
∂û3
∂x1
− jqû1, (9)

S6(û) =
∂û1
∂x2

+
∂û2
∂x1

. (10)

If the domain considered is closed by an external boundary
σ, the previous equations can be solved by imposing boundary
conditions. In the following we will consider the domain de-
picted in Fig. 1(b), terminated by a free boundary condition. In
order to represent a piece of homogeneous material, the solution
should then decay spatially fast enough not to reach the external
boundary, or otherwise reflections will occur. Of course this
condition is not for granted and the absence of reflections in the
solution must be checked carefully. In order to approach better
the case of an infinite space, for which the actual solution should
satisfy radiation conditions at infinity, one can use a perfectly
matched layer (PML) [17, 18]. As depicted in Fig. 1(c), the PML
surrounds the useful computation domain and is intended to
absorb outgoing waves without reflecting them. PML for time-
harmonic wave equations [19] can be defined as a coordinate
transform from a complex infinite domain to the real finite do-
main [20]. The PML implementation we use is summarized in
the appendix. Note that the PML may fail for waveguide-type
problems in elastic media [21], and hence also in the case of
our optoacoustic model. For this reason, we use a PML in the
following for the case of longitudinal waves, but we have to
revert to the free computation in the case of shear waves, due to
numerical instabilities.



Research Article Applied Optics 3

Fig. 2. optoacoustic generation of longitudinal elastic waves
in silica. The two optical beams are co-polarized. The phonon
energy per unit length is plotted as a function of optical de-
tuning, for 3 different optical beam waists. Representative
acoustic beam cross-sections (A-E) are shown.

3. RESULTS

All computations are performed for a vacuum optical wave-
length of 1.55 µm, for silica and for silicon. There is a noticeable
optoacoustic response only when the phase matching conditions
of a bulk elastic wave are met. We first present results for longitu-
dinal waves and then for shear waves. For the free model (shear
waves and all acoustic beam cross-sections), we set R = 100
µm. For the PML model (longitudinal waves), we set R1 = 10
µm and R2 = 5 µm.

A. Longitudinal elastic waves
We first consider silica (n = 1.458). Material constants are taken
from Ref. [22]. Figure 2 shows the computed optoacoustic
spectrum for co-polarized optical beams, for 3 different waists,
as obtained with the PML model. Note that the power of the
optical beams is normalized to 1 W in all cases. As a result, the
intensity (in W/m2) is larger for smaller waists, enhancing the
optoacoustic response. The phonon energy per unit length is
computed from the solution as

1
2

ω2
∫

Ω
ρû∗i ûi +

1
2

∫
Ω

S(û)∗I cI JS(û)J . (11)

The longitudinal velocity for silica is 5969 m/s, so that the Bril-
louin frequency in this case is 11.23 GHz, as indicated by the red

Fig. 3. optoacoustic generation of longitudinal elastic waves in
silicon. The two optical beams are co-polarized. The phonon
energy per unit length is plotted as a function of optical de-
tuning, for 3 different optical beam waists. Representative
acoustic beam cross-sections (A-E) are shown.

line in Figure 2. It can be seen that the response is not centered
on the Brillouin frequency and is not symmetrical with respect
to its maximum. This is in contrast to what is observed in the
case of guided elastic modes, in optical fibers and nanoscale
optical waveguides, in which case Lorentzian peaks are centered
on a resonance frequency. Figure 2 further shows a selection of
5 acoustic beam cross-sections, for the 2-µm waist. Away from
the peak, the response is weak and strongly confined around the
optical stress distribution. As the peak maximum is approached
from lower frequencies, the acoustic beam width grows, but
remains finitely distributed around the excitation. After the
maximum, the beam width keeps on increasing and a bright
center appears on top of a more extended background.

Figure 3 shows information similar to Figure 2, but for the
case of silicon (with crystallographic axes aligned with the refer-
ence frame). Material constants are again taken from Ref. [22].
The refractive index n = 3.6 and the longitudinal velocity is 8431
m/s, so that the Brillouin frequency in this case is 39.16 GHz.
Apart from the change in frequency range, the characteristics of
the optoacoustic response are very similar to the case of silica.

