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1. Introduction 
 
Industrial systems are more and more complex due, in part, to their growing size and 
to the integration of new technologies. With ageing, these systems become more 
vulnerable to failures and their maintenance difficult and expensive. According to 
statistical data, 70% of industrial accidents are due to human errors [39]. In spite of 
the advances achieved in the control domain and in the computational capabilities in 
the field of process engineering, severe accidents have occurred in the last years: 
AZF of Toulouse, Union Carbide’s Bhopal plant in India, the explosion at the Kuwait 
Petrochemical’s Mina Al-Ahmedi refinery which resulted in hundreds of millions of 
dollars in damages, but especially the injury and death of many people. To avoid 
these situations and in order to satisfy additional requirements of productivity, 
operational availability and safety; industrials and researchers are looking for 
innovative tools and methods. To do this, one of the possible levers consists in 
detecting as soon as possible the probable failures on the system. Indeed, once the 
fault is detected and diagnosed, one can proceed to maintain the system in order to 
reduce its global life cycle costs, to increase its availability, to improve the safety of 
operators and to reduce the environmental incidents. Maintenance tasks can be 
curative or preventive. In curative maintenance framework, the components are 
replaced only when they are not able to fulfil the task for which they are designed. To 
support the curative maintenance, Fault Detection and Isolation (FDI) procedures 
can be implemented. 
 
FDI procedures are based on the comparison between the actual process behaviour 
and the theoretical reference process behaviour given by a model. Reviews of 
process fault detection and isolation methods can be found in [36, 37, 38, 40, 12]. 
According to the knowledge and the quality of data available for the process, the FDI 
methods developed and reported in the literature can be classified into two main 
approaches, namely: qualitative FDI and quantitative FDI.  
 
Quantitative FDI approach [11, 27] (also called model-based approach) includes 
parity space methods, parameter estimation techniques, state observers, etc. It can 
be used in the case where the process for which one aims to perform a fault 
diagnostic is sufficiently known so that a model that reflects as faithfully as possible 
its dynamic behaviour can be derived. Thus, quantitative methods are strongly 
dependent on the availability of an explicit analytical model to perform FDI on the 
process. The obtained model is used to generate what is called fault indicators 
(analytical redundancy relations, residuals, etc.). The online evaluation and analysis 
of these indicators allow to detect and to isolate faults affecting the process.  
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Qualitative FDI approach [37, 38], does not use specifically analytical models and its 
methods are generally derived from artificial intelligence techniques (neural 
networks, expert systems, case based reasoning, etc.). Instead of quantitative 
methods, the qualitative approach can be used in cases where the analytical model 
is difficult to obtain or simply does not exist. 
 
The detection and the isolation of the faults on a given process consist in two main 
steps. The first step provides the possible inconsistencies between the process 
model and its actual behaviour. These discrepancies are called residuals and are in 
fact signals resulting from the comparison between the model’s outputs and the 
actual outputs of the process measured by the sensors [36]. This comparison can be 
obtained from analytical or knowledge based constraints, called redundancies. A 
good account of such redundancy based methods is given in [8, 22, 18]. The second 
step in a FDI method is the decision procedure, which allows locating or isolating the 
fault and possibly identifying its origin.  
 
In quantitative model based approache, getting a refined model with all known 
parameters, and which can reflect faithfully the behaviour of the system, is not a 
trivial task. Moreover, in real engineering systems, the physical phenomena 
(hydraulic, thermal, chemical, etc.) are strongly coupled and the models are often 
nonlinear. Modelling such processes needs a multidisciplinary and a unified tool. 
This is why, the bond graph methodology [32, 13, 19] as a graphical and a unified 
multi-energy domain modelling tool is proving to be a convenient representation. 
 
Various bond graph based qualitative and quantitative FDI approaches have been 
developed to detect and to isolate faults in single or piecewise single energy 
domains [31, 15, 16, 7]. These methods rely on the generation of what is called 
Analytical Redundancy Relations (ARRs). 
 
