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Abstract—Today, we can witness wireless sensor networks
(WSNs) in action almost everywhere. Their applications are
ubiquitous covering environment, medical care, military, surveil-
lance, etc. While the potential benefits of WSNs are real and
significant, there remains two major challenges to fully realize
this potential: big data collection and limited sensor energy. To
overcome these problems, filtering techniques over data routed to
the sink should be used in such a way that they do not discard
useful information. In this paper, we propose a new filtering
technique dedicated to periodic sensor applications. The first
filter is applied at the sensor nodes and aims to reduce their raw
data based on the Pearson coefficient metric. The second filter
is applied at intermediate nodes, called aggregators. It uses K-
nearest neighbor clustering algorithm in order to eliminate data
redundancy collected by neighboring nodes. In order to evaluate
our technique, experiments on real telosB sensors have been
conducted while the results showed significant energy savings and
high accurate data collection compared to existing approaches.

Keywords—Wireless sensor networks, periodic applications, fil-
tering techniques, Pearson coefficient, K-nearest neighbor algo-
rithm, telosB motes.

I. INTRODUCTION

During the last few years, wireless sensor networks
(WSNs) have experienced explosive growth and have mas-
sively become a part of peoples lives. In such networks, a
large number of sensor nodes are usually randomly scattered
in different areas and aim to provide low-cost ambient data
collection services. The nodes are characterized by a small size
(from cubic inches to cubic millimeters), can have multiple
sensors on their board (such as for temperature, humidity,
pressure, light, etc.), limited power supply and short range
radio communication. Thanks to these smart sensors, a lot of
real-world applications have been already deployed including
environmental monitoring, medical care, military, agriculture
and surveillance systems [1]. Additionally, data collected by
sensor nodes are forwarded periodically to a specific access
point (sink) for analyzing and decision purposes.

The problems in WSNs start from the data acquisition
where a big amount of data about the monitored area should
be collected for reliability purposes. Hence, what data to keep
and what to discard become important in order to take the
right decisions. In addition to big data collection problem, data
transmission is another challenging task because of the energy-
constrained nature of sensor networks. Indeed, transmitting
data consumes most of the sensor energy which is mostly
limited and not rechargeable, especially in unattended and
hostile environments. Therefore, to avoid the above mentioned

problems, filtering techniques have been introduced. Filters
aim to remove large quantities of redundant data routed on
the network, so as to minimize the amount of transmission
and save energy.

In this paper, we propose a new filtering technique ded-
icated to periodic sensor applications. It aims to transmit a
summarized scheme of sensed data (without losing meaning
and accuracy) to the sink. Thus, it leads to reduce data
transmission rate in the network then, optimizing network
resource consumption. Our technique composed of two filters.
The first filter is applied at the sensor nodes themselves
and aims to reduce their big raw data based on the Pearson
coefficient metric. The second filter is applied at intermediate
nodes, called aggregators. Each aggregator has to eliminate
data redundancy collected by neighboring nodes based on K-
nearest neighbor clustering algorithm. To evaluate our tech-
nique, experiments on real telosB sensors have been conducted
while the results showed significant energy savings and high
accurate data collection compared to existing approaches.

The rest of the paper is organized as follows. Section
II describes the periodic clustering architecture used in our
network. Section III overviews various data reduction and
filtering techniques existing in the literature for WSNs. in
Section IV, we present the first data filtering proposed for
the first level, e.g. sensor nodes, in our technique. Section
V describes the second filter in our technique proposed for
the aggregator level. Experimentations on real sensors are
presented in Section VI. Finally, Section VII concludes our
paper and gives some perspectives.

II. OUR NETWORK ARCHITECTURE

In this section, we introduce the network architecture used
in our technique. Our proposed filtering technique can be
applied efficiently by assuming two main concepts for the net-
work: cluster-based architecture and periodic data acquisition.
In the next, we describe each of them in more details.

