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We investigate the optical force exerted on a parity-time-symmetric bilayer made of balanced gain and
loss. We show that an asymmetric optical pulling or pushing force can be exerted on this system depending
on the direction of impinging light. The optical pulling or pushing force has a direct physical link to the
optical characteristics embedded in the non-Hermitian bilayer. Furthermore, we suggest taking advantage
of the optically generated asymmetric force to launch vibrations of an arbitrary shape, which is useful for
the contactless probing of mechanical deformations.
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I. INTRODUCTION

In 1998, Bender and Boettcher introduced a parity-time
(PT )-symmetric quantum mechanics as an extension of
conventional quantum mechanics into the complex domain
[1,2]. PT -symmetric quantum mechanics was initially an
interesting mathematical discovery [3], but it has since been
studied in many areas of physics [4–14].
In principal, a quantum system with a non-Hermitian

Hamiltonian is PT symmetric if the Hamiltonian is
invariant under combined parity inversion and time rever-
sal. In optics, PT -symmetric systems can be obtained with
balanced gain and loss and should satisfy nðrÞ ¼ n�ð−rÞ
[7]. In other words, the real part of the refractive index is an
even function and the imaginary part of the refractive index
an odd function of the space. Indeed, once gains and losses
are introduced in the problem, the Hamiltonian of such
systems becomes non-Hermitian. In general, the eigenval-
ues of such a system can be real or complex. For real
eigenvalues, the PT symmetry of the system is unbroken
(i.e., the system is in a PT -symmetric phase), whereas, for
complex eigenvalues, the PT symmetry of the system is
broken (i.e., the system is in a broken PT -symmetric
phase). The concept of PT symmetry has been used in
numerous applications, such as extraordinary nonlinear
behaviors [6], asymmetric propagation [8], unidirectional
invisibility [9], optical lasing [11], optical switching [15],
and many others. However, the physics of the optical force
on PT -symmetric systems has not yet been fully explored.
It is well known that a highly collimated light beam

exerts a pushing force (i.e., in the direction of the flow of

light) on an arbitrary object [16,17]. However, the direction
of the exerted optical force can be changed by using
impinging sources of various angles or using an object
with different material properties (i.e., permittivity and
permeability). For example, one can obtain a counterin-
tuitive force known as the optical pulling force [18–26]. It
has been shown that a pulling force can be achieved for
particular beams, e.g., interference of multiple beams [20]
or nonparaxial gradientless beams [21]. An alternative
approach makes use of gain materials [18,19]. In all of
these approaches, symmetric systems (invariant under
space inversion) were investigated, and the system exhib-
ited symmetric optical (pulling and pushing) forces as a
result. Consequently, we raise the question as to whether
one is able to engineer an asymmetric optical pulling or
pushing force. In this paper, we address this question by
exploring the optical force exerted on one-dimensional
PT -symmetric structures. We start by investigating a
passive dielectric slab (made of lossy or lossless material,
i.e., n00 ≥ 0, where the refractive index is defined as
n ¼ n0 þ in00). We show that the exerted optical force is
positive, whereas, for an active slab (made of gain media,
i.e., n00 < 0), the force sign can change depending on the
thickness and the refractive index of the slab. Balancing
gain and loss in the context of PT symmetry provides an
alternative route to unveil non-Hermitian optical forces in
such a layered structure. To understand the underlying
physics of optical pulling and pushing forces in PT -
symmetric structures, we calculate the eigenvalues and
modulate the PT phase-transition parameters. We find that
the exerted force on a bilayer system changes from pushing
to pulling at the PT exceptional point. Finally, we explain
how such a bilayer PT -symmetric structure can be utilized
to generate waves in thin elastic layers. Note that having
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losses in metals and dielectrics are commonly used in the
Lorentz model; gain is less obvious but mainly explored in
the semiconductor field—and especially in quantum dots
[27,28]. It is important to mention that designing a specific
gain value is not a trivial step. However, several
PT -symmetric systems have been experimentally
observed in optics [29–32].