An ARR is a static or a dynamic constraint which links the time evolution of the 
known variables when the system operates according to its normal operation model. 
It can be derived from a set of equations or constraints by eliminating the unknown 
variables. For this, various structural analysis or polynomial approaches can be used 
[8]. In linear cases, the elimination of unknown variables can be performed by using 
projection techniques leading to parity space residuals (note that a residual is a 
result of a numerical evaluation of its corresponding ARR) [5]. However, eliminating 
the unknown variables is not always an easy task, especially for nonlinear systems.  
 
The FDI method proposed in section 3 is based on the use of a bond graph tool. This 
method is particularly suitable for multi-physical systems, where several types of 
energy are involved. The use of bond graph allows easily deriving analytical models, 
eliminating the unknown variables and generating ARRs. The elimination process is 
based on the exploitation of the causal and the structural properties of bond graph 
[6, 31, 25, 23, 22]. 
 
 
2. Definitions and Terminology 
 
For the sake of clarity, and before presenting the proposed model-based FDI 
method, it is useful to recall some necessary definitions and terminology used 
hereafter.  
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• Bond graph generalised variables: in the following FDI method, the effort (e) 
and the flow (f) are used as the generalised bond graph variables. The flow can 
represent the velocity, the current, the hydraulic flow and other analogue variables 
depending on the physical domain. Similarly, the effort can represent a force, a 
torque, a voltage, a pressure and other analogue variables. 

• Analytical Redundancy Relation (ARR): a constraint derived from an over-
constrained sub-system and expressed in terms of known variables of the 
process [29]. The general form of an ARR is given by the following expression: 

 
( ) 0f K =                 (1) 

 
where K is the set of known variables and/or parameters. In a bond graph sense, 
the set of known variables represents the outer vertices (the flow Df and the effort 
De detectors, the flow Sf and the effort Se sources, the modulated flow MSf and 
effort MSe sources, the process inputs u and the process parameters θ) [23]. 
Thus, equation (1) becomes:  

 
( ), , , , , , ,f De Df Se Sf MSe MSf u θ 0=                  (2) 

 
• Residual: numerical evaluation of an ARR.  
 

( )r f K=             (3) 
 

A residual  is sensitive to faults of the jth component if and only if one (or more) 
parameter belonging to the jth component appears in . 

ir

ir
• Fault signature: binary matrix ijS  built from the structure of the residuals. It is 

obtained by using the following test: 
 

1,     if the  residual is sensitive to faults in the  component
0,    otherwise

th th

ij
i j

S
⎧

= ⎨
⎩

          (4) 

 
The matrix  provides the logic for the process fault isolation once the 
monitoring system has detected a fault. Each component has a corresponding 
signature and its fault is isolable if and only if its signature is unique, i.e. different 
from the signatures of all other components. 

ijS

• Coherence vector: [ ]1 2, ,...., nC c c c=  indicates whether or not a fault (only one 
fault at each time is assumed in the following method) is present in the process. 
Each element ic  of C is obtained from a defined decision procedure: ( )i irΦ ; i.e. 

( ) .  i i ic r= Φ
 
Note that when , i.e. 1ic = [ ]0,0,....,0C ≠ , an alarm is generated. Theoretically, if 

the system is fault-free, then the value of each residual ( )1,...,ir i n= is equal to 

zero. But in practice and in the simplest case, ( )T irΔΨ  is bounded by a small 

value iε  ; where  is a residual pre-processor, e.g. a moving average for a TΔΨ
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duration of . The termTΔ iε  is due to modelling errors and measurement noises. 
In the simplest case, each element  of C is obtained by using the following 
decision procedure: 

ic

 
1,

,
    if   

0    otherwise
i i

i

r
c

⎧ >⎪= ⎨
⎪⎩

ε
                   (5) 

 
The chosen value of iε  must neither be too big to avoid the missed alarms (non-
detection), nor be too small to avoid the false alarms. 

