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Abstract—Recently, interest in Wireless Body Sensor
Networks composed by low-power devices which are placed in,
on or around the body has been increasing. Wireless Body
Sensor Networks open up tremendous healthcare and wellness
applications such as continuous monitoring of a patient’s vital
signs. One of the fundamental challenges in Wireless Body
Sensor Networks is energy consumption due to wireless
transmission of collected data. In this paper, we aim to extend
the life-time of battery-powered biosensors by applying a data
reduction technique that works efficiently under constrained
processing, storage, and energy resource conditions. The
presented technique is a lossless transform-based compression
technique based on the Discrete Wavelet Transform using the
lifting scheme extended with Lagrange polynomial
interpolation. To evaluate our approach, we have run multiple
series of simulation on real sensor data. The results show that
our proposed method reduces the amount of data by up to 90%
without losing any information.

Keywords—Data reduction, lossless data compression, wireless
body sensor network, lifting scheme, wavelet.

I. INTRODUCTION

THe development of Wireless Body Sensor Networks
(WBSNs) offers the ability to monitor a patient’s

physical and biochemical parameters continuously, under
natural physiological status of the patient, and in any
environment. This technology supports a number of
innovative and interesting applications in the medical and
healthcare areas such as surveilling patients with chronic
disease, examining hospital and elderly patients, and distant
patients monitoring where the patients’ vital signs are
checked constantly in order to control their health condition
and provide treatment in case of emergencies [1].

The collection and analysis of vital signs’ data can be
achieved by deploying different types of biomedical sensors
(e.g., body temperature, heartbeat, blood pressure,
electrocardiogram (ECG), electroencephalogram (EEG),
etc.) [2] [3]. A network of biosensors is to be placed on or
implanted in the body of patients. The amassed information
is sent to a coordinator (e.g., Body Control Unit), located on
or near the body. This coordinator is responsible of the
aggregation, the fusion and the forwarding of the collected
data to the sink node which in turn sends the received data to
the network [4].

Although the WBSN platforms aim to provide and
support a number of innovative and interesting

applications [5] [6] [7], there are many technical challenges
that lie ahead such as the need for better sensor design,
context-awareness, secure data transfer, and longer battery
lifetime. Energy consumption is one of the key
considerations for WBSNs since it not only determines the
size of the battery required but also the duration that a
biosensor can be left in situ [1]. One of the main techniques
to reduce the energy consumption of a biosensor node is by
decreasing the energy consumption related to wireless
transmission of the collected data since it is the likeliest
cause of energy consumption [8] [9]. Data reduction can be
considered as a direct way to reduce the energy consumption
due to wireless transmission. Some of the techniques, such as
aggregation, adaptive sampling, and data compression aim to
reduce the amount of data that is to be delivered to the
coordinator [10].

Several compression techniques have been proposed in
literature to tackle the energy consumption problem. These
techniques can be classified into three categories: sampling
compression, data compression, and communication
compression [8]. Sampling compression focuses on reducing
the number of sensing operations while keeping the loss of
information within an acceptable margin. Data compression
converts an input data stream into another data stream that
can be represented with a lesser number of bits.
Communication compression focuses on reducing the number
of packet transmissions and receptions. Unfortunately,
conventional compression algorithms have a high complexity,
thus in order to gain sufficient storage they’re purposefully
made for desktops and servers. As such, they cannot be
directly applicable to WBSNs where the primary objective is
to save energy.

Many resource-aware compression techniques have been
used and developed for data reduction in the context of
Wireless Sensor Networks (WSNs) and WBSNs.

In [9], the authors proposed the simple Delta encoding
algorithm, known as Differential Pulse Code Modulation
(DPCM) for accelerometer data compression in WBSN, and
compared it to the Huffman encoding. The results showed
that the Delta encoding outperformed the Huffman encoding
in terms of data reduction, computational complexity, and
energy savings. A method referred to as LiftingWise has
been proposed in [11]. The LiftingWise method is a modified
version of the original Discrete Wavelet Transform (DWT)
Lifting Scheme (LS) algorithm in which it can be applied on



a set of data with arbitrary length while the original LS is
applied on a signal Sn of length 2n. This method uses the
Haar wavelets to process the data disseminated from objects
deployed in a monitoring environment. It was compared with
two other simple compression techniques appropriate for
usage in WSNs: The Offset compression and Marcelloni
compression. The results had proved the effectiveness of this
method in reducing the number of bits of the collected data
while taking into consideration the limited resources of
sensor nodes.

