Knots, links and (informationally complete) quantum measurements

Michel Planat

Université de Bourgogne/Franche-Comté, Institut FEMTO-ST CNRS
UMR 6174, 15 B Avenue des Montboucons, F-25044 Besançon, France. michel.planat@femto-st.fr

Quantum \& Nonlinear Optics, 2-5 Febr. 2018, Kuala Lumpur, Malaysia

- The concept of a magic state (in quantum computing) and that of minimal informationally complete positive operator valued measure: IC-POVM (in quantum smeasurements) make a good team as shown recently ${ }^{1}$.
- Most low dimensional IC-POVMs found are from subgroups of the modular group $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$. This can be understood from the picture of the trefoil knot and the related 3-manifolds ${ }^{2}$.

[^0]

- From permutation groups to magic states and IC-POVMs
- IC-POVMs, the modular group $\operatorname{PSL}(2, \mathbb{Z})$ and the trefoil knot
- From permutation groups to quantum gates $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \equiv(2,1), I \otimes X \equiv(2,1)(4,3)$ acting on qubits, $\mathrm{CNOT}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right) \equiv(1,2)(4,3)$ acting on 2-qubits, CCNOT $\equiv(1,2,3,4,5,6)(8,7)$ acting on 3 -qubits, $X=\left(\begin{array}{ccc}0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right) \equiv(2,3,1)$ acting on qutrits.
- Magic states for universal quantum computation

Fault tolerant quantum computing protocols based on stabilizer states have to be complemented by magic states to reach quantum universality. Two distillation protocols based on single qubit magic states $|H\rangle$ and $|T\rangle$ are with
$|H\rangle=\cos \left(\frac{\pi}{8}\right)|0\rangle+\sin \left(\frac{\pi}{8}\right)|1\rangle$ and
$|T\rangle=\cos (\beta)|0\rangle+\exp \left(\frac{i \pi}{4}\right) \sin (\beta)|1\rangle, \quad \cos (2 \beta)=\frac{1}{\sqrt{3}} .{ }^{3}$

[^1]- Later, we construct IC-POVMs using the covariance with respect to the generalized d-dimensional Pauli group that is generated by the shift and clock operators as follows

$$
\begin{gather*}
X|j\rangle=|j+1 \bmod d\rangle \\
Z|j\rangle=\omega^{j}|j\rangle \tag{1}
\end{gather*}
$$

with $\omega=\exp (2 i \pi / d)$ a d-th root of unity.
A general Pauli (also called Heisenberg-Weyl) operator is of the form

$$
T_{(m, j)}= \begin{cases}i^{j m} Z^{m} X^{j} & \text { if } d=2 \tag{2}\\ \omega^{-j m / 2} Z^{m} X^{j} & \text { if } d \neq 2\end{cases}
$$

where $(j, m) \in \mathbb{Z}_{d} \times \mathbb{Z}_{d}$. For N particules, one takes the Kronecker product of qudit elements N times.
Stabilizer states are defined as eigenstates of the Pauli group.

- Phase point operators on $\mathbb{Z}_{d} \times \mathbb{Z}_{d}(d$ a prime) are as (Wootters, 1987)

$$
A_{\alpha}=\frac{1}{d} \sum_{j, m=0}^{d-1} \omega^{p j-q m+j m / 2} X^{j} Z^{m} \text { with } \alpha=(q, p \text { and }
$$

(i) A_{α} is Hermitian, (ii) $\operatorname{tr}\left(A_{\alpha} A_{\beta}\right)=d \delta_{\alpha \beta}$, (iii)Taking any complete set of d parallel lines (called a striation), construct the average $P_{\lambda}=\frac{1}{d} \sum_{\alpha \in \lambda} A_{\alpha}$ on each line λ. The d operators P_{λ} form a set of mutually orthogonal projectors whose sum is I. The d^{2} (linearly independent) phase point operators A_{α} form a basis of the d-dimensional Hilbert space so that

$$
\rho=\sum_{q, p} W_{\rho}(q, p) A(q, p), \quad W_{\rho}(q, p)=\frac{1}{d} \operatorname{tr}[\rho A(q, p)] .
$$

- with the (real) coefficients given by the Wootters discrete Wigner function. Unlike the continuous case, the discrete Wigner function is a quasi probability distribution that may take negative values. On a Hilbert space of odd dimension (Gross, 2007), the only pure states to possess a non-negative discrete Wigner function are stabilizer states.

