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Abstract

Computational simulation is becoming increasingly important in numerous research fields.
Depending on the modeled system, several methods such as differential equations or Monte-
Carlo simulations may be used to represent the system behavior. The amount of computation
and memory needed to run a simulation depends on its size and precision and large simulations
usually lead to long runs thus requiring to adapt the model to a parallel system. Complex
systems are often simulated using Multi-agent systems (MAS). While linear system based
models benefit from a large set of tools to take advantage of parallel resources, multi-agent
systems suffer from a lack of platforms that ease the use of such resources. In this paper,
we propose the use of Nested Graphs for a new modeling approach that allows the design
of large, complex and multi-scale multi-agent models which can efficiently be distributed
on parallel resources. Nested Graphs are formally defined and are illustrated on the well-
known predator-prey model. We also introduce PDMAS (Parallel and Distributed Multi-
Agent System) a platform that implements the Nested Graph modeling approach to ease the
distribution of multi-agent models on High Performance Computing clusters. Performance
results are presented to validate the efficiency of the resulting models.
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1 Introduction

Computational simulation is becoming increasingly important in numerous research fields like
psychology [7] or biology [30] but even in fields that do not traditionally use computational models
such as archaeology and anthropology. Depending on the characteristics of the modeled system,
several methods such as differential equations or Monte-Carlo simulations may be used to represent
the system behavior. Multi-agent systems (MAS) are often used to model and simulate complex
systems. In such systems the complexity of the dependencies between the phenomena that drive
the entities behavior makes it difficult to define a global law that models the entire system. Based
on a simple algorithmic description of individual behaviors, multi-agent systems provide a support
to observe global developments emerging from a set of interacting agents. Recently, the interest
for parallel multi-agent platforms has increased as parallel platforms offer more resources to run
larger agent simulations and thus allow to obtain results previously intractable using a smaller
number of agents (e.g. simulation of individual motions in a city/urban mobility).

Whatever the modeling approach used, increasing the size and the precision of a model increases
the amount of computation and the size of memory used. More computing resources are thus
needed and centralized systems are often no longer sufficient to run these simulations, requiring the
use of parallel systems to avoid too long runs and to provide enough memory. While linear systems
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based models benefit from a large set of parallel libraries to take advantage of many computing
nodes and run large simulations, multi-agent systems suffer from a lack of platforms that ease
the use of parallel systems. From the viewpoint of increasing the size or accuracy of simulations,
multi-agent systems are constrained to the same rules as other modeling techniques. Only some
simple models may benefit from the approach used to parallelize linear systems and there is few
generic approaches available to efficiently run more general agent models on parallel machines such
as clusters. Due to less regular interactions and more dynamic behaviors of agents compared to
linear systems, parallelizing an agent-based model is usually difficult. The parallelization difficulty,
however, depends on the modeling technique and the associated data structures. So we can raise
the question: do traditional ways to model MAS fit the parallelization step? Our aim is then
to propose a simple way to model Parallel and Distributed Multi-Agent Systems (PDMAS) in a
manner that allows them to be efficiently distributed and executed on parallel systems.

The contribution of this paper is to propose the use of Nested Graphs (NG) [28, 34] as a
data structure to represent agent models and parallelize them more easily. We show that this
data structure provides an elegant and efficient solution to distribute and parallelize simulations
at different levels. To demonstrate and validate the advantages of using Nested Graph data
structures we have implemented several models and assessed their performance on HPC resources.
This paper extends and develops the results of a previous paper [34] mainly with more explanations
on the modeling approach and experiment results, including a new model.

This article is organized as follows. In section 2, we give an overview and related work on the
Multi-Agents Systems (MAS) and the Parallel and Distributed Multi-Agent platforms (PDMAS)
context before identifying the limits regarding distribution in existing platforms. In section 3, we
present our proposal of using Nested Graphs (NG) to model MAS, we illustrate its use on the
well-known prey-predator model in section 4 and we explain the advantages of using NG structures
to distribute a model in section 5. We present some execution results of our method in section 6.
Finally, we present our conclusion and future work.

2 Context and related work

The concept of agent has been studied extensively for several years and in different domains. One
of the first definitions of the agent concept is due to Ferber [17] :

“An agent is a real or virtual autonomous entity, operating in a environment, able
to perceive and act on it, which can communicate with other agents, which exhibits
an independent behavior, which can be seen as the consequence of his knowledge, its
interactions with other agents and goals it needs to achieve”.

A multi-agent system, or MAS, is a platform which provides support to run simulations based
on several autonomous agents. These platforms implement functions that provide services such
as agent lifecycle management, communication between agents, agent perception or environment
management. Among the most known platforms we can cite NetLogo [36], MadKit [19], Ma-
son [26] and Gama [35]. There exist several papers that propose a survey on these multi-agent
platforms [37, 5, 2, 21]. These platforms are designed to run on only one computer and they do not
natively implement a support to run models in parallel. For large models, the memory space and
computation power of only one computer are sometimes no longer sufficient to run the model. For
example, this is the case if we want to simulate the individual behavior of urban mobility [10] in a
large city. Increasing the size or the precision of models could, however, bring emergent behaviors
that we never expected or would never seen otherwise. Using parallel systems is a way to overcome
these limits in terms of computation power and memory space.