A. Cluster-based Network

In our system, we assume that each set of sensor nodes
send their collected data to an intermediate nodes, called
aggregators. Each aggregator has an objective to clean data,
using a specific filter defined later, coming from neighboring
sensor nodes before sending them to the sink. The aggregators
can be defined prior to the network deployment and could
have more power than normal sensor nodes, depending on
the application requirements. Fig. 1 shows our sensor network



architecture, where data transmission between sensor nodes
and their appropriate aggregators is based on single-hop com-
munication.

Aggregator
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Fig. 1. Two-level data transmission architecture.

B. Periodic Data Acquisition Model

The main mission of WSNs is to forward data packets
from event regions to the sink. Unfortunately, sensor nodes
are energy-constrained and data transmission task consumes
lots of the sensor energy comparing to data processing task.
This means that the lifetime of the sensor will shorten if it
forwards each sensed data sample to the sink. Hence, periodic
data transmission model have been introduced in WSNs in
order to reduce the amount of data collected thus, savings
sensor energy.

In the periodic acquisition model, data are collected in a
periodic basis where each period p is partitioned into time
slots. At each slot t, each sensor node Ni captures a new
reading ri. At the end of the period p, Ni collects a vector of
τ readings, e.g. Rpi =

[
r1, r2, . . . , rτ

]
, then it sends it to the sink

(Fig. 2(a)). In our system, each sensor node sends periodically
(period p) its data to the appropriate aggregator, which in turn
sends it to the sink (Fig. 2(b)). Our technique defines two
filters: the first one is applied at the sensor level and the second
one is applied at the aggregator level.
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Fig. 2. Periodic data filtering scheme.

III. RELATED WORK

The huge amounts of data generated and transmitted by
sensors result in increasing energy consumption in WSNs.
Hence, a large number of filtering and reduction techniques
have been proposed [2], [3], [4], [5] in order to eliminate re-
dundant and meaningless data and consequently ensure energy-
aware optimization in WSNs. Furthermore, filtering techniques

can intelligently process the raw data to a size that its users
can handle while not missing the essential information. In the
literature, we can find various data filtering approaches based
on data compression, in-network processing or data prediction
methods.

The authors in [6] propose an hybridized Least mean
squares (LMS) adaptive filter with matrix completion to min-
imize the necessary information that sensors transmit to sink.
The sensor nodes use LMS filter and Bernoulli probability
to make a pattern based on which data are sent to the sink.
the sink uses matrix completion algorithm to recover missed
or lossy data. In [7], the authors propose two data filtering
approaches to improve energy efficiency on the agricultural
WSNs. The first approach is the simple moving average (SMA)
that performs filtering on a sensor node while the second
one is based on Threshold Sensitive Energy Efficiency Sensor
Network (TEEN) protocol for nodes with only one sensor
device attached. A positional prefix-suffix frequency filtering
(PPSFF) is proposed in [8]. PPSFF aims to minimize latency of
aggregation using a positional filtering that exploits the order
of readings both in the prefix and the suffix of a set and leads to
upper bound estimations of similarity scores. The authors in [9]
propose a data prediction algorithm based on the Kalman filter
for air pollution monitoring sensor networks. The objective of
the proposed algorithm is to eliminate the noise from the sensor
measurements, and adjust the sampling interval based on the
difference between present and previous measurements.

The authors in [10] propose a supervised linear dimension-
ality (LDR) reduction technique to reduce the dimensionality
of the original data to such that it is well-primed for Bayesian
classification. This is done by sequentially constructing linear
classifiers that minimise the Bayes error via a gradient descent
procedure, under an assumption of normality. In [11], the
authors builds a Spanish Inquisition Protocol (SIP) to reduce
transmissions in a single-hop wireless sensor system dedicated
to monitor temperature in a gas turbine engine application. SIP
introduces a selective filtering of sensed data based on state
identification, using a skewed double exponentially weighted
moving average filter for accurate state predictions. In [12], the
authors propose an energy-efficient compressed data reduction
frame- work dedicated to underwater sensor network. The
proposed framework consists of two layers: the compressed
sampling layer, where nodes in clusters are randomly selected
to conduct sampling, and the data reduction layer, where full
sampling is adopted. The final goal of these layers is to
minimize the total energy consumption of transmitting the data
sensed by nodes. In [13], the authors propose a Sequential
Lossless Entropy Compression (S-LEC) which organizes the
alphabet of integer residues obtained from differential predictor
into increased size groups. S-LEC codeword consists of two
parts: the entropy code specifying the group and the binary
code representing the index in the group. Compared to other
compression schemes, S-LEC is characterized by its efficiency
and highly robustness for diverse WSN data sets. Finally, the
authors in [14] propose a prefix frequency filtering (PFF)
technique based on clustering architecture of the network.
Further to a local processing at the sensor node level, PFF
uses Jaccard similarity function to allow aggregator nodes to
identify similarities between near sensor nodes at each period
and integrates their sensed data into one record.