 
 
3. Bond Graph Model-Based FDI 
 
In the following FDI method, the set of ARRs and the corresponding residuals are 
obtained from a bond graph model by eliminating the unknown variables. This 
elimination is possible only when the corresponding system of equations derived 
from the bond graph model is over-determined (or over-constrained). According to 
[30], in a set of constraints or equations, a causal assignment associating one or 
more variables with the set of constraints is called a matching. Those variables 
which cannot be matched cannot be calculated. Variables which can be matched in 
more than one way can be calculated by different (redundant) means, thus providing 
a mean for fault detection and a possibility for reconfiguration. Indeed, any finite-
dimensional bipartite graph [30] can be canonically decomposed into three unique 
sub-graphs with specific properties: an over-constrained subsystem which means 
that the variables have to satisfy more constraints than the number of unknown 
variables, a just-constrained subsystem, and an under-constrained subsystem which 
has less number of constraints than the number of unknown variables. 
 
The aforementioned analysis can be applied on bond graph to perform structural 
analysis. In fact, the structure of any physical system can be represented by a bond 
graph model. A bond graph model with a correct causality means that the 
corresponding system of equations is solvable and then the set of unknown variables 
can be calculated. This is exactly what is meant by a just determined system. 
Similarly, if the causality cannot be assigned completely and correctly, the resulting 
system of equations is termed under-determined. The over-determined sub-systems 
correspond to the observable sub-graphs in the bond graph model of the system and 
are used to generate the list of ARRs. 
 
In following FDI method, the model is assumed to satisfy the following conditions: 
 
• All the storage elements in the behavioural bond graph model are in integral 

causality. 

• All the states of the system are observable in the given operating range. 

• When preferred derivative causality is assigned to storage elements in the bond 
graph model, there are no causal loops involving storage elements. 

• A single fault hypothesis is considered. 
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The main steps of the FDI bond graph based method to generate the ARRs, the 
residuals and the corresponding fault signature matrix are summarized hereafter. 
Interested readers can find more details about the method in [25, 22]. 
 
• Build the bond graph model in preferred integral causality. 

• Put the bond graph model in preferred derivative causality (with sensor causality 
inversion if necessary). 

• Write for each junction its corresponding equations. 

• Write the constitutive equation for each bond graph element. 

• Eliminate the unknown variables from each junction equation involving a detector 
(or a sensor) by covering the causal paths on the bond graph model in derivative 
causality. 

• Generate the ARRs, the residuals and the corresponding fault signature matrix. 

 
Note that the number of generated ARR is equal to the number of detectors (or 
sensors) on the bond graph model for an observable system and with none 
unresolved algebraic loops [22]. 
 
 
4. Application Example 
 
The FDI method presented in the previous section is applied on a mechatronic 
system shown in Fig. 1 and taken from [13]. 

Voltage 
source DC Motor

Load
mass  ( )E t

1v
2v

ω
Voltage 
source DC Motor

Load
mass  ( )E t

1v
2v

ω

 
 
 
 
 
 
 
 

Figure 1. A mechatronic system. 
 
Figure 1 shows the physical part of a load positioning system without the sensors 
and the controller. The corresponding bond graph model in preferred integral 
causality of the system is given in Fig. 2, where the  element represents the 
elasticity of the tube connecting the nut to the load mass. The model in Fig. 2 
contains 2 additional sensors represented by two flow detectors: 
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Figure 2. Bond graph model in preferred integral causality. 
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In order to derive appropriate equations and generate the ARRs and the 
corresponding residuals, the bond graph model of Fig. 2 is put in derivative causality 
as shown in Fig. 3. 
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Figure 3. Bond graph model in derivative causality. 
 
The junction (“1”, “GY”, “1”, “TF”, “0” and “1”) equations obtained from the bond 
graph model of Fig. 3 are given by the following expressions:  
 

1 3 4

2 1 3 4

2f f f f
e e e e
= = =⎧

⎨ = − −⎩
 ;  ; 4 5

5 4

.