The magic of universal quantum computing with permutations 2 (M. Planat and R. UI Haq, 2017)

dim	magic state ρ	sum of negative entries W_{ρ}	Remark
2	$\begin{array}{\|l\|} \hline H\rangle \\ \|T\rangle \\ \hline \end{array}$	$\begin{array}{r} (1-\sqrt{2}) / 4 \sim-0.1035 \\ \text { positive } \end{array}$	Bravyi Bravyi
3	$\begin{gathered} (0,1,1) \\ (0,1,-1) \\ \hline \end{gathered}$	$\begin{array}{r} \hline-1 / 3 \\ -1 / 3 \\ \hline \end{array}$	Norrell strange
4	$\begin{gathered} (0,1,1,1) \\ (0,1,-\omega, \omega-1) \end{gathered}$	$\begin{array}{r} -1 / 6 \\ (2-3 \sqrt{3}) / 12 \sim-0.266 \end{array}$	A_{4}
5	$\begin{gathered} (0,1,1,1,1) \\ (0,1,-1,-1,1) \\ (0,0,0,1, \pm 1) \\ (0,0,1,1,1) \\ \hline \end{gathered}$	$\begin{aligned} &-\sqrt{5} / 5 \sim-0.447 \\ &-2 / 5 \\ &-(\sqrt{5}+1) / 10 \sim-0.324 \\ &-(1+3 \sqrt{5}) / 15 \sim-0.514 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4} \\ & S_{5} \end{aligned}$
6	$\begin{gathered} (0,1,1,1,1,1) \\ (0,0,1,1,1,1) \\ (0,0,1,-1,-1,1) \\ \hline \end{gathered}$	$\begin{aligned} &-(3 \sqrt{3}+7) / 30 \sim-0.406 \\ &-(\sqrt{3}+1) / 6 \sim-0.455 \\ &-(\sqrt{3}+4) / 12 \sim-0.478 \\ & \hline \end{aligned}$	$\begin{aligned} & A_{5} \\ & A_{6} \end{aligned}$
7	$\begin{gathered} (0,1,1,1,1,1,1) \\ (0,0,0,0,1,1,1) \\ (0,0,0,0,0,1, \pm 1) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.499 \\ & -0.504 \\ & -0.321 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{Z}_{7} \rtimes \mathbb{Z}_{6} \\ & \operatorname{PSL}(2,7) \end{aligned}$

- Using permutation groups, we discover minimal IC-POVMs (i.e. whose rank of the Gram matrix is d^{2}) and with Hermitian angles $\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|_{i \neq j} \in A=\left\{a_{1}, \ldots, a_{l}\right\}$, a discrete set of values of small cardinality l. A SIC is equiangular with $|A|=1$ and $a_{1}=\frac{1}{\sqrt{d+1}}$.
- The states encountered below are considered to live in a cyclotomic field $\mathbb{F}=\mathbb{Q}\left[\exp \left(\frac{2 i \pi}{n}\right)\right]$, with $n=\operatorname{GCD}(d, r)$, the greatest common divisor of d and r, for some r. The Hermitian angle is defined as $\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|_{i \neq j}=\left\|\left(\psi_{i}, \psi_{j}\right)\right\|^{\frac{1}{\operatorname{deg}}}$, where $\|\cdot\|$ means the field norm ${ }^{4}$ of the pair $\left(\psi_{i}, \psi_{j}\right)$ in \mathbb{F} and deg is the degree of the extension \mathbb{F} over the rational field \mathbb{Q}.
- For the IC-POVMs under consideration below, in dimensions $d=3$, $4,5,6$ and 7 , one has to choose $n=3,12,20,6$ and 21 respectively, in order to be able to compute the action of the Pauli group. Calculations are performed with Magma.