Although most of the proposed techniques allow efficient
data reduction, however they present several disadvantages.
They are almost complex, sometimes they generate commu-
nication overhead, and the sink may need some transmissions
to detect failures. In this paper, we present a novel data filtering
method that it is less complex and suitable for limited resources
sensor nodes. Then, in order to evaluate our technique, we
conducted a set of experiments on a real environment sensor
networks based on telosB nodes.

IV. SENSOR DATA FILTERING MODEL

Usually, the dynamic of the monitored environment in
sensor networks can be changed dynamically. Thus, in case
of slow down, the sensor node will collect, then sends, more
redundant data to the sink leading to drain its available energy.
Hence, our objective is to reduce the size of data vector
Rpi collected by a sensor during each period by eliminating
redundant readings. We propose to select a subset of readings
from Rpi instead of sending the whole readings in Rpi to the
sink. Our proposed model is based on the Pearson coefficient
which is introduced in the next section.

A. Pearson’s Coefficient Metric

The Pearson’s coefficient indicates the degree of linear
correlation between two data sets Ri and Rj , giving a rang of
[1, 1], where 1 is total positive correlation, 0 is no correlation,
and −1 is total negative correlation. Here each individual
sensor node can be regarded as a variable to record the change
of observation in the monitored area where the sensor is
located.

Consequently, the formula for Pearson’s coefficient when
applied to two sensor data sets is:

ρRi,Rj
=

n
∑
rirj −

∑
ri
∑
rj√

n
∑
r2i − (

∑
ri)2

√
n
∑
r2j − (

∑
rj)2

(1)

where ri ∈ Ri, rj ∈ Rj and n is the number of readings in
each of Ri or Rj .

Therefore, Ri and Rj are considered to be highly correlated
(e.g. redundant) if and only if:

ρRi,Rj
< tp (2)

where tp is a threshold determined by the application itself.

B. Sensor Filtering Algorithm

Algorithm 1 shows how each sensor can reduce its
vector of collected readings Rpi at each period. It searches a
subset of readings that represent Rpi by applying iteratively
the Pearson’s coefficient metric. The main idea behind this
algorithm is to divide Rpi into equal subvectors by applying
Pearson’s coefficient until the subvectors are highly correlated.
This can be made by using the function divide which divides
a vector of readings into two equal subvectors. Therefore,
the process starts by considering that the readings in Rpi
are not correlated (lines 4-7). Then, Rpi is divided into two
subvectors, e.g. Rpi1 and Rpi2 (line 9), and the correlation
between them is calculated (line 10). If the correlation is less
than the threshold of Pearson’s coefficient (line 10) then, the

initial vector Rpi is a final vector of readings. Thus, for each
final vector, the mean value of its readings is added to VRp

i

as a representative reading of this vector in addition to the
weight of the mean value (lines 11-13). The weight of the
mean value indicates the number of readings represented by
the mean value (line 12). Otherwise, e.g. the correlation is
greater than the threshold, each of the subvectors is divided
into equal subvectors and the process is restarted over the
readings in the new subvectors (line 16).

Algorithm 1 Sensor Filtering Algorithm.

Require: Reading vector: Rpi = [r1, r2, . . . , rτ ].
Ensure: Vector of representative readings of Rpi : VRp

i
.