II. THEORY

The system shown in Fig. 1(a) is a bilayer made of
individual gain and loss layers fulfilling the PT -symmetry
condition nðrÞ ¼ n�ð−rÞ. The associated incoming (a1, a2)
and outgoing (b1, b2) wave amplitudes are depicted in
Fig. 1(a) and can be related by the transfer matrix

�
b2
a2

�
¼ M

�
a1
b1

�
¼
�
M11 M12

M21 M22

��
a1
b1

�
; ð1Þ

For a PT -symmetric structure, the components of the M
matrix should obey the following properties: M11 ¼ M�

22

and Re½M12� ¼ Re½M21� ¼ 0 [8].
FromM, the reflection and transmission coefficients can

be obtained: tL¼detðMÞ=M22, tR¼1=M22, rR¼M12=M22,
and rL ¼ −M21=M22. It is important to mention that, for a
reciprocal system, t ¼ tR ¼ tL and detðMÞ ¼ 1 [33]. Thus,
the transfer M and scattering S matrices can be written as

M ¼
�

1=t� rR=t

−rL=t 1=t

�
; S ¼

�
t rL
rR t

�
: ð2Þ

For a bilayer, the components of the transfer matrix
read [34]

M11 ¼ ðĀþ iB̄Þe−2ik0d; M12 ¼ C̄þ iD̄;

M21 ¼ C̄ − iD̄; M22 ¼ ðĀ − iB̄Þe2ik0d; ð3Þ
with Ā, B̄, C̄, and D̄ defined as

Ā ¼ n2þ cosψþ − n2− cosψ−

n2þ − n2−
;

B̄ ¼ n̄þnþ sinψþ þ n̄−n− sinψ−

n2þ − n2−
;

C̄ ¼ n−nþðcosψþ − cosψ−Þ
n2þ − n2−

;

D̄ ¼ n̄þn− sinψ− þ n̄−nþ sinψþ
n2þ − n2−

; ð4Þ

where n� ¼ nL � nG, ψ� ¼ n�k0d, n̄� ¼ nLnG � 1,
and nL ¼ n0 þ in00 ¼ n�G is the refractive index of the loss
layer.
For a PT -symmetric system, it is easy to show that [35]

jT − 1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
RRRL

p
: ð5Þ

This relation is known as the generalized unitarity relation,
where T ¼ jtj2 is the transmittance, whereas RR ¼ jrRj2
and RL ¼ jrLj2 are the reflectances for impinging light
from the right and the left, respectively.
The time-averaged optical force [36] exerted on a system

contained in a closed surface S is given by

F ¼
I
S
hT
¼
i · ndS; ð6Þ

where S is a surface enclosing the slab, n is normal to S,

and T
¼
is the time-averaged Maxwell stress tensor that is

defined as [36]

hT¼i ¼ 1

2
Re
h
ϵ0EE� þμ0HH� −

1

2
ðϵ0E ·E� þμ0H ·H�ÞI

i
;

ð7Þ
withE andH being the complex total electric and magnetic
fields, and I the identity matrix. Note that E ·E� and EE�

FIG. 1. Principle of a PT bilayer made of gain (green) and loss
(blue) media. (a) The bilayer can be illuminated from the left or
the right side. The ai and bj define the incoming and outgoing
direction, respectively, for the S-matrix formalism. We illustrate a
few possible responses of the system under kL (from left) and kR
(from right) illumination at different wavelengths λi (detailed in
Fig. 4). (b) The bilayer illuminated from the left, kL at λA, induces
a negative force on the overall system and pulls the bilayer. (For
kR, the overall force in null.) (c) An illumination from the left is
selected at another wavelength, λB, such that the overall force
pulls the bilayer for kL and pushes it for kR. (d) An illumination
from the left is selected at yet-another wavelength, λC, such that
the overall force is zero for kL, whereas the light pushes the
bilayer for kR.
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are dot and tensor products, respectively. It can be shown
(see the Appendix) that the optical force per unit surface
area exerted on the slab by a linearly polarized plane
wave at normal incidence propagating in the ek direction is
given by

F ¼ I0
c
ð1þ R − TÞek: ð8Þ

It is important to note that this relation can also be
understood from the change of linear momentum, where
ðI0=cÞek is the incident momentum, −ðI0=cÞRek is the
reflected momentum and ðI0=cÞTek is the transmitted
momentum [16,37]. We begin by investigating the optical
force generated by a linearly polarized plane wave on a slab
made of either passive or gain media. For simplicity, we
restrict ourselves to normal-incidence radiation.
In general, for a slab made of passive materials, i.e.,

n00≥0, the reflection, transmission, and absorption are non-
negative. Therefore, by using Eq. (8) and A¼1−R−T,
F ¼ I0=cð2Rþ AÞ, we can conclude that the optical force
should be non-negative, F ≥ 0 [see Figs. 2(a), 2(b), and
2(c)]. The maximum optical force Fmax ¼ 2I0=c can be
obtained for a perfect mirror, i.e., R ¼ 1, which is twice
the force exerted by a perfectly absorbing layer, i.e., A ¼ 1.
In Fig. 2(c), it can be seen that the force is converging to a
positive value, i.e., I0=cð1þ RÞ (T ≈ 0) for a very thick
layer, i.e., n0d=λ ≫ 1. Interestingly, zero optical force can
be achieved for a lossless slab (n00 ¼ 0) when the slab is
transparent, i.e., R ¼ 0, T ¼ 1. This zero optical force