[^2]- The symmetric group S_{3} contains the permutation matrices I, X and X^{2} of the Pauli group, where $X=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right) \equiv(2,3,1)$ and three extra permutations $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \equiv(2,3),\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right) \equiv(1,3)$ and $\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \equiv(1,2)$, that do not lie in the Pauli group but are parts of the Clifford group.
- Taking the eigensystem of the latter matrices, it is not difficult check that there exists two types of qutrit magic states of the form $(0,1, \pm 1) \equiv \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle \pm|2\rangle)$. Then, taking the action of the nine qutrit Pauli matrices, one arrives at the well known Hesse SIC (Bengtsson, 2010,Tabia, 2013, Hughston, 2007).

Magic qutrit POVM's $(0,1,1)$ or $(0,1,-1)$
(a)

- The Hesse configuration resulting from the qutrit POVM. The lines of the configuration correspond to traces of triple products of the corresponding projectors equal to $\frac{1}{8}$ [for the state $(0,1,-1)$] and $\pm \frac{1}{8}$ [for the state $(0,1,1)$]. Bold lines are for commuting operator pairs.

dim	magic state	$\left\|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right\|_{i \neq j}^{2}$	Geometry
2	$\|T\rangle$	$1 / 3$	tetrahedron
3	$(0,1, \pm 1)$	$1 / 4$	Hesse SIC
4	$\left(0,1,-\omega_{6}, \omega_{6}-1\right)$	$\left\{1 / 3,1 / 3^{2}\right\}$	Mermin square*
5	$(0,1,-1,-1,1)$	$1 / 4^{2}$	Petersen graph
	$(0,1, i,-i,-1)$		
	$(0,1,1,1,1)$	$\left\{1 / 3^{2},(2 / 3)^{2}\right\}$	
6	$\left(0,1, \omega_{6}-1,0,-\omega_{6}, 0\right)$	$\left\{1 / 3,1 / 3^{2}\right\}$	Borromean rings
7	$\left(1,-\omega_{3}-1,-\omega_{3}, \omega_{3}, \omega_{3}+1,-1,0\right)$	$1 / 6^{2}$	unknown
8	$(-1 \pm i, 1,1,1,1,1,1,1)$	$1 / 9$	[633] Hoggar SIC ${ }^{*}$
9	$(1,1,0,0,0,0,-1,0,-1)$	$\left\{1 / 4,1 / 4^{2}\right\}$	[93] Pappus conf.*
12	$\left(0,1, \omega_{6}-1, \omega_{6}-1,1,1\right.$,	8 values	Fig. 6
	$\left.\omega_{6}-1,-\omega_{6},-\omega_{6}, 0,-\omega_{6}, 0\right)$		

- Magic states of IC-POVMs in dimensions 2 to 12. ${ }^{*}$ In dimensions 4, 8 and 9 , a proof of the two-qubit, two-qutrit and three-qubit Kochen-Specker theorem follows from the IC-POVM.
- From now we restrict to a magic groups (of gates showing one entry of 1 on their main diagonals). This only happens for a group isomorphic to the alternating group

$$
A_{4} \cong\left\langle\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right\rangle .
$$

One finds magic states of type $(0,1,1,1)$ and $\left(0,1,-\omega_{6}, \omega_{6}-1\right)$, with $\omega_{6}=\exp \left(\frac{2 i \pi}{6}\right)$.

- Taking the action of the 2QB Pauli group on the latter type of state, the corresponding pure projectors sum to 4 times the identity (to form a POVM) and are independent, with the pairwise distinct products satisfying the dichotomic relation $\operatorname{tr}\left(\Pi_{i} \Pi_{j}\right)_{i \neq j}=\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|_{i \neq j}^{2} \in\left\{\frac{1}{3}, \frac{1}{3^{2}}\right\}$. Thus the 16 projectors Π_{i} build an asymmetric informationally complete measurement not discovered so far.