1: VRp
i
← ∅

2: V ′ ← ∅ // a temporary set of reading vectors
3: Rp1 ← ∅
4: for each set reading ri ∈ Rpi do
5: Rp1 ← Rp1 ∪ {ri}
6: end for
7: V ′ ← V ′ ∪ {Rp1}
8: repeat
9: {Rpi1 , R

p
i2
} ← Divide(Rpi )

10: if ρRp
i1
,Rp

i2
< tp then

11: find the mean value, ri, of readings in Rpi
12: wgt(ri) = Rpi .length
13: VRp

i
← VRp

i
∪ {ri, wgt(ri)}

14: remove Rpi from V ′

15: else
16: V ′ ← V ′ ∪ {Rpi1} ∪ {R

p
i2
}

17: end if
18: until no reading vector Rpi ∈ V ′
19: return VRp

i

After applying Algorithm 1, each sensor will send a vector
of representative readings VRp

i
=
[
r1, r2, . . . , rk

]
to its proper

aggregator, where k ≤ τ .

V. AGGREGATOR FILTERING MODEL

At the end of each period, each aggregator will receive a
set of representative data sets coming from its sensor nodes. At
this level, we propose a second filter allows each aggregator
to eliminate redundancy, resulted from temporal correlation
between sensed data, among representative sets before sending
them to the sink. Our proposed filter is based on data clustering
approach. Data clustering is a data exploration technique
that allows objects with similar characteristics to be grouped
together in order to facilitate their further processing. In this
paper, we are interested in K-nearest neighboring (KNN)
algorithm adapted to Euclidean distance. In the next section,
we explain in more details KNN algorithm as a second filter
to clean data at the aggregator level.

A. K-Nearest Neighboring Algorithm

K-nearest neighbors (KNN) [15] is one of the top 10 data
mining algorithms used for classification and regression. It is a
non-parametric algorithm that does not make any assumptions
on the underlying data distribution. KNN algorithm has lots



of applications ranging from business[16] and medical [17] to
classification of web text [18]. The input of KNN algorithm
consists of the entire training dataset. When a comparison
is required for an unseen data instance, the KNN algorithm
will search through the training dataset for the K-most similar
instances (neighbors) and summarizing the output variable for
those K instances.

Indeed, distance functions are one of the most similarity
measures used in KNN algorithm to search the K-nearest
neighbors for a dataset. However, there are huge number of
distance functions used in the literature like Euclidean, Cosine,
Hamming, Manhattan and so on [19]. We can choose the best
distance metric based on the properties/type of the data; for
instance, Manhattan distance is a good measure to use if the
input variables are not similar in type (such as age, height,
etc.); with categorical or binary data, Hamming distance can
be used. For real-valued data, e.g. similar in type (all measured
temperature or humidity), the most popular distance measure
is the Euclidean distance.

B. Euclidean Distance

Computing the distance between a set and all sets in the
training datasets is a fundamental process when applying KNN
algorithm. In this paper, we are interested in the Euclidean
distance that is widely studied and used in different domains.
In mathematics, the Euclidean distance is the ordinary distance,
e.g. straight line distance, between two points, sets or objects.
Let us consider two data sets, Ri and Rj , then the Euclidean
distance (Ed) between them can be calculated as follows:

Ed(Ri, Rj) =
√∑

(ri − rj)2, (3)

where ri ∈ Ri and rj ∈ Rj .

However, the weights of the mean values used at the sensor
level makes the computation of the Euclidean distance is not
a trivial task. In order to overcome this challenge, we must
transform each set of representative readings VRp

i
to a vector

as follows:

vRp
i
=
[
r1, . . . , r1︸ ︷︷ ︸
wgt(r1) times

, r2, . . . , r2︸ ︷︷ ︸
wgt(r2) times

, . . . , rk, . . . , rk︸ ︷︷ ︸
wgt(rk) times

]
. (4)

Then, the Euclidean distance between any two representa-
tive readings VRp

i
and VRp

j
is calculated based on their readings

vectors vRp
i

and vRp
j
.