In this paper, we aim to reduce the energy consumption
of biosensor nodes due to the size of the information of
patients’ vital signs that is being transmitted periodically. To
do so, we propose to use a transform-based compression
technique based on the Discrete Wavelet Transform (DWT)
using the lifting scheme (LS) extended with Lagrange
polynomial interpolation. The wavelet transform provides a
time frequency representation of the original data set. The
motivation behind using the DWT resides in the
transformation of redundant samples in the spatial domain to
decorrelated coefficients in the time frequency domain where
the original samples are compacted and represented with
fewer coefficients.

To evaluate our approach, we compare our proposed
algorithm with the Discrete Cosine Transform, DWT LS
based Haar transform used in [11], and the simple Delta
encoding used in [9].

The following of the paper is organized as follows:
Section II provides additional detail on energy consumption
at node-level in the context of WBSN. Section III presents
some background information about the DWT LS. Section IV
details our proposed DWT lifting scheme algorithm. Section
V presents the experimental results. Section VI discusses the
obtained results, and Section VII concludes the paper.

II. ENERGY CONSUMPTION AT NODE-LEVEL

The four main constituents of a biosensor node that
consume energy are the Microcontroller (MCU), Transceiver,
Memory, and Sensor units. The MCU consumes energy for
processing the data, executing code, and controlling tasks.
The transceiver consumes energy for transmitting and
receiving data. The energy consumption of the memory
depends on the number of memory read and write, the
number of stored bits, and the duration of storage. Also, the
number of bits generated from the sensing unit contributes
very little to the overall energy consumption of the biosensor
node [12].

Proceeding from these facts, the compression algorithm
applied to biosensor nodes must reduce the number of
transmitted bits and increase the percentage of energy saving.
However, processing and memory units cannot be neglected,
and the trade-off between computational cost and the energy
saved from compression ratio must be considered. The
applied method must have a low computational time/memory
complexity in a way that the energy saved from transmitting
the compressed data must be greater than the energy
consumed by performing additional computation and
processing [13].

III. BACKGROUND ON THE DWT LIFTING SCHEME

Sweldens introduced the “lifting” procedure in [14] [15].
The LS is a transform that uses means and differences to
compute the DWT coefficients. The advantages of the LS
over conventional wavelet transform method are that it
allows a faster implementation of the wavelet transform,
requires half number of operations as compare to traditional
convolution based DWT, and allows a fully in-place
calculation [16]. The aforementioned advantages make the
LS suitable for low power applications.

In the following, the DWT LS is presented step by step.
Consider a set of data xj with 2n values, the LS performs n
forward transform steps (n-level decomposition). Each forward
transform consists of three operations: split, predict, and update
as shown in Figure 1.

Fig. 1: Lifting scheme forward step

a) Split operation: This operation splits the data into even and
odd sets. The even and odd sets each contain 2n−1 values.

Afterwards, the even set is transformed into the average set
(approximation coefficients) denoted by sj+1, and the odd
set is transformed into the differences set (detail coefficients)
denoted by dj+1, each of length 2n−1.

b) Predict operation: In this step, a prediction function is used
to approximate the data set. A correlation exists between an
odd element and its even neighbors, and the even elements can
be used to predict the odd element. The difference between
the actual odd value and the predicted value replaces the odd
elements. The even elements are left unedited and become the
input for the next operation in the transform. The prediction,
which is the difference, is denoted by Equation 1:

dj+1 = x[2n + 1]j − P × (x[2n]j), (1)

where P is the prediction function. The importance of the
prediction operation is that it results in smaller values that
can be represented in fewer bits. The more the data are
correlated, the more the difference between an odd element
and its prediction is small and some level of compression
can be achieved.

c) Update operation: The update operation replaces the even
entry by the average of the data being processed. The
importance of this operation is that it results in a smoother
input for the next decomposition level [17]. The update
operation is defined by Equation 2:

sj+1 = x[2n]j + U × (dj+1). (2)



The LS reverse transform is similar to the forward
transform and is based on the three operations: reverse
update, reverse prediction, and merge. These three operations
are defined in Equations 3, 4, and 5 respectively.

x[2n]j = x[2n]j+1 − U × (dj+1). (3)

x[2n + 1]j = x[2n + 1]j+1 + P × (x[2n]j). (4)

xj = Merge(x[2n + 1]j , x[2n]j). (5)

The described operations (split, predict, and update) can
be repeated n times on a set of data of length 2n. Figure 2
illustrates 2-level wavelet decomposition of 128
PhotoPlethysmoGram (PPG) samples. Each decomposition
level lj breaks down the signal into two sets: approximation
coefficients set (averages) sj and detail coefficients set
(differences) dj . We can notice that the values of the detail
coefficients are smaller than the ones of the original PPG
samples, which means that they require fewer bits to be
represented. The final result is a set sn of one average (the
mean value of all entries) and n sets of differences
(d1, d2, ..., dn).