B. Shear elastic waves
In the case of shear elastic waves, a stronger optoacoustic re-
sponse is obtained for cross-polarized optical beams compared
to co-polarized beams. As a consequence we present results for
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Fig. 4. optoacoustic generation of shear elastic waves in silica.
The two optical beams are cross-polarized. The phonon energy
per unit length is plotted as a function of optical detuning, for
3 different optical beam waists. Representative acoustic beam
cross-sections (A-E) are shown.

cross-polarized beams. The shear velocity in silica is 3763 m/s,
so that the Brillouin frequency in this case is 7.08 GHz. It can
be seen in Figure 4 that the optoacoustic response is again not
centered on the Brillouin frequency and is not symmetrical with
respect to its maximum. The enhancement of the response with
smaller waists is even more important. Actually, as the beam
waist becomes very large, i.e. as it tends to a plane wave, the
response tends toward zero. As a result, it can be said that the
response is only due to the finiteness of the optical beams. For
the 2-µm waist, undulations are observed on the high frequency
side of the response; these are caused by reflections on the ex-
ternal boundary of the computation domain and indicate that
the beam size has exceeded a radius of 100 µm. Figure 4 further
shows a selection of 5 acoustic beam cross-sections, for the 3-
µm waist. The same phenomenon of increasing beam width is
observed as in the case of longitudinal waves, but the increase is
even more pronounced.

The case of shear waves in silicon, in Figure 5, shows novel
features. The shear velocity is 5844 m/s, so that the Brillouin
frequency in this case is 27.15 GHz. For the smaller beam waist,
5 µm, the response is almost centered on the Brillouin frequency
and symmetrical. However, as the beam waist becomes smaller,
the response becomes wider and two maxima appear before and
after the Brillouin frequency. The 5 selected acoustic beam cross-
sections, for the 2-µm waist, indicate that the acoustic beam

Fig. 5. optoacoustic generation of shear elastic waves in silicon.
The two optical beams are cross-polarized. The phonon energy
per unit length is plotted as a function of optical detuning, for
3 different optical beam waists. Representative acoustic beam
cross-sections (A-E) are shown.

shape strongly depends on the anisotropy of the elastic tensor
of silicon (cubic symmetry) and varies rapidly with frequency.

4. DISCUSSION

The most remarkable feature of the optoacoustic responses is that
the generated acoustic beams remain confined around the opti-
cal stress distribution. We emphasize that there is no structural
guidance, as would be provided if some region of space (a core)
had a lower elastic wave velocity compared to the surrounding
medium (a cladding). Instead, the finite acoustic beams are com-
posed of a continuous superposition of the bulk elastic waves
of the homogeneous medium. The Gaussian distribution of the
optical beams, that translates into a Gaussian distribution of the
electrostriction stress, plays an important role in this respect.
Indeed, if we consider a Fourier transform in the transverse
direction, the plane wave spectrum of the excitation is also a
Gaussian function of the lateral wavenumber. Hence, the dis-
tribution of wavevectors is continuously distributed around its
center, (0, 0, q), and decays rapidly away from it.

The solution of the elastodynamic Eq. (4) can be written for-
mally as u = R(ω)Tes, with R(ω) the resolvant operator. The
resolvant is well-behaved, except when a mode is present in
the spectrum. The bulk elastic modes of homogeneous media
form slowness surfaces [23, 24], which are surface of revolu-
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Fig. 6. Intersections of the slowness surface of a bulk elastic
wave with the phase-matching condition kz = q. (a-c) Three
cases ares shown depending on the magnitude of detuning
frequency ω with respect to the Brillouin frequency ωB.

tion in wavevector space, as depicted in Figure 6. Optoacous-
tic phase-matching imposes kz = q, but otherwise leaves the
value of (kx, ky) free. For a detuning frequency smaller than
the Brillouin frequency, ω < ωB, there is no intersection of the
slowness surface with the (kx, ky, q) plane and no bulk elastic
wave can be resonantly excited. For ω = ωB, there is a single
osculating intersection point, whose contribution is negligible.
For ω > ωB, the intersection of the slowness surface with the
(kx, ky, q) plane defines a continuous curve describing the pos-
sible leakage of elastic energy to bulk waves, away from the
excitation center. This leakage explains the asymmetry of the
optoacoustic response: a smaller optical beam waist implies a
larger plane wave spectrum and hence the excitation of bulk
waves slightly away from the Brillouin frequency.