Possible approaches to distribute or parallelize a simulation include the development of a
dedicated model as in [38] or the implementation of a wrapper over an existing platform [3].
These approaches are however complex as they require parallel programming skills while most
of multi-agent models are developed by non-specialist programmers. Parallel and Distributed
Multi-Agent Platforms (PDMAS) exist that facilitate the implementation of parallel models. We
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can cite RepastHPC [12], D-Mason [14], Pandora [1] and Flame [11]. All these platforms provide
a native support for parallel execution of Multi-Agent models but also important mechanisms
of distribution, migration and load balancing for the simulation run. In [33] we survey existing
PDMAS and compare them with a qualitative analysis and a performance evaluation.

Different types of platforms can be used to run parallel systems. Among them we can cite
shared memory systems, Graphical Processing Units (GPU) or Many-Core processors (e.g Xeon
Phi) and HPC clusters. While shared memory systems are easier to program and benefit from
efficient tools (e.g. OpenMP) they usually provide a limited number of cores and memory space
which limits simulation scalability. GPU cards and Many-Core processors are known for their
efficiency on regular problems and have already been used for multi-agent simulations [25]. They
however require specific development skills and their SIMD programming model only fits simple
agent behaviors with as little as possible conditions. For these reasons we concentrate our work
on HPC clusters.

Several key points must, however, be enforced for an efficient parallel execution of a multi-agent
simulation on a HPC cluster: load balancing, agent migration, communication between agents and
coherency in agent vision to cite some of them. We highlight in the following the issues raised by
these key points

The load, between the processors which participate to the execution, must to be as balanced
as possible in order to minimize the time spent by a processor waiting for the others. Multi-
agent simulations are indeed synchronous simulations that are driven by time steps. To maintain
the overall consistency of the simulation, all the processors must run in the same time step and
synchronization barriers are necessary at the end of each time step. At each synchronization
barrier, the processors wait until the overall synchronization is performed. In parallel multi-agent
simulations, the set of agents is distributed among the processors, each running at its own speed.
Running one-time step may thus take more or less time depending on the number of agents
assigned to a processor and of the speed of this processor. Hence the simulation step is bounded
by the slowest processor involved in the simulation and the load of the processors must then be
as uniform as possible all along the simulation to be more efficient and improve running time
performance. Note that balancing time steps is not specific to multi agent simulations but is also
needed for instance in synchronous iterative resolutions in linear algebra.

As previously stated, agents operate in an environment. Parallelizing a multi-agent simulation
thus not only implies to distribute the agents but also the environment. In numerous multi-agent
simulations, agents are situated and mobile: they have a position in the environment and they
can move on the environment. When the environment is distributed among computing nodes,
agents must be able to migrate between environment parts. Agent migration may impact both
load balancing and communication between agents. Migration may interfere with load balancing
as agent migrations may generate imbalances. When an agent migrates, the system must follow
the agent places in order to deliver messages [32].

Agents are able to perceive and to act on their environment. The perception field of an
agent is usually limited to its neighborhood. In parallel simulations, due to the environment
distribution, different parts of the simulation are run on several processors so that the perception
field of an agent could be cut between different nodes, i.e. parts of the perception field are
mapped on different nodes. This can be managed, by hand, in the model implementation but
its leads to complex algorithmic developments. For this reason, PDMAS usually tackle this issue
by providing parallelized structures. These structures provide overlapping areas, parts of the
enviornment situated on the distribution borders are replicated on the neighbor nodes, to limit
communications when an agent accesses the remote parts of its perception field.

Currently, the most used structure for environments in PDMAS is the grid. Grids are a
good base to represent a two-dimensional environment on which agents can move and evolve. To
distribute the model, most platforms use a Cartesian decomposition of the grid as presented on
Figure 1.

The Cartesian decomposition allows the distribution on one axis x or on two axes x and y as
shown in Figures 2, 3. The problem is, even with a fine grain division of the grid as it is done in
the D-MASON platform [6], the decomposition structure may not be flexible enough to correctly
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Figure 1: An example of grid decomposition for the RepastHPC platform on four processors with
overlapping zone of size 1 [13]

balance the load. This is, for instance, the case when most agents are grouped in one part of the
environment as a regular decomposition of the environment generates unbalanced areas in terms
of number of agents. In that case, the division grain should be different depending on the agent
density but such variable divisions are however very complex to implement. Moreover, square or
rectangle distributions may not be appropriate for models as social models based on interaction
networks [20] that do not rely on a regular structure or environment.

Figure 2: An example of grid decomposition
on x axis for the platform D-Mason on three
processors [13]

Figure 3: An example of grid decomposition on
x and y axes for the platform D-Mason on nine
processors [13]

To address this issue, we propose to use graphs as a base to model multi-agent systems. Graphs
are extensively used in parallel and distributed computing as a structure to model problems
such as task graphs in scheduling problem [24] or partitioning problem [22]. There are several
available tools that support graph partitioning on parallel or distributed computers. We can cite
Parmetis [23], PT-Scotch [9] or Zoltan [15]. These tools have great performance results even for
large graphs [29]. Taking advantage of these tools is thus a way to facilitate the design of models
on parallel computers and improve the execution of PDMAS. This, however, requires changing
the way agent models are represented.