C. Selection of K

The selection of the value of K parameter is very crucial
in the KNN algorithm, which is a user-defined constant. In
general, a large K value is more precise as it reduces the
overall noise on the classification. Heuristic techniques are one
of the approaches used to select the proper value of K which
is determined by the experts. Another way for the selection
of K is by experimenting different values of K (e.g. values
from 1 to 20) and see which works best for our problem, i.e.
the most accurate results. Historically, the optimal K for most
datasets has been between 3-10.

D. KNN Adopted to Euclidean Distance

Algorithm 2 describes the process of KNN algorithm to
search the top K similar datasets for a new dataset given as
an input for the algorithm. The process starts by computing
the Euclidean distance between the new dataset and every
dataset in the training set Rp (line 3). Thus, a dataset is added
to the final list of top K similar sets of the new set if the list
is not yet full (line 4) or its distance to the new dataset is less
than the maximum of an existing distance (line 7-10).

Algorithm 2 KNN Adopted to Euclidean Distance Algo-
rithm.

Require: List of datasets Rp = {Rp1, R
p
2, . . . , R

p
n}, new

dataset Rpj , K.
Ensure: List of top K similar datasets to Rpj : TopKRp

j
.

1: TopKRp
j
← ∅

2: for each dataset Rpi ∈ Rp do
3: compute distance = Ed(R

p
i , R

p
j )

4: if TopKRp
j
.length < K then

5: TopKRp
j
← TopKRp

j
∪ {(Rpj , R

p
i , distance)}

6: else
7: find Rpl ∈ TopKRp

i
corresponding to the maximum

distance with Rpj
8: if Ed(Rpl , R

p
j ) > Ed(R

p
i , R

p
j ) then

9: replace Rpl by Rpi
10: end if
11: end if
12: end for
13: return TopKRp

j

E. Redundant Sets Reduction at the Aggregator

In this section, we show how to integrate the KNN algo-
rithm at the aggregator level in order to search, then eliminate,
redundant datasets sent from the sensor nodes at the end of
each period (Algorithm 3). First, the aggregator identifies the
top K similar sets for each dataset sent by a sensor (lines
3-5) using Algorithm 2. Our objective is to search, for each
sensor, the top K nodes that generate highly temporal data
correlation in order to reduce the amount of data transmitted to
the sink while conserving the integrity of information. Finally,
the aggregator removes all pairs of redundant sets that contain
VRp

i
or VRp

j
from the set of pairs (which means it will not

check them again) (line 8).

VI. EXPERIMENTAL RESULTS

In this section, we describe the experiments we conducted
on real sensors deployed in our laboratory in order to evaluate
our technique. The hardware platform that we used for data
collection was Crossbow telosb motes. Twenty motes have
been deployed in our laboratory where each of one monitors
temperature data. Data collected by the motes were sent to
a specific sink1 node called SG1000 [20], which can be
connected to a laptop machine for retrieving, then analyzing,
the collected data. Due to the limited bandwidth of telosB, the

1in our experiments, the sink plays the role of an aggregator.



Algorithm 3 Selecting Final Sets Algorithm.

Require: List of representative reading sets VRp =
{VRp

1
, VRp

2
, . . . , VRp

n
}, K.

Ensure: List of sent reading sets at period p: VLp .
1: VLp ← ∅
2: topk ← ∅
3: for each set VRp

i
∈ VRp do

4: topk ← topk ∪KNN(VRp − {VRp
i
}, VRp

i
)

5: end for
6: for each pair of sets(VRp

i
, VRp

j
) ∈ topk do

7: VLp ← VLp ∪ {VRp
i
} // or VLp ← VLp ∪ {VRp

j
}

8: Remove all pairs of sets containing one of the two sets
VRp

i
and VRp

j

9: end for
10: return VLp

period size is set in our experiments to 50 readings where each
mote takes a new reading of temperature every 30 seconds.
Figure 3 shows the distribution of motes inside the laboratory.
Motes are ranged from 1 and 20 respectively while the ID
of SG1000 is set to 0. The effectiveness of our technique at
the sensor level is tested and compared to a data compression
technique (S-LEC) proposed in [13].
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Fig. 3. Distribution of motes in our lab.