The model we have presented assumes very long optical
Gaussian beams that retain the same waist along the propaga-
tion axis. This assumption is only approximate, as it is know that
Gaussian beams have smoothly varying waist; taken this vari-
ation into consideration would require an extended 3D model.
An alternative is the use of non-diffracting beams that can retain
a constant width over rather long distances [25].

5. CONCLUSION

We have described a model for the generation of coherent beams
of hypersound in a homogeneous solid that result from the
interference of two oppositely propagating, detuned, optical
Gaussian laser beams. Numerical simulations for silica and
silicon predict the generation of confined hypersound beams,
at frequencies close to the Brillouin frequency. The computed
optoacoustic spectra are non-symmetrical, i.e. they do not affect
the usual Lorentzian shape that is usually observed when modes
are excited. We have explained their appearance as resulting
from the excitation of a continuum of bulk elastic waves forming
a slowness surface in wavevector-space. The acoustic beam
widths were found to vary with detuning frequency and optical
beam waist. In particular, a stronger response is found for small
waists, for a constant optical power.
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A. RADIAL PERFECTLY MATCHED LAYER

The perfectly matched layer (PML) is introduced to transform
an infinite, or open, problem into a finite problem. The idea is to
seek a solution to the dynamical equations by using a coordinate
transform from a complex infinite space, that admits evanescent
waves as eigenfunctions instead of plane waves, to the real fi-
nite space. If there are only evanescent waves and they have
sufficiently decayed, then the additional boundary condition ter-
minating the PML becomes less important; a Dirichlet boundary
condition is usually enforced.

Given coordinates x of real space, we introduce coordinates
y of complex space via a transform yi = yi(x). Introduce the
Jacobian matrix

Jij =
∂yi
∂xj

. (12)

In an integral, the integration element (volume) changes pro-
portionally to det(J). Consider a function u(x) = ũ(y). Then
the gradient transforms as

∇ũ =
∂ũ
∂yi

=
∂xj

∂yi

∂u
∂xj

= J−t∇u. (13)

The inverse Jacobian has elements J−1
ij = ∂xi

∂yj
. Note the transpose

operator when transforming the gradient, i.e. J−t
ij =

∂xj
∂yi

.
In the case of the elastodynamic equation, the weak form

becomes

−ω2
∫

Ω
ρv̂∗i ûi det(J) +

∫
Ω

S(v̂)∗I cI JS(û)J det(J)

=
∫

Ω
S(v̂)∗I Tes

J , (14)

with the modified definition of the strains

S1 = J−1
m,1u1,m, (15)

S2 = J−1
m,2u2,m, (16)

S3 = J−1
m,3u3,m, (17)

S4 = J−1
m,2u3,m + J−1

m,3u2,m, (18)

S5 = J−1
m,1u3,m + J−1

m,3u1,m, (19)

S6 = J−1
m,1u2,m + J−1

m,2u1,m. (20)

Let us suppose we want to attenuate waves in an angular
sector, as depicted in Fig. 1(c). The PML is entered at the cir-
cular boundary satisfying r =

√
x2 + y2 = R1. We consider a

sequence of three coordinate transforms: Cartesian to polar coor-
dinates, complexification of the radial coordinate, polar back to
Cartesian coordinates. The complex polar transform is given by

r′ = r +
j

ω

∫ r

R1

σ(s)ds (21)

with σ(s) = βV|s− R1|/R2
2, where β is a numerical coefficient

whose value can be tuned to optimize absorption. Performing

the three transforms, we obtain

det(J) = 1 +
j

ω
σ(r) = α−1, (22)

J−t =

(αx2 + y2)/r2 (α− 1)xy/r2

(α− 1)xy/r2 (αy2 + x2)/r2

 . (23)
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