3 Proposal

A multi-agent simulation can be seen as a set of entities which interact together and with an
environment, which could, in turn, be a set of agents as in [35]. Multi-agent models can thus be
modeled using graphs, with vertices representing agents, and edges representing interactions or
links between agents. The modeling job may, however, be a hard task because the graph structure
is very likely to be complex and modeling a complex graph is not always easy or natural for MAS
users. On the other hand, if the agent simulation is represented by a graph, it is more easy to
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propose algorithms or tools to distribute or balance the simulation load. For these reasons, we
propose the use of Nested Graphs (NG) and Nested Graph transformation as a way to model large,
complex and multi-scale multi-agent simulations. This structure natively integrates a more easy-
to-use and flexible graph structuring that enhances the support of distribution and load balancing
on parallel platforms.

Nested Graphs are graphs where nodes can be Nested Graphs. They are recursive structures.
The interesting concept introduced by Nested Graphs is the definition of different abstraction
levels that can be used to conceptually divide a model in a hierarchical structure. In [28], the
authors introduce a model of Nested Graphs to represent and to manipulate complex objects
that they apply to databases. In the context of Multi-Agent Systems, Nested Graphs have been
already used but not in a parallel and distributed context. In [27], authors use Nested Graphs
to model simulations of complex systems. Using a hierarchical structure is indeed a way to more
easily conceptualize the complex system that is to be modeled. We show in the following that
Nested Graphs allow the description of any multi-agent system at different levels of abstraction
and natively satisfy the requirements to be efficiently distributed on a parallel platform.

3.1 Formal description

We base our proposal on the two formal principles for a multi-scale simulation explained in [27]:

• Any agent may dynamically encapsulate an environment. This is the basis of a recursive
nested structure, but this structure must be able to change in time.

• Any agent may be situated in several environments at the same time, without a prior idea
of what those environments represent (a micro/macro level of the physical world, a group,
an organization, a spatial memory, a social network, etc.).

We only change the first principle to adapt these definitions to our proposal of recursive struc-
ture: “Any agent may dynamically encapsulate an agent. This is the basis of a recursive nested
structure, but this structure must be able to change in time”.

In our proposal, we consider that all the components participating to the simulation are agents
as in [35]. It means that the environment is modeled by one or more agents, depending on the
type of environment, similar to non-environmental agents. Due to the first principle, the whole
model represents a hierarchical structure of agents which provides a multi-scale mode. We then
consider that each agent in the simulation is a typed and labeled Nested Graph, called Agent
Graph. Agent behaviors are represented as transformations of Agent Graphs, that is to say, arcs
or vertices modification in the graph. Relations between agents of the same context, i.e. relations
between Agent Graphs which are contained in the same Agent Graph, are represented by typed
and valued edges. These relations can, for instance, be a communication between agents or an
agent position relative to an environment cell.

Formally, let Γ be a set of types, Σ be a set of labels and Λ a set of values. Then the set G of
Agent Graphs G is recursively defined by :

G ∈ G⇔ G = 〈G,E,T,L,V〉 (1)

where G ⊆ G is a set of Agent Graphs (also called vertices) representing the agents of the model,
E ⊆ G×G is a set of directed edges representing relations between agents, T : G 7→ Γ is a typing
function assigning a type to each agent, L : G 7→ Σ is a labeling function assigning a label to
each agent, and V : E 7→ Λ is a valuing function assigning a value to any edge. The state of a
simulation is fully described by its Agent Graphs (equation 1).

Agent behaviors are described as Agent Graph transformations which are modeled using a pair
of Agent Graphs with no labeling function (L) and a special Agent Graph containing a special
node. The special node is the node executed to realize the transformation. An Agent Graph
transformation can be applied to an agent of the same type as its special Agent Graph. When
applied, if the special Agent Graph can be found as a sub Agent Graph of the Agent Graph of the
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simulation, then the found sub Agent Graph is transformed into the second Agent Graph. The
special Agent Graph of the Agent Graph transformation can be seen as a pattern which have to be
recognized before being transformed into the second Agent Graph. In another word, we can see an
Agent Graph transformation as a conditional structure (if [we have this configuration] then [we
need to arrived to this configuration] end) so that the expected behavior can be performed. When
a type of agent has multiple behaviors, its Agent Graph transformations are applied according to
a defined workflow as usually in multi-agent system simulations.

Based on these definitions, our proposal relies on on two main points:

• A modeling method where multi-agent systems are modeled using Agent Graphs. In this
method, all elements of the multi-agent model are agents without difference between envi-
ronment and agents. Agents and their relations are represented by Agent Graphs. Agent
behaviors are implemented based on Agent Graph transformations.

• An adapted PDMAS using Agent Graphs models is used to efficiently run the simulation on
parallel platforms (see Section 5).

With this method, complex systems and complex behaviors can be modeled in a graphical way
while providing a fully formal basis similar to Petri Nets [8]. It also encompasses multiple levels
of abstractions needed by the modelers. The proposal is illustrated in the following section.

3.2 Graphical notation

We introduce here some graphical notations. Agent Graphs nodes (Figure 4) are represented by
ellipses with labels of the form Label:Type (L,T) giving the label and type of the associated vertice.
Edges between nodes (E) are represented by arrows with labels of the form Type:Value (T, V)
giving the type and value of the associated edge.

Figure 4: Generic representation of an Agent Graphs

An Agent Graph transformation is described by two Agent Graphs linked by a large arrow as
shown in Figure 5 . We denote by a bold ellipse the special node of an Agent Graph transformation.
In other words, the special node represents the node concerned by the transformation and which
is executed.