- The organization of triple products of projectors leads to the generalized quadrangle $G Q(2,2)$ pictured in (c) whose subset is Mermin square (b). Traces of triple products for rows (resp. columns) of Mermin square equal $-\frac{1}{27}$ (resp. $\frac{1}{27}$).
- The modular group $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$ acts on the Poincaré hyperbolic plane $\mathbb{H}=\{x, y \in \mathbb{R} \mid y>0\}$ as a discrete subgroup of real Möbius transformations $z \rightarrow \frac{a z+b}{c z+d}$ of $\operatorname{PSL}(2, \mathbb{R})$ acting on \mathbb{H}.
- Important mathematical objects are the moduli space of elliptic curves, which is the quotient space \mathbb{H} / Γ, and modular forms that map pair of points of \mathbb{H} up to a weight factor and elliptic curves (via the 1995 modularity theorem) (Diamond,2005).
- The modular group 「 acts discontinuously on the extended upper half-plane $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup \infty$. 「 tesselates \mathbb{H}^{*} with ∞ many copies of a fundamental domain $\mathcal{F}=\left\{z \in \mathbb{H}\right.$ with $|z|>1, \Re(z)<\frac{1}{2}$. The modular group Γ is generated by two transformations $S_{\Gamma}: z \rightarrow-\frac{1}{z}$ and $T_{\Gamma}: z \rightarrow z+1$. It can also be represented as the two-generator free group $G=\left\langle e, v \mid e^{2}=v^{3}=1\right\rangle$ using the variable change $e=S_{\Gamma}$ and $v=S_{\Gamma} T_{\Gamma}$.

From permutation groups to magic states and IC-POVMs

IC-POVMs from the modular group $\operatorname{PSL}(2, \mathbb{Z})$ and the trefoil kno

Tessellation of the upper half-plane with the modular group $\Gamma=P S L(2, \mathbb{Z})$.

- Some finite index subgroups of Γ, called congruence subgroups, are obtained by fixing congruence relations on the entries of elements of Γ. The principal congruence subgroup of level N of Γ is the normal subgroup $\left.\Gamma(N)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, d= \pm 1 \bmod N$ and $\left.b, c=0 \bmod N\right\}$ whose index is $n^{3} \Pi_{p \mid N}\left(1-\frac{1}{p^{2}}\right), p$ a prime number. Another important subgroup of Γ is the congruence subgroup $\Gamma_{0}(N)$ of level N defined as the subgroup of upper triangular matrices with entries defined modulo N. The index of $\Gamma_{0}(N)$ is the Dedekind psi function $\psi(N)$.
- References to the conversion from permutation groups to subgroups of Γ and vice versa are ${ }^{5} 6$
> ${ }^{5}$ Chris A. Kurth and Ling Long, Computations with finite index subgroups of $\operatorname{PSL}(2, \mathbb{Z})$ using Farey symbols, in Advances in Algebra and Combinatorics edited by K. P. Shum et al (World Scientific, 2008), pp 225-242.
> ${ }^{6}$ William A. Stein et al. Sage Mathematics Software (Version 6.4.1), The Sage Development Team, 2014, http://www.sagemath.org.

- Representation of $A_{4} \cong \Gamma_{0}(3)$ as a dessin d'enfant (a) and as the tiling of the fundamental domain (b). The character * denotes the unique elliptic point (of order 3). The triple products of projectors leads to $G Q(2,2)$ pictured in (c).