occurs when d ¼ mλ=2n0 [see Fig. 2(b)], where m is a
positive integer.
For a slab made of gain material, the exerted force can

be negative, i.e., pulling [see Figs. 2(a) and 2(d)]. The
important aspect of this simple configuration is that the
layer supports Fabry-Perot resonances and gives rise to
multiple interesting points where the force changes sign as
a function of the thickness or wavelength, i.e., d=λ. These
resonances coincide with the resonances that are observed
in the lossless case (these Fabry-Perot resonances occur at
d ¼ mλ=2n0). These results are similar to those reported in
other studies [19,23].
We now assemble a bilayer made of a balanced gain and

loss to study the PT -symmetric case. We plot the force
exerted on such a slab from different directions, as illus-
trated in Figs. 1(a) (from the left) and 1(b) (from the right).
The solid line represents illumination coming in from the
left (see Fig. 1), whereas the dashed line represents the case
for right illumination. First, it can be clearly seen that the
exerted forces are not symmetric for the two opposing
irradiation directions (see Fig. 3). The asymmetric forces
can be understood from the fact that the system is not
invariant under space inversion [38,39]. We use the well-
known PT phase-transition parameters, i.e., n0d=λ and
n00=n0 [35,40–42], to conduct a detailed study concerning
their influence on the optical forces, transmission, and
eigenvalues of the scattering matrix:

s1;2 ¼ t� ffiffiffiffiffiffiffiffiffiffi
rLrR

p
; ð9Þ

Using rLrR ¼ t2ð1 − 1=TÞ [35], the eigenvalues can be also
written as

s1;2 ¼ tð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=T

p
Þ: ð10Þ

Furthermore, we discuss how these quantities are interre-
lated with growing loss and gain and also the wavelength.

FIG. 2. Optical force exerted on a single slab made of a gain
or a lossy material. (a) Normalized optical force exerted on
a slab as a function of the refractive-index ratio, i.e., ðn00=n0Þ, and
the thickness of the dielectric layer, d. We depict as a one-
dimenstional plot a few selected regions of (a) in the following.
(b)–(d) Normalized optical force exerted on a single slab as a
function of thickness: (b) lossless, i.e., n00 ¼ 0, (c) lossy, i.e.,
n00 ¼ 0.3, (d) gain, i.e., n00 ¼ −0.3.

FIG. 3. Optical force exerted on a one-dimensional PT -
symmetric structure. (a),(b) Normalized optical force exerted
on a bilayer made of balanced gain and loss as a function of the
refractive-index ratio, i.e., ðn00=n0Þ, and thickness of the dielectric
layers for forward (kL) and backward (kR) plane-wave illumi-
nations, respectively. The yellow and blue (in the color bar)
correspond to the pushing and pulling forces, respectively.
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As computed in Fig. 4, we are able to trace the behavior of
the computed optical forces acting on the PT -symmetric
bilayer according to their immediate phases.

A. Symmetric phase

The symmetric phase is characterized by unimodular
eigenvalues js1;2j ¼ 1, where the transmission remains
T < 1, as seen in Figs. 4(a)–4(f). By using Eq. (5), the
transmission can be obtained from T¼1−

ffiffiffiffiffiffiffiffiffiffiffiffi
RRRL

p
, and the

forces are expressed as FR;L ¼ ðI0=cÞðRR;L þ ffiffiffiffiffiffiffiffiffiffiffiffi
RRRL

p Þ. In
the case of RR ¼ RL, the forces will be identical for both
directions, i.e., FR ¼ FL. Most importantly, in this phase,
the forces are pushing (being positive) for both illumination
directions.

B. Exceptional point

The exceptional point occurs at unity transmission T ¼ 1
and marks the onset of broken symmetry. Using Eq. (5), it
can be easily seen that one of the reflectances vanishes.
According to the optical mode profile at the exceptional
point that leads to unidirectional reflection, light irradiating
the lossy layer is perfectly absorbed, which gives rise to a

one-way optical pushing force, i.e., FR ¼ ðI0=cÞRR and
FL ¼ 0; see Figs. 4(c) and 4(d). Here, we obtain an optical-
force rectifier. An important question one might ask is,
what is happening to the force when we approach the
exceptional point? Can we get some practical instabilities
and undesired effects? In fact, no. It is clear from Figs. 4(c)
and 4(d) that the force modulus is continually changing
from positive to negative value passing by zero. Thus, this
change in the sign of the force is not a problem in practice,
as this full region instead exhibits no force. Alternatively,
by tuning the pump source of the gain media, we can expect
oscillation and even use them in a smart way.