Our technique, S-LEC and naı̈ve approach are implemented
on the motes as shown in Table I:

Technique mote IDs

our technique 1, 5, 6, 7, 9, 12, 13, 15, 19, 20
S-LEC 3, 8, 11, 14, 16, 18
naı̈ve 2, 4, 10, 17

TABLE I. TECHNIQUES IMPLEMENTED ON THE MOTES.

Finally, it is important to notice that all methods were
implemented on the motes based on the nesC language [21],
i.e. the standard programming language of tinyOS [22], while
a Java code was implemented on the laptop machine to retrieve
data from the sink node.

A. Filtering Ratio at each Mote

Due to the Pearson coefficient used in our technique,
each sensor node has the ability to reduce the amount of

data collected at each period by eliminating redundant values.
Figure 4 shows the average number of temperature readings
sent by each mote along the days of deployment, using our
technique and S-LEC. The obtained results show that our data
filtering model allows motes to significantly reduce its data
transmission compared those operating with S-LEC technique.
Subsequently, each mote can reduce up to 50% the temperature
readings sent to SG1000.
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Fig. 4. Filtering ratio at each mote during periods, τ = 50, tp = 0.5.

B. Filtering Set Ratio at the Sink

In Figure 5, we show the average number of remaining sets
after applying KNN algorithm at the sink node, when varying
K values to 3, 4 and 5 respectively. The obtained results
show that KNN can significantly eliminate redundant data sets
generated by neighboring sensors compared to naı̈ve approach,
e.g. without any filtering technique. Subsequently, we observe
that KNN can reduce up to 85% of the whole received sets
at the sink. These results confirm that the clustering is a
very efficient approach in terms of eliminating redundant data
and providing useful information to the enduser, comparing
to other existing approaches. We can also observe that KNN
eliminates more sets when K increases; this is because, the
temporally correlation between each sensor and it neighboring
nodes will increases thus, KNN will consider then eliminate
more datasets.

Naive KNN
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Fig. 5. Filtering set ratio after applying KNN at the sink, τ = 50, tp = 0.5.

C. Data Accuracy

Data accuracy is an important factor in WSNs which
represents the measure loss rate. In our experiments, data



accuracy has been calculated by divided the number of loss
readings after applying KNN algorithm over the whole read-
ings collected by the naı̈ve sensors. Figure 6 shows the results
of data accuracy of KNN compared to S-LEC technique,
when varying the threshold K. The obtained results are highly
dependent on the number of remaining sets after applying
KNN (see results of Figure 5); more the number of remaining
sets thus less of readings are lost. Indeed, we observe that both
techniques give important results regarding the accuracy of the
collected data where the integrity of the information is highly
conserved for the end user. Subsequently, we notice that KNN
algorithm gives the best results of data accuracy when K is
small, e.g. ≤ 4, whilst the information is more conserved using
S-LEC when K increases, e.g. > 4.
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VII. CONCLUSION AND FUTURE WORK

Wireless sensor networks (WSNs) will play an important
role in future internet by collecting surrounding conditions
and environment information. Thus, designing new filtering
techniques will become essential in order to eliminate mean-
ingless/redundant raw data and make such networks operated
as long as possible. This paper proposed energy-efficient
filtering technique dedicated to periodic sensor applications.
The first filter uses Pearson coefficient metric and aims to
reduce the raw data collected by the sensors. The second
filter allows aggregator nodes to eliminate redundant data
collected by neighboring nodes using K-nearest neighbor
clustering algorithm. Or technique has been evaluated based on
both simulation and experiments on real telosB sensors. The
results obtained with our technique showed significant energy
savings and high accurate data collection compared to existing
approaches.

We have two major directions for our future work. First,
we plan to let aggregators in our technique be able to adjust
the sampling rate of the sensors based on the redundancy level
with their neighboring nodes. Second, we seek to try another
data clustering methods at the aggregator level, like decision
trees and neural networks.
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