The subgroups of Γ (congruence or not) leading to IC-POVMs

dim	sgs of $\Gamma=P S L(2, \mathbb{Z})$-> IC-POVM	pp	geometry
3	$\Gamma_{0}(2)$	1	Hesse SIC
4	$\Gamma_{0}(3), 4 A^{0}$ (under 2QB Pauli gr.)	2	GQ(2, 2)
5	$5 A^{0}$	1	Petersen graph
6	$\Gamma^{\prime}, \Gamma(2), 3 C^{0}, \Gamma_{0}(4), \Gamma_{0}(5)$	2	Borromean ring
7	$\begin{gathered} 7 A^{0} \\ \mathrm{NC}\left(0,6,1,1,\left[1^{1} 6^{1}\right]\right) \end{gathered}$	2	Fig. 5b
9	$\begin{gathered} \mathrm{NC}\left(0,8,3,0,\left[1^{1} 8^{1}\right]\right)(2 \mathrm{QT}) \\ \mathrm{NC}\left(0,9,1,3,\left[9^{1}\right]\right)(2 \mathrm{QT}) \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & (3 \times 3) \text {-grid, Pappus } \\ & {\left[81_{8}, 216_{3}\right]} \end{aligned}$
10	$5 C^{0}$	5	
11	$11 A^{0}$	3	[113]
12	$\begin{gathered} 10 A^{1}(2 \mathrm{QB}-\mathrm{QT}) \\ \mathrm{NC}\left(0,8,4,0,\left[4^{1} 8^{1}\right]\right) \\ \mathrm{NC}\left(0,8,4,0,\left[4^{1} 8^{1}\right]\right) \end{gathered}$	5 5 6	$\begin{aligned} & K(3,3,3,3) \\ & \text { Hesse }(\times 16) \\ & {\left[48_{7}, 112_{3}\right]} \end{aligned}$
12	under 12-dit Pauli group $8 A^{1}, N C\left(0,8,4,0,\left[4^{1} 8^{1}\right]\right)$	11,7	
13	$\mathrm{NC}\left(0,6,1,1,\left[1^{1} 6^{2}\right]\right)$	4	
14	$7 C^{0}, \mathrm{NC}\left(0,6,0,2,\left[1^{1} 6^{2}\right]\right), 14 A^{1}$	12,5,6	
15	$5 E^{0}, \mathrm{NC}\left(0,6,3,0,\left[3^{1} 6^{2}\right]\right), 15 A^{1}, 10 B^{1}$	5,4,10,3	

When non-congruence the signature $\mathbf{N C}\left(g, N, \nu_{2}, \nu_{3},\left[c_{i}^{W_{i}}\right]\right)$ is made explicit.

Poincaré conjecture is the (deep) statement that every simply connected closed 3-manifold is homeomorphic to the 3-sphere S^{3}. Having in mind the correspondence between S^{3} and the Bloch sphere that houses the qubits $\psi=a|0\rangle+b|1\rangle, a, b \in \mathbb{C},|a|^{2}+|b|^{2}=1$, one would desire a quantum translation of this statement.
Thurston's geometrization conjecture, from which Poincaré conjecture follows, dresses S^{3} as a 3-manifold not homeomorphic to S^{3}. The wardrobe of 3 -manifolds M^{3} is huge but almost every dress is hyperbolic and W. Thurston ${ }^{7}$ found the recipes for them.
There exists a relationship between the modular group Γ and the (non hyperbolic) trefoil knot T_{1} since the fundamental group $\pi_{1}\left(S^{3} \backslash T_{1}\right)$ of the knot complement is the braid group B_{3}, the central extension of Γ.

[^3]Coverings/subgroups of the fundamental group $\pi_{1}\left(T_{1}\right)$ of the trefoil knot T_{1}