C. Broken-symmetry phase

The broken-symmetry phase is accompanied with larger-
than-unity transmission T > 1. In this phase, we obtain
coexisting amplifying js1j > 1 and attenuating js2j < 1
eigenvalues; see Figs. 4(e) and 4(f). Using Eqs. (5) and
(8), the force is FR;L ¼ ðI0=cÞðRR;L −

ffiffiffiffiffiffiffiffiffiffiffiffi
RRRL

p Þ. It is
obvious that if RR ¼ RL, the force is zero in both
directions, i.e., FR ¼ FL ¼ 0. Interestingly, the coexistence
of optical amplification and attenuation within the broken
phase produces opposite pushing and pulling forces when
illuminated from their respective directions, as we depict in
Figs. 4(c) and 4(d).
Next we study the formation of the exceptional point by

discussing whether its onset stems solely from optical
properties or if it can be controlled by increasing the
layering numbers. We discuss two cases: (a) a single bilayer
(N ¼ 1) and (b) a finite array with N ¼ 10. Using the
Chebyshev identity, the transfer matrix for N bilayers can
be written [43–45]

MN¼
 

1
t�
sinðNϕÞ
sinϕ − sin½ðN−1Þϕ�

sinϕ
rR
t
sinðNϕÞ
sinϕ

−rL
t
sinðNϕÞ
sinϕ

1
t
sinðNϕÞ
sinϕ − sin½ðN−1Þϕ�

sinϕ

!
; ð11Þ

where cosϕ ¼ Reð1=tÞ. The total transmission for N
bilayers reads [44,45]

1

TN
¼ 1þ

�
1

T
− 1

�
sin2ðNϕÞ
sin2ϕ

: ð12Þ

For N bilayers, the eigenvalues of the scattering matrix
are sN1;2 ¼ tNð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=TN

p Þ, where tN and TN ¼ jtN j2
are the transmission coefficient and the transmittance,
respectively. It can be shown that the eigenvalues of N
bilayers can be written as

sN1;2 ¼ tN

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

1

T

�
sin2ðNϕÞ
sin2ϕ

s #
: ð13Þ

Therefore, the exceptional point of the N bilayers occurs
when T ¼ 1, which is identical to the exceptional point of

FIG. 4. Optical force exerted on a one-dimensional PT -
symmetric structure. (a),(b) Transmission spectra as a function
of the normalized dielectric spacer, i.e., n0d=λ, and the refractive-
index ratio, i.e., ðn00=n0Þ, respectively. (c),(d) Normalized optical
force exerted on a bilayer as a function of the refractive-index
ratio, i.e., ðn00=n0Þ, and the thickness of the dielectric spacer for
both illumination directions, respectively. (e),(f) The modulus of
the eigenvalues of the S matrix. The yellow and gray shadows
show the symmetry-broken and symmetric phases, respectively.
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a single bilayer. We show the computation of the force as
well as the eigenvalues of the scattering matrix in Fig. 5.
We can clearly see that, for one or ten bilayers, the
exceptional point is the same. We can then conclude that
the exceptional point (EP) is a direct property of the bilayer
alone, like the Hamiltonian for a closed system. It is then
sufficient to look at a single bilayer’s EP in order to
determine the symmetric and broken-symmetric phase
region of any structure made of such bilayers.
Owing to the ability to push and pull a non-Hermitian

object from the same side enables one to optically engineer
mechanical deflections in bilayers almost entirely at will.
By designing a bilayer with a specific thickness and the
PT phase-transition parameters, we propose a mechanical
wave generator when different sections, as illustrated in
Fig. 6(a), are illuminated at specific wavelengths to ensure
the desired optomechanical response. Using a number of
wavelength-specific lasers along the bilayer, under static
illumination, one is able to preconstrain a large bilayer slab.
In Figs. 6(b) and 6(c), we illustrate three specific examples
of how one can generate preconstrained deformations on a
thin plate. Once released, the preconstrained part generates
a wave propagating parallel to the slab. If the slab is thin
(compare to the wavelength), one can generate a flexural-
like wave. This would be a contactless and quick way of
setting the wave shape on a thin layer (see Fig. 6).
Conceptually, to get the right deformation, one can assume
that the optical force is a constant force in respect to the
mechanical dynamics. We consider that, at a given time,
one can have all of the required pulling and pushing lasers

on. Optical dynamics being much faster than the mechani-
cal one, we can almost consider the extent of the laser with
the illuminated areas to be subject to a constant force. This
force is controllable by the user and can be tuned at wish.
Finding the equilibrium position of a plate clamped on the
outer boundaries and under a stress field is then trivial from
a numerical point of view. Obviously, we obtain the
schematics of Fig. 6 under these considerations.