4 Modeling method illustration

In this section, we illustrate the modeling method with two models the Wolf-Sheep Predation
Model (WSP Model) [39] and the Virus model [40] which are classical Multi-Agent models. We
choose these models as they include several representative patterns that can be found in numerous
models, as mobile agents, distant interactions, concurrency between agents, etc.

4.1 Wolf-Sheep Predation Model

The environment of the Wolf-Sheep Predation Model is a grid composed of cells. It is the first
and highest level of abstraction of our representation. It is modeled using an Agent Graph in
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Figure 5: Generic representation of an Agent Graphs transformation

which vertices are Agent Graphs of type Cell and adjacent vertices are connected by arcs of type
Adjacent (see Figure 6). Any Agent Graph of type Cell has a vertex of type Origin which is used
to connect the agents contained in the same cell.

 

Figure 6: Graph representation of a grid

Cells contain grass, sheep and wolves. They represent a second level of abstraction. Within
Agent Graphs of type Cell, Agent Graphs of type Grass, Sheep, and Wolf represent the agents
present in a cell and are linked by edges of type On to the Origin vertices of the cell.

The third level of abstraction considers characteristics of agents within cells. Any Agent Graph
of type Sheep and Wolf also has a vertex of type Origin as well as a real valued edge (from Origin
to Origin) of type Force which represents the vital force of the considered agent. Agent Graphs
of type Grass have no characteristic and are therefore empty.

CellA:Cell

OCellA:Origin

CellA:Cell

OCellA:Origin

On:0

NewG:Grass

Figure 7: Grass growth behavior representation

At each time-step of the simulation, the following behaviors modeled as Agent Graph trans-
formations are applied:

• Grass growth (Figure 7): according to a given probability grass appears on a cell.

• Move behavior (Figure 8(a)): sheep and wolves randomly move to an adjacent cell.
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• Eat behavior (Figure 8(c)): sheep (resp. wolves) eat grass (resp. sheep) and increase their
vital force. The grass (resp. sheep) eaten must be removed from the simulation.

• Reproduce behavior (Figure 8(b)): according to a given probability, sheep (resp. wolves)
reproduce and create new sheep (resp. wolves) with a default vital force, their vital force is
then divided by two.

• Die behavior (Figure 8(d)): sheep (resp. wolves) die whenever their vital force drops to zero.
They must then be removed from the simulation.

CellB:CellCellA:Cell

OCellB:OriginOCellA:Origin

On:0

Sh1:Sheep

CellA:Cell CellB:Cell

OCellA:Origin OCellB:Origin

On:0

Sh1:Sheep

Adjacent1:1

Adjacent1:1

(a) Move behavior

CellA:Cell

OCellA:Origin

Sh1:Origin

Force:x

On:0

Sh1:Sheep

CellA:Cell

OCellA:Origin

Sh1:Origin

Force:x/2

On:0

Sh1:Sheep

Sh2:Origin

Force:8

Sh2:Sheep

On:0

(b) Reproduce behavior

CellA:Cell

OCellA:Origin

Wo1:Origin

Force:x+2

On:0

Wo1:Wolf

CellA:Cell

OCellA:Origin

Wo1:Origin

Force:x

On:0

Wo1:WolfSh1:Sheep

On:0

(c) Eat behavior

CellA:Cell

OCellA:Origin

CellA:Cell

OCellA:Origin

Wo1:Origin

Force:0

On:0

Wo1:Wolf

(d) Die behavior

Figure 8: Behavior representations for sheep and wolf agents

Figure 9 shows a workflow defining the order in which the behaviors of sheep agents are applied
at each time-step. On the figure, the yellow diamonds stand for conditions and the labels on the
arrows are condition results, e.g. alea > reproductionTx means that a randomly generated value
is greater than the reproduction rate Tx. This workflow is almost the same for wolf agents except
for the eat behavior as wolf agents do not eat grass but sheep.

4.2 Virus Model

The virus model intends to reproduce the spread of a disease when part of a population is vacci-
nated. Like in the Wolf-Sheep Predation model, the environment of the Virus model is represented
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Move

Eat Grass

Reproduce

Have Grass

No

Die

Energie = 0

No

alea>reproduction Tx

No

Figure 9: Diagram state transition of a sheep agent behavior

by a grid composed of cells. In the model, the cells represent the first and highest level of abstrac-
tion of the simulation. The cells contain persons which represent a second level of abstraction.
Within Agent Graphs of type Cell, Agent Graphs of type Person represent the agents present
in a cell and are linked by edges of type On to the Origin vertices of the cell (for example see
Figure 10(a)).

Like in the Wolf-Sheep Predation model, the third level of abstraction considers characteristics
of agents within cells. Any Agent Graph of type Person also has a vertex of type Origin as well
as real valued edges (from Origin to Origin) of type Force (see Figure 10(b) for example) and
Infected (see Figure 10(c) for example) which respectively represent the vital force and the state
of the considered agent regarding infection.

At each time-step of the simulation, the following behaviors modeled as Agent Graph trans-
formations are applied:

• Move behavior (Figure 10(a)): persons randomly move to an adjacent cell.

• Infectious behavior (Figure 10(c)): according to a given probability, a contaminated person
can infect other persons in his neighborhood.

• Reproduce behavior (Figure 10(b)): according to a given probability, persons reproduce and
create new persons.