IV. LIFTING SCHEME BASED HAAR WAVELETS EXTENDED
WITH POLYNOMIAL INTERPOLATION

Multiple prediction functions can be used to calculate the
detail coefficients (differences). One of the simplest predict
functions is the Haar prediction used in [11]. The Haar
prediction operation predicts that the odd element will be
equal to the even element. The odd element is then replaced
by the difference between the predicted value (the even
element) and the actual value of the odd element as defined
in Equation 6. In the update step, each even element in the
even set is replaced with the average of the even/odd pair as
in Equation 7.

dj+1 = x[2n + 1]j − x[2n]j . (6)

sj+1 = x[2n]j + dj+1/2. (7)

The Haar wavelet is well known for its simplicity. However,
it performs poorly when the signal is not constant (jagged time
series), and misses the changes between odd and even values.
In this paper, we propose to extend the Haar wavelet with
Lagrange polynomial interpolation to predict the odd values.

The Lagrange interpolating polynomial is the polynomial
P (x) of degree ≤ (n − 1) that passes through the n points
(x0, y0 = f(x0)), (x1, y1 = f(x1)), ..., (xn, yn = f(xn)), and
is given by

P (x) =

n∑
j=0

Fj(x)yj , (8)

where

Fj(x) =

n∏
k=0,k 6=j

x− xk

xj − xk
. (9)

The implementation of the polynomial interpolation had
been done based on the model discussed in [17]. The forward
transform step consists of the three steps: split, update, and
interpolate as shown in Figure 3. Note that the update step was
placed before the interpolate step, so the latter can calculate
the prediction value from the smoothed values that result from
the update step.

Fig. 3: Lifting scheme extended with polynomial interpolation
forward step

In the update step, the even elements are updated using
Equation 10.

sj+1 = (x[2n]j + x[2n + 1]j)/2. (10)

In the interpolate step, an odd element is predicted from
the even points using n-point Lagrange polynomial
interpolation, and replaced by the difference between the
interpolated (predicted) value and the actual value of the odd
element as defined in Equation 11.

dj+1 = x[2n + 1]j − Pinterpolated. (11)

In our implementation, 4-point polynomial interpolation
has been used to predict the odd elements.

Consider four even points: e0, e1, e2, and e3. Disregarding
their actual x-coordinates, which are timestamps in the case of
WBSN data, we position these points at x-coordinates 0, 1, 2,
3. The first odd point in the odd set will be positioned between
the first and second even points (e0 and e1), at 0.5. The last two
points in the odd set are positioned at 2.5 and 3.5 respectively.
The rest of the odd points are positioned between e1 and e2,
at x-coordinate 1.5. Figure 4 shows the logical positioning of
the even and odd points.
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Fig. 2: PPG signal wavelet decomposition

Fig. 4: Example of even and odd elements positioning in a data
series

Based on Equations 8 and 9, Pinterpolated is calculated as:

Pinterpolated = F0(x)e0+F1(x)e1+F2(x)e2+F3(x)e3. (12)

The coefficients F0, F1, F2, and F3 are constant and can be
calculated once for the x-coordinates 0.5, 1.5, 2.5, and 3.5
using Equation 9.

The advantage of the polynomial interpolation prediction
over the Haar prediction is that it is more accurate and able to
properly capture changes between odd and even values. Note
that the more the prediction step is accurate, the more the detail

coefficients (differences) are close to zero and require fewer
bits to be represented.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A custom Java-based simulator has been used to test the
proposed compression technique. Therefore, the following
shows the results of applying the DWT LS based Haar
transform used in [11] (LS Haar), the Delta encoding
algorithm used in [9] (Delta), the DCT, and the proposed LS
extended with polynomial interpolation (LS Poly) on
different time series recorded using Shimmer3 GSR+
Unit [18] (Figure 5). The data are sampled at a fixed rate of
16 Hz over 10 minutes (5 minutes at rest, and 5 minutes
walking).