III. CONCLUSIONS

In conclusion, we have theoretically demonstrated that a
highly collimated laser (a single plane wave) can exert an
asymmetric pulling or pushing force on a PT -symmetric

FIG. 5. Optical force exerted on a one-dimensional
PT -symmetric structure made of N bilayers. (a),(b) Normalized
optical force exerted on a bilayer as a function of the refractive-
index ratio, i.e., ðn00=n0Þ, and the thickness of the dielectric space
for forward and backward plane-wave illuminations, respectively.
(c),(d) The modulus of the eigenvalues of the S matrix. The
yellow and gray shadows show the symmetry-broken and
symmetric phases, respectively. The thickness of each layer
is d ¼ 0.75λ=n0.

FIG. 6. Principle of a mechanical wave generator using
PT -symmetric media. As illustrated in Figs. 1 and 4, for different
wavelengths, one can get a pulling or pushing behavior. Combin-
ing two lasers with different wavelengths (λi) and intensities (Ii),
one can get at the same time a local deformation of a thin layer that
is due to the local pulling or pushing.We simply have to select two
working regions such that the overall force can be positive or
negative. The amplitude of the force Fi is dependent on the laser
amplitude, i.e., it can be selected such that one can get the desired
ratio and sign of F2=F1. (b) Different induced prestrained cases of
F2=F1. (c) The deformed geometry shown with the von Mises
stress induced inside. All values are normalized. This shapes
the prestressed state of the layer. Once the laser is turned off, the
prestress can generate a wave packet. Red arrows indicate the
direction of the local force exerted by the laser.
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optical layer. The physics of the optical pulling or pushing
force is fully explained in the context of PT symmetry and
the exceptional point. This mechanical behavior can be
used to generate elastic waves in thin layers.
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APPENDIX: OPTICAL FORCES EXERTED
ON A DIELECTRIC SLAB

In this appendix, we derive an expression for optical
force exerted by a plane wave on a dielectric slab. Let us
consider that the slab is illuminated by a linearly polarized
plane wave propagating along the z axis at normal
incidence, i.e., Ei ¼ E0eikzex (see Fig. 7). The reflected
and transmitted electric fields can be written as

Er ¼ Ereikzex; Et ¼ Eteikzex;

and the magnetic fields can be obtained as H ¼
ð1=kZ0Þðk ×EÞ, where Z0 is the impedance of the free

space. The Maxwell stress tensor at z > d=2 can be
calculated by using the total electric and magnetic fields,
i.e., E ¼ Eteikzex, H ¼ Hteikzey:

hT¼iz>d=2 ¼
1

2
ϵ0jEtj2exex þ

1

2
μ0jHtj2eyey

−
1

4
½ϵ0jEtj2 þ μ0jHtj2�ezez: ðA1Þ

Similarly, by using the total electric and magnetic
fields at z < −d=2, i.e., E ¼ ðEieikz þ Ere−ikzÞex, H ¼
ðHieikz −Hte−ikzÞey, the corresponding Maxwell stress
tensor reads

hT¼iz<−d=2 ¼
1

2
ϵ0jEieikz þ Ere−ikzj2exex

þ 1

2
μ0jHieikz −Hre−ikzj2eyey

−
1

4
½ϵ0jEieikz þ Ere−ikzj2

þ μ0jHieikz −Hre−ikzj2�ezez: ðA2Þ

Finally, the optical force derived by integrating
the Maxwell stress tensor on a close surface S can be
written as

F ¼
I
S
hT¼i · nda;

¼ Asð−hT
¼
iz<−d=2 · ez þ hT

¼
iz>d=2 · ezÞ;

¼ 1

2
ϵ0AsðjE0j2 þ jErj2 − jEtj2Þez;

¼ I0
c
As½1þ jrj2 − jtj2�ez; ðA3Þ

where r and t are the reflection and transmission coef-
ficients, respectively. I0 ¼ 1

2
ϵ0cjE0j2 is the intensity of the

incident plane wave, while As is the area. A similar
expression for the optical force can be obtained by using
the Lorentz force acting on both currents J due to the
polarization of the dielectric slab and the bound charges ρe
at the boundaries, i.e.,

F ¼ 1

2
Re

�Z
V
hρeE� þ J × B�idV

�
: ðA4Þ

The derivation of the optical force exerted on the slab
using the Lorentz force can be found in Refs. [16,37].
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