• Die behavior (Figure 10(d)): persons die whenever their vital force drops to zero. They must
then be removed from the simulation.

As previously described for the WSP model, Figure 11 shows a workflow which defines the
order in which the behaviors of person agents are applied at each time-step.

5 Simulation distribution using Nested Graphs

We have presented the use of Nested Graphs to model agents and agent behaviors, we now focus
on the other advantage of this method: the distribution of a model on parallel or distributed
platforms. In this section we first detail the formal basis of the distribution, then we illustrate the
distribution with the WSP model and we compare the method to classical grid modeling.

5.1 Formal description

The distribution of the simulation is based on a weight assigned to each agent. Formally, this
corresponds to the definition of a weight function W : τ → N assigning to each agent a weight.
This weight function is actually defined by the modeler which assigns a weight to each type of
agent. To perform the distribution we compute a density for each vertex with respect to the
weights associated with the agents it contains. The density of a Agent Graph a = 〈G,A,T,L,V〉
is defined by the following density function W∗ : G 7→ N such that:

9



CellB:CellCellA:Cell

OCellB:OriginOCellA:Origin

On:0

Pers1:Person

CellA:Cell CellB:Cell

OCellA:Origin OCellB:Origin

On:0

Pers1:Person

Adjacent1:1

Adjacent1:1

(a) Move behavior

CellA:Cell

OCellA:Origin

Pers1:Origin

Force:x

On:0

Pers1:Person

CellA:Cell

OCellA:Origin

Pers1:Origin

Force:x

On:0

Pers1:Person

Pers2:Origin

Force:rand(x)

Pers2:Person

On:0

(b) Reproduce behavior

CellA:Cell

OCellA:Origin

Pers1:Origin

Infected

On:0

Pers1:Person

Pers2:Origin

Infected

Pers2:Person

On:0

CellA:Cell

OCellA:Origin

Pers1:Origin

Infected

On:0

Pers1:Person

Pers2:Origin

Pers2:Person

On:0

(c) Infectious behavior

CellA:Cell

OCellA:Origin

CellA:Cell

OCellA:Origin

Pers1:Origin

Force:0

On:0

Pers1:Person

(d) Die behavior

Figure 10: Diagram state transition of a person agent behavior in the virus model

Move Is Infected

Infectious

Reproduce

Yes
No

Die

Energie = 0

No

alea>reproduction Tx

No

Figure 11: Behavior representation of a person agent behavior in the virus model

W∗(a) = Σn∈GW∗(n) +W(a) (2)

This is illustrated in the WSP model where there are three levels of abstraction as shown
in Figure 12. The higher level of abstraction represents the parts of the simulation which are
executed on each processor. This level of abstraction is necessary to support the distribution of
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the model, for this reason, it is considered as the level of abstraction numbered 0. The second
level of abstraction is the environment (Cells) on which the simulation is performed. Cells are a
way to enfold other agents contained in the simulation but do not implement any behavior hence
their weight for the computation distribution is equal to 0. The thrid level is composed of the
other agents in the simulation, i.e. Wolfs and Sheep. As they are composed of the same number
of behaviors to perform their weight is equal to 1. As the weight of a cell is equal to 0, the density
of each cell is equal to the sum of the vertex weights which compose it, the number of wolves
and sheep. At the higher level of abstraction the weight values of the cells are used to balance
the load between processors as, thanks to their Agent Graph densities, we quantitatively know
the amounts of resources needed to perform the computation of a simulation step with respect to
Agent Graphs.

Simulation

Cells

Sheep 
Wolf  

Grass

Absraction Level 0

Absraction Level 1

Absraction Level 2

Figure 12: Abstraction levels for the WSP model

Let, Ω = 〈G,A,T,L,V〉 be the simulation. We define the density graph of Ω as a weighted
graph DΩ = 〈V,E,WV ,WE〉 where: V = G is a set of vertices, E = A is a set of directed
edges, WV : V 7→ N such that ∀ a ∈ G,WV (a) = W∗(a) is a function assigning a weight to each
node according to the density function W∗, and WE : V 7→ N such that ∀ a ∈ A,WE(a) = 1
is a function assigning a weight to each directed edges. It follows that the distribution of the
simulation Ω among k processors corresponds to the k-partitioning of DΩ where the vertices of
the ith partitions are mapped to the ith processors.

Indeed, as the k-partitioning of a weighted graph is its partitioning into k partitions such
that vertice’s weights are balanced across partitions, the computational load of the simulation
is efficiently distributed among the k processors. Moreover, as the k-partitioning of a weighted
graph also minimizes the weight sum of cut edges, the communication cost associated with the
distribution among k processors is also minimized.

Wolf Sheep Grass

Inter-processor edges Local edges

P0 P1

1

1

1

1 1

1

1

1

Figure 13: Distribution of the WSP model using Nested Graphs structure on two processors

An arbitrary example of the WSP model distribution where the number of processors k is
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equal to 2 is presented in Figure 13.

5.2 Distribution illustration

Wolf Sheep Grass

(a) Grid based structure

Wolf Sheep Grass

(b) Nested Graph based structure

Figure 14: Initial configurations of the WSP model

After a formal description of the partitioning problem, we illustrate our method with the WSP
model. The classical initial configuration of WSP model environment is based on a grid structure.
For instance, an initial configuration, based on 3× 3 grid, is shown on Figure 14(a). It represents
the environment on which agents (sheep, wolves) can evolve. Using the Nested Graph method, the
corresponding Nested Graph mapping of the initial configuration is given on Figure 14(b). This
initial configuration is composed of the three nested levels of graphs corresponding to the levels
presented on Figure 12. The first level, the environment, is represented by the main ellipse. It is
a container for the two lower levels. The second level represents environment agents in the shape
of a grid using vertices and the third level represents wolf and sheep agents.