Fig. 5: Shimmer3 GSR+ Unit

Table I presents the compression ratios (CR) and the
reduction percentages (Red %) obtained by the four
compression algorithms over 50 periods (1 period = 8
seconds) on different sensor data: Pressure (kPa),
Temperature (Degrees Celsius), PPG (mV), Accelerometer
(m/s2), and Gyroscope (deg/s). The results show that the



TABLE I: Performance comparison of LS Haar, Delta encoding, DCT, and LS Poly on different sensor data collected from Shimmer GSR+
Unit over 50 periods

Uncompressed LS Haar Delta DCT LS Poly
Bits CR Red (%) Bits CR Red (%) Bits CR Red (%) Bits CR Red (%)

Pressure 102400 8282 12.36 91.91 9074 11.28 91.13 7775 13.17 92.41 7274 14.08 92.9
Temperature 87479 7897 11.08 90.97 7299 11.99 91.66 8306 10.53 90.5 7285 12.01 91.67
PPG 127992 80636 1.59 37.11 80956 1.58 36.71 80070 1.6 37.5 77143 1.66 39.76
Accelerometer x 76784 15934 4.82 79.25 18085 4.25 76.47 16493 4.66 78.54 12844 5.98 83.28
Accelerometer y 56611 13278 4.26 76.53 15070 3.76 73.4 12534 4.52 77.88 9821 5.76 82.64
Accelerometer z 76800 11619 6.61 84.87 12722 6.04 83.44 12458 6.16 83.77 9819 7.82 87.21
Gyroscope x 52073 37376 1.39 28.06 39790 1.31 23.66 37750 1.38 27.54 32886 1.58 36.71
Gyroscope y 64205 39847 1.61 37.89 41919 1.53 34.64 40518 1.58 36.71 35332 1.82 45.05
Gyroscope z 41146 33610 1.22 18.03 36185 1.14 12.28 33824 1.22 18.03 28782 1.43 30.07
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Fig. 6: Comparison of the reduction percentage achieved by the four compression algorithms on different sensor data over 50 periods

highest compression ratios and reduction percentages were
achieved by the proposed LS Poly algorithm.

We can notice that the four compression algorithms
reduced the pressure and temperature time series by more
than 90%, since the data in these time series are constant and
highly correlated. In the case of PPG and gyroscope time
series, where the data are not correlated, the maximum
reduction percentage achieved was 45% by the proposed LS
Poly algorithm.

VI. DISCUSSION

In real world applications, different types of data are
usually collected using a single sensor node. The statistical
characteristics of the collected data may also vary. As shown
in Figure 6, we can see that the compression algorithms
achieve high reduction percentage on certain time series
(pressure, accelerometer), and low reduction percentage on

other time series (PPG, gyroscope). Therefore, the
implemented compression technique must have the ability to
adapt and perform well across different types of data, since it
is not feasible to implement a compression algorithm for
each of the collected time series. Additionally, the
implemented compression technique must have low
processing and memory requirements. The time complexity
of the Delta coding, LS, and DCT algorithms are Θ(n),
Θ(n log n), and Θ(n log n) respectively. The four algorithms
are lossless, and most of the performed operations are simple
arithmetic operations, which make them suitable for limited
resources devices.

In order to further reduce the energy consumption due to
transmission, multiple compression techniques can be
combined. However, the trade-off between computational
cost and the energy saved from compression ratio must be
considered.



VII. CONCLUSION

Given the fact that the majority of the total energy
consumption in WBSN applications is consumed by the
wireless transmission of the collected data, data compression
can be considered an efficient way to increase the energy
efficiency of WBSNs. Our main objective in this paper was
to reduce the number of bits needed to represent the sensed
data prior to transmission. The proposed technique is a
lossless transform-based compression technique that does not
require complex mathematical calculation and additional
memory space. This technique is based on the DWT using
the lifting scheme extended with polynomial interpolation. A
series of simulations have been run on real data collected
from Shimmer3 GSR+ Unit to prove the effectiveness of the
proposed algorithm. We compared the proposed algorithm
with the lifting scheme based Haar transform, the simple
delta encoding, and the discrete cosine transform. The results
show that the proposed algorithm achieved the higher
compression ratio on different types of data.

For future work, we intend to combine the proposed lifting
scheme algorithm with the compressive sensing to achieve a
higher compression ratio on non-correlated data such as PPG
and gyroscope time series.
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