d	ty	hom	cp	gens	CS	link	type in [?]
2	cyc	$\frac{1}{3}+1$	1	2	-1/6		D_{4}
3	$\begin{aligned} & \text { irr } \\ & \text { cyc } \end{aligned}$	$\begin{gathered} 1+1 \\ \frac{1}{2}+\frac{1}{2}+1 \\ \hline \end{gathered}$	2 1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1/4	L7n1	$\begin{array}{r} \Gamma_{0}(2), \text { Hesse SIC } \\ A_{4} \\ \hline \end{array}$
4	$\begin{aligned} & \text { irr } \\ & \text { irr } \\ & \text { cyc } \\ & \hline \end{aligned}$	$1+1$ $\frac{1}{2}+1$ $\frac{1}{3}+1$	2 1 1	$\begin{aligned} & 2 \\ & 3 \\ & 2 \end{aligned}$	1/6	L6a3	$\begin{array}{r} \Gamma_{0}(3), 2 \text { QB IC } \\ 4 A^{0}, 2 \text { QB-IC } \\ S_{4} \end{array}$
5	$\begin{aligned} & \text { cyc } \\ & \text { irr } \end{aligned}$	$\begin{gathered} 1 \\ \frac{1}{3}+1 \end{gathered}$	1	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	5/6		$\begin{array}{r} A_{5} \\ 5 A^{0}, 5-\text { dit IC } \end{array}$
6	reg irr irr irr irr cyc irr irr	$\begin{gathered} 1+1+1 \\ 1+1+1 \\ \frac{1}{2}+1+1 \\ \frac{1}{2}+1+1 \\ \frac{1}{2}+1+1 \\ 1+1+1 \\ \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+1 \\ \frac{1}{3}+\frac{1}{3}+1 \\ \hline \end{gathered}$	$\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 3 \end{aligned}$	0	$\begin{aligned} & \text { L6n1 } \\ & \text { L6n1 } \end{aligned}$	$\begin{array}{r} \Gamma^{\prime}, 6-\mathrm{dit} I C \\ \Gamma(2), 6 \text {-dit IC } \\ \Gamma_{0}(4), 6-\mathrm{dit} I C \\ 3 C^{0}, 6-\mathrm{dit} I C \\ \Gamma_{0}(5), \text { 6-dit IC } \end{array}$
7	$\begin{aligned} & \text { cyc } \\ & \text { irr } \\ & \text { irr } \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1+1 \\ \frac{1}{2}+\frac{1}{2}+1 \end{gathered}$	1 2 1	$\begin{aligned} & \hline 2 \\ & 3 \\ & 4 \end{aligned}$	-5/6		$\begin{aligned} & \text { NC 7-dit IC } \\ & 7 A^{0} 7 \text {-dit IC } \end{aligned}$

The trefoil knot and links for the Hesse SIC and two-qubit IC.

(b)

- The trefoil knot $T_{1}=3_{1}$, (b) the link $L 7 n 1$ associated to the Hesse SIC, (c) the link L6a3 associated to the two-qubit IC.

More on 3-manifolds: hyperbolic manifolds for the two-qubit IC-POVM ${ }^{8}$

Figure-of-eigth knot K4a1

Figure-of-eight 3-manifold otet02_00001

Manifold otet08_00007

Manifold ooct04_00258
(b)

[^4]- magic state in uqc
- IC-POVMs in quantum measurements
- uqc and ICs on $\Gamma=\operatorname{PSL}(2, \mathbb{Z})$
- uqc and ICs on 3 manifolds:
* e.g the (non-hyperbolic) trefoil knot
* or hyperbolic 3-manifolds.

[^5]
[^0]: ${ }^{1}$ M. Planat and R. UI Haq, The magic of universal quantum computing with permutations, Advances in mathematical physics 217, ID 5287862 (2017); M. Planat and Z. Gedik, Magic informationally complete POVMs with permutations, R. Soc. open sci. 4170387 (2017).
 ${ }^{2} \mathrm{M}$. Planat, The Poincaré half-plane for informationally complete POVMs, Entropy 2016 (2018); M. Planat, R. Ascheim, M. Amaral and L. Irwin, Universal quantum computing and three-manifolds (Preprint).

[^1]: ${ }^{3}$ S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A71 022316 (2005).

[^2]: ${ }^{4} \mathrm{H}$. Cohen, A course in computational algebraic number theory (Springer, New York, 1996, p. 162).

[^3]: ${ }^{7}$ W. P. Thurston, Three-dimensional geometry and topology (vol. 1), (Princeton University Press, Princeton, 1997).

[^4]: ${ }^{8}$ M. Planat, R. Ascheim, M. Amaral and L. Irwin, Universal quantum computing and three-manifolds (Preprint).

[^5]: ${ }^{9}$ It is our task, both in science and in society at large, to prove the conventional wisdom wrong and to make our unpredictable dreams come true. Freeman Dyson