Using the initial configuration our objective is to run the simulation in parallel. To efficiently
use parallel resources we need to divide this initial structure and distribute it on several processors.
If we distribute this initial configuration on 2 processors using a Cartesian grid, as it is implemented
in most PDMAS platform, we can obtain the two decompositions shown on Figure 15.

Wolf Sheep Grass

P0

 

P1

Inter-processor communication

Wolf Sheep Grass

P0

 

P1

Inter-processor communication

Figure 15: Examples of grid decompositions on the x axis for the WSP model on two processors

As we can see on these figures (Figure 15), the grid based distribution is constrained by the grid
structure and the decomposition using the x axis cannot correctly balance the density of agents
on each processor. Note that the problem is symmetric with the y axis. As the workload in Multi-
Agent Systems is mainly generated by running the agent behaviors, and not by the environment
which is usually implemented as data shared between agents, this is of particular importance to
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correctly balance the global load. As noted previously this has a direct impact on the performance
due to the synchronous execution of time steps.

Wolf Sheep Grass

P0

 

P1

Inter-processor communication

P2 P3

Wolf Sheep Grass

P0

 

P1

Inter-processor communication

P2 P3

Figure 16: Examples of grid decomposition on x and y axes for the WSP model on four processors

The imbalance is more pronounced if we distribute the initial configuration on 4 processors.
Figure 16 represents an example of grid decomposition for the WSP model on 4 processors. Con-
sidering the density of agents in these figures, we can note that processors do not have the same
workload.

Of course, the presented configurations are too simple to need a parallelization and they are
just used to illustrate how a grid-based environment could be distributed using one a axis or
two axes decomposition. Using these basic configurations we can, however, more easily imagine
the difficulties implied by the distribution of a grid where agents are not uniformly distributed.
Obviously, the size of the cell sets mapped to a processor dos not need to be identical on every
processor and cut lines may be put where it is necessary to take the agent distribution into account.
For instance, on Figures 15 and 16, the decompositions are not uniform in terms of number of cells
mapped to each processor. On the other hand, the decompositions are constrained by both the
grid cells that cannot be distributed and by the regular structure of the environment as moving
an axis to modify the distribution implies to move at least a whole column or row of cells. As a
result, the granularity of the decomposition does not allow to achieve a fine balance. It is moreover
difficult to dynamically adapt this decomposition when the load varies as the decision of changing
the cells mapping may involve several processors.

With the Nested Graph structure, it is easy to compute the distribution based on the density
of the agents contained in each vertex of higher level. As there is no rigid structure as a grid
behind the environment the distribution is more flexible: every cell can be mapped on whatever
processor and the distribution may be introduced at different levels. To illustrate this, Figure 17(a)
presents the initial configuration distributed on 2 processors using a Nested Graph structure and
a distribution based on density. We can note that the distribution is more balanced between the
processors and so more efficient. Figure 17(b) shows the distribution of the WSP model on 4
processors using Nested Graph structure which is also better balanced.

Note that cell distribution and load balance depend on the model that we simulate. In the
WSP model the load generated by a sheep is roughly equivalent to the load generated by a wolf
so that, reasoning on agents to balance the load, allows to reach a good balance. On the other
hand, if the agents generate different loads, we can assign to each agent a weight representing an
estimation of the load generated by its execution in order to efficiently balance the distribution.
The weights must be assigned by the modeler of the simulation, as an input parameter. Then, to
perform the distribution, we compute the density of each cell with respect to the weights associated
to the agents it contains, which corresponds to the definition of the weight function.
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Figure 17: Distribution of the WSP model using Nested Graph structure

5.3 Distribution tools

One of the advantages of using graph partitioning for the distribution of multi agent simulations
based on Agent Graphs is that we can benefit from existing powerful tools. For instance, in
our work, we use the Zoltan Framework [4] to perform graph partitioning of the density graphs
associated with simulation modeled according to our approach. The Zoltan Framework includes
many combinatorial algorithms for parallel scientific applications. This Framework also provides
load balancing and dynamic partitioning algorithms that increase parallel application performance
by reducing process idle time.

The strength of the Zoltan framework is that it completely separates its inner data structures
from the application data structures. This separation is achieved through the use of callback
functions (e.g. ZOLTAN NUM OBJ FN, ZOLTAN EDGE LIST MULTI FN, etc.). Callback functions are
functions written by the user that access its data structures and return the needed data to Zoltan.
For example, using callback functions, we can easily get the number of vertices owned by a process
or the number of edges for each vertex owned by a process, etc. When an application calls a Zoltan
service (e.g. Zoltan LB Partition), Zoltan calls these user-provided callback functions to get the
application data it needs to realize the partitioning. Integrating the Zoltan framework into an
application is done in five main steps: initialization, partitioning, migration, partitioning memory
release and memory release as shown in Figure 18.