.
e r f
e r f
=⎧

⎨ =⎩

5 6 8 9

7 5 6 8 9

7f f f f f
e e e e e

= = = =⎧
⎨ = − − −⎩

 ; 9 10

10 9

.
.

e s e
f s f
=⎧

⎨ =⎩
 ; 10 11 12

12 10 11

e e e
f f f
= =
= −⎩

⎧
⎨  ;    (6) 

 

12 13 14 15

13 14 15 12

e e e e
f f f f
= + +⎧

⎨ = = =⎩
          (7) 

 
Note that in the above equations only generalized bond graph variables are used. 
They will be replaced by the physical variables once the ARRs are obtained. 
  
Similarly, the constitutive equations corresponding to the bond graph elements of 
Fig. 3 are expressed as follow:  
 

2 2
1f e
R

=  ; 3
3

dfe L
dt

=  ;  ; 6 1e b f= 6
7

7 1
dfe J  ; 
dt

= 11
11

1 def
k dt

=  ; 13 2 13e b f=  ; 15
15

dfe m
dt

=   (8) 

 
The ARRs can then be generated by using the above equations. For this application, 
two ARR can be obtained. Indeed, because the system is fully observable, the 
number of ARRs is equal to the number of detectors (or sensors) in the model. Each 
ARR is derived by writing the junction equation to which the detector is connected. 
 
Thus, the first ARR comes from junction equation to which the flow detector :Df ω  
belongs: 
 

7 5 6 8e e e e e9= − − −             (9) 
 
The replacement of each unknown variable of the above equation by known leads to 
an ARR. Thus 7 0e = , which a strict application of the definition of a flow detector. 
The remaining variables of equation (9) can be eliminated by using the following 
equations: 
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3
5 4 2 2 7. . . . .dfr re r f r f e E L r f

R R dt
⎛= = = = − −⎜
⎝ ⎠

⎞
⎟         (10) 

 
where  
 

( )5
3 4 6 8 9

1 .ef f e e
r r

= = = + + e

.

               (11) 

 
and 
 

6 1 7 1.e b f b ω= =  ;    8 1.
de J
dt
ω

=  ;    ( ) 2
9 10 13 14 15 2 2. . . . 0 . dve s e s e e e s b v m

dt
⎛ ⎞= = + + = + +⎜ ⎟
⎝ ⎠

   (12) 

 
Thus : 
 

2
3 1 1 2 2

1 . . . . .dvdf b J s m b v
r dt dt

ωω⎛ ⎞⎛ ⎞= + + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

        (13) 

 
The first ARR is then given by the following equation:  
 

2 2
1 1 1 2 2 1 1 2: . . . . . . . . . . . 0dv dvr L d d dARR E b J s m b v r b J s m b v

R r dt dt dt dt dt
ω ωω ω ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− + + + − − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

2 =   (14) 

 
The corresponding residual is given by the following relation: 
 

2 2
1 1 1 2 2 1 1: . . . . . . . . . . .dv dvr L d d dr E b J s m b v r b J s m b v

R r dt dt dt dt dt
ω ωω ω ω

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛− + + + − − − − +⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠⎝ ⎠
2 2

⎞
⎟
⎠
    (15) 

 
The second ARR can be generated by writing the junction equation to which the 
detector  is connected. It can be obtained by applying the same approach as 
for ARR1. 

2:Df v

 
12 13 14 15e e e e= + +            (16) 

 
The elimination of the unknown variables in equation (13) is performed as follows: 
 

14 0e =  ;   15 2
15 . .df dve m m

dt dt
= = ;   ( ) ( )12 11 11 10 12 2.e e k f dt k f f dt k s v dtω= = = − = −∫ ∫ ∫    (17) 

 
The second ARR is then: 
 

( ) 2
2 2 2: . . .dvARR k s v dt m b v

dt
ω 2 0− − −∫ =           (18) 

 
However, in order to avoid initial conditions, a derivative operation is done on the 
above equation. Thus the final second ARR is:  
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( )
2

2 2
2 2 22: . . .d v dvARR k s v m b

dt dt
ω 0− − − =             (19) 

 
The corresponding residual is: 
 

( )
2

2 2
2 2 22. . .d v dvr k s v m b

dt dt
ω= − − −             (20) 

 
The fault signature matrix corresponding to this mechatronic example is deduced 
from ARR1 and ARR2. The rows of this binary matrix correspond to the residuals and 
the columns correspond to the possible faults on the physical components of the 
system. 
 