To validate our proposal we have implemented it in a Parallel and Distributed Multi-Agent
platform, called FPMAS for Fractal Parallel Multi-Agent System, that relies on both Agent Graphs
and Zoltan. In this platform, every entity is represented by an agent. This platform is only a
proof of concept in its current state and is not publicly distributed. We give an overview of its
use of Zoltan in Algorithm 1.

In this algorithm, in order to be more efficient, the initial configuration file of the simulation
is loaded using an MPI parallel reading. After reading this file in parallel the algorithm calls
Zoltan to check the distribution and to update it, if necessary, according to the results returned
by Zoltan. Once the initialization is done the algorithm runs the time steps. At each time step
the Zoltan LB Balance function is called to balance the load. This function uses the callback
functions to process the global graph and decide which agent has to be migrated.
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Figure 18: Use of Zoltan into an application [16]).

6 Experimentation

In this section, we present results using the Nested Graph structure to model and distribute Multi-
Agent simulations. As we want to assess the distribution of multi-agent systems we have used
HPC (High Performance Computing) resources for our experimentation. The computing platform
provides a large number of cores and allows to validate the scalability of our proposal. It is a
1280 core cluster. Each node of the cluster is a bi-processors, with Xeon E5 (8*2 cores) processors
running at 2.6 Ghz frequency and with 4GB of memory per core. The nodes are connected through
a non-blocking DDR infiniBand network organized in a fat tree. The computing nodes are shared
with other users but the batch system guarantees that the processes are run without sharing their
cores.

To assess the performance of the proposal, we have first implemented the WSP model presented
in Section 3 on our FPMAS platform. Nevertheless it is not possible to implement the WSP model
in all Parallel and Distributed Multi-Agent platforms due to no synchronization support for distant
writing calls. For this reason, we have also implemented the reference model defined in [31] to
compare the performance of our implementation to other multi-agent platforms

6.1 WSP model experimentation

The WSP model used for this experimentation is based on a 1000× 1000 grid environment where
25000 sheep and 17000 wolves are initially randomly positioned. Note that, for reproducibility
reasons, the same initial configuration (given in table 1) is used for every simulation, only the seed
is changed between two simulations. The model used for the behavior and the energy initialization
are taken from the NetLogo implementation [39] of the WSP model. The energy gain for the sheep
when eating grass is set to 5 and to 20 for a wolf eating a sheep. The reproduction ratio is set to
5 for the sheep and 4 for the wolves. The simulations are run with 2000 time steps.

Figures 19 and 20 present the execution results of the WSP model based on Nested Graph
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Algorithm 1: Using Zoltan to manage the distribution of a simulation

ReadInitialFileData();
SynchronisationBarrier();
Zoltan LB Balance(...);
Zoltan Migrate(...);
while (!End) do

Execute Timestep();
Zoltan LB Balance(...);
Zoltan Migrate(...);

end while

Table 1: Parameter values for Wolf-Sheep Predation model experimentations
Parameters Values set 1 Values set 2
Environment 1000× 1000 1000× 1000
Nb. sheep 25000 25000
Nb. wolf 17000 17000
Sheep reproduction rate 0.5 0.5
Wolf reproduction rate 0.4 0.4
Gain food sheep 4 4
Gain food wolf 20 20
Init. life sheep 4 4
Init. life wolf 20 20
Grown grass 8 30
Timestep 2000 2000
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Figure 19: Execution results of the WSP model using Nested Graph structures on 128 cores for
2000 time-steps (Grass grows each 8 time-step)

structures on 64 cores. Figure 19 represents a model with grass growing every 8 time-steps whereas
Figure 20 represents a model with grass growing every 30 time-steps. As we can see, the balance
of the ecosystems is respected even if the trend is different from a figure to another. This validates
that our approach provides the same results as a standard implementation of the model.
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Figure 20: Execution results of the WSP model using Nested Graph structures on 128 cores for
2000 time-steps (Grass grows each 30 time-step)
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Figure 21: Scalability of FPMAS for WSP model using Nested Graph structures from 2 cores to
512 cores for 2000 time-steps

As we target the parallelization of, possibly large, multi-agent systems, scalability is an im-
portant property. It guarantees that the approach stays valid even for large models. Figure 21
presents the scalability for the WSP model using the Nested Graph modeling with the FPMAS
platform. On the curves every point is the mean value of 10 execution run times. No standard
variation is shown in the graphic as the variation ranges are between 0.1 and 0.6. Note that the
reference time used to compute the speed-up is based on the 2 core runs and this later cannot thus
be more than half the number of cores. This is because FPMAS is a parallel implementation that
cannot run on just one core as it includes synchronization. As we can see, the FPMAS platform
scales well until 512 cores for the WSP model as there is no break in the speedup progression,
although the speedup is not optimal due to a large number of synchronizations.
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6.2 Virus model experimentation

The Virus model used for this experimentation is based on a 300 × 300 grid environment where
9600 persons, including 640 infected, are initially randomly positioned. Note that, like for the
WSP model for reproducibility reasons, the same initial configuration (given in table 2) is used
for every simulation. Only the seed is changed between two simulations. The model used for the
behavior and the energy initialization is taken from the NetLogo implementation [40] of the Virus
model. The infection and recovery rates are respectively set to 0.65 and 0.5. The reproduction
rate is set to 0.2. The simulations are run with 800 time steps.

Table 2: Parameter values for Virus model experimentations
Parameters Value
Environment 300× 300
Env. capacity 800000
Nb. person. init. 9600
Nb. person. infec. init 640
Infection rate 0.65
Recovery rate 0.5
Reproduction rate 0.2
Nb. timestep 800

Figure 22 presents the execution results of the Virus model based on Nested Graph structures
on 64 cores with the FPMAS platform. As we can see, the balance between the populations (i.e.
Immune and Infected Agents) becomes stable after 420 times steps. This is coherent with the
NetLogo results and hence validates the parallel implementation.
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Figure 22: Execution results of Virus model using Nested Graph structures on 64 cores for 800
time-steps

Figure 23 presents the scalability for the Virus model using the Nested Graph modeling with
the FPMAS platform. On the graph every point is a mean value of 10 execution run times. As
for the WSP model, the FPMAS platform scales well until 512 cores as there is no break in the
speedup progression. Remind that the reference time used to compute the speed-up is based on the
2 core runs and thus cannot be more than half the number of cores. Although a slight slowdown
after 128 cores, the speedup is better than with the WSP model as the model is less synchronized.
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Figure 23: Scalability of FPMAS for Virus model using Nested Graph structures from 2 cores to
512 cores for 800 time-steps

6.3 Reference model experimentation

The objective of the reference model is to implement a multi-agent model that reproduces the
main properties usually found in Multi-Agent Systems:

• perception, to interact with the environment and other agents,

• communication, to communicate with other agents or the environment,

• mobility, to move on the environment.

In the reference model, the environment is represented by a square grid. Agents are mobile
and move randomly on the grid. A perception field, characterized by the “radius” property, is
associated with each agent. It represents the limited perception of the agent on the environment.

Each agent is composed of 3 behaviors:

• with the walk behavior, an agent moves randomly in one of its 8 Moore neighbor cells on
the grid (or less if the agent is close to a border). This behavior is used to test the mobility
and the perception of the agents,

• with the interact behavior, agents interact and send messages to all the agents in their
perception field. This behavior simulates communications between agents and evaluates the
communication support of the platforms,

• with the compute behavior, agents compute a “Fast Fourier Transform (FFT)” [18] in order
to generate a workload. This behavior simulates the load generated by the execution of the
agent inner algorithms.

The global agent behavior consists in performing each of these three behaviors at each time
step. The reference model has several parameters that determine the agent behavior and also the
global model properties. For instance, the model allows to vary the workload using different sizes
of input for the FFT computation. It is also possible to generate more or less communications
between agents by setting the number of contacted agents in the interact behavior or to assess the
agent mobility by setting the agent speed in the walk behavior.

Figure 24 represents the walk behavior using our modeling method. Note that the interact and
compute behaviors are not represented during the modeling phase because they do not perform
any transformation on the graph structure. They are only calculus or message exchanges.

To assess scalability we vary the number of cores used to execute the simulations while we
fix the number of agents. Results presented on Figure 25 shows the speed-up obtain by three
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Figure 24: Walk behavior representation of an agent

PDMAS (RepastHPC, Flame and FPMAS) with a 10 000 agent model. The reference model used
is based on a 300 × 300 grid environment where 10000 agents are initially randomly positioned.
Note that the configuration for the RepastHPC platform cannot be initialized with a file and must
be done with an initialization function. As this is done in parallel it is not guaranteed that two
initializations are strictly the same. For Flame and FPMAS the initializations are based on a
file. The perception radius is set to 3 for the mobile agents. All the random laws used (choice
of neighbor cell and the initialization of the DFT table) are uniform laws. The size of the DFT
table is set to 128. The simulations are run with 200 time steps. In the curves every point is a
mean value of ten execution run times. No standard variation is given on the graphic as its ranges
between 0.1 and 0.7. Note that the reference time used to compute the speed-up is based on the
2 core runs.
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Figure 25: Scalability of FPMAS, RepastHPC, FLAME simulations using 10 000 agents

From Figure 25 we can conclude that the three platforms scale well up to 32 cores but that
the RepastHPC speedup tends to increase slower than the other platforms over 64 cores. FPMAS
is above the other platforms for more than 100 cores. It even reaches a better speedup than
for the WSP model in this case. This validates that our approach, based on the modeling of
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MAS with Nested Graphs, scales well. Note that the RepastHPC results are above the ideal
speedup for simulations with less than 64 cores. We suspect that these better results come from
cache optimizations in the system that favor larger simulations and that the 2 core run has poor
performance. As the FPMAS platform is currently in a proof of concept state it could still benefice
from optimizations. It is then encouraging to note that it outperforms other platforms when using
more than 100 cores. This also means that the Nested Graph approach is suited for parallel
implementation of multi-agent simulations.

7 Conclusions

In this paper, we propose Nested Graphs as an approach to model Parallel and Distributed Multi-
Agent simulations. This method aims at facilitating the dynamic distribution of simulations among
parallel machines. This is achieved thank to finer granularity on multiple levels of abstraction.
Our contribution is a common and generic framework which represents the agent models as well
as their distribution. In addition, this framework includes a more graphical method to model
Parallel and Distributed Multi-Agent Simulations.

In our future work, we intend to precisely examine the efficiency of synchronization mechanisms
using Nested Graph structures in parallel platforms and propose a platform which includes Nested
Graph structure as a modeling and distribution paradigm. In addition, we will develop the formal
basis describing our proposal of Nested Graphs applied to Parallel and Distributed Multi-Agent
Systems.
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