 DC motor Screw-nut Elasticity Load Sensor ω Sensor v2 
r1 1 1 1 1 1 1 
r2 0 1 0 1 1 1 
Db 1 1 1 1 1 1 
Ib 0 0 0 0 0 0 

 
Table 1. Fault signature matrix 

 
In addition to rows representing the residuals, two additional rows are added: the 
fault detectability Db and the fault isolability Ib. A “1” value on respectively Db and Ib 
columns means that faults on the corresponding components are detectable and 
isolable. Similarly, the presence of a “1” value on r1 and r2 columns shows the 
influence of the corresponding components on the residual variations. From table 1, 
one can conclude that all the faults are detectable but none is isolable.  
 
 
5. Conclusion 
 
A model based FDI method is presented, where the model is built by using the bond 
graph tool. The method is suitable and applicable for multi-physical systems where 
several energy domains are involved. The most part of the work of this method 
consists in constructing a correct and faithful bond graph model that represents the 
physical phenomena of the system. Once this task performed the ARRs and 
residuals generation is straightforward. 
 
However, the real implementation of the proposed FDI method needs other tasks 
which are not presented here. They concern the processing of the data provided by 
the sensors, the definition of the fault thresholds and the implementation of the 
decision logic to detect and to isolate the faults. 
 
 
References 
 
[1]  Borutzky W., Supporting the generation of a state space model by adding 

tearing information to the bond graph, Simulation Practice and Theory, vol. 7, n° 
5–6, pp. 419–438, 1999. 

[2]  Borutzky W., Cellier F.E., Tearing algebraic loops in bond graphs, Transactions 
of the Society of Computer Simulation International, vol. 13, n° 2, pp. 102–115, 
1996. 

504 
 

ha
l-0

06
35

54
9,

 v
er

si
on

 1
 - 

25
 O

ct
 2

01
1



 
Chapter 6: Fault Diagnostics 

[3]  Basseville, M., & Nikiforov, I. V. Detection of abrupt changes: Theory and 
application. Englewood Cliffs, NJ: Prentice-Hall ISBN: 0-13-126780-9, 1993. 

[4]  Cacho R., Felez J., Vera C., Deriving simulation models from bond graphs with 
algebraic loops: the extension to multibond graph systems, Journal of the 
Franklin Institute, vol. 337, n° 5, pp 579–600, 2000. 

[5]  Chow E.Y., Willsky A.S., Analytical redundancy and the design of robust failure 
detection system, IEEE Trans. Autom. Control, vol. 29, n° 7, pp. 603–614, 1984. 

[6]  Dauphin-Tanguy G, Rahmani A, Sueur C. Bond graph aided design of controlled 
systems. Simulat Practice Theory, vol. 7, n° 5–6, pp. 493– 513, 1999. 

[7]  Feenstra P.J., Mosterman P.J., Biswas G., Breedveld P.C., Bond graph 
modeling procedures for fault detection and isolation of complex flow processes, 
in: Proc. ICBGM’01, Simulation Series, vol. 33, no. 1, 2001, pp. 77–82, ISBN: 1-
56555-103-6. 

[8]  Frank P.M., Fault diagnosis in dynamic systems using analytical and knowledge 
based redundancy - a survey and some new results, Automatica, vol. 26, n° 3, 
pp. 459–474, 1990. 

[9] Isermann R., Process fault detection based on modeling and estimation 
methods—a survey, Automatica, vol. 20, pp. 387–404, 1984. 

[10] Isermann R.. Supervision, Fault-Detection and Fault- Diagnosis Methods - An 
introduction. Control Engineering Practice, vol. 5, pp. 639–652, 1997. 

[11] Isermann R.. Model-based fault-detection and diagnosis - status and 
applications. Annual Reviews in Control, vol. 29, pp 71–85, 2005. 

[12] Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and 
prognostic implementing condition-based maintenance. Mech Syst Sign 
Processing, vol. 20, pp. 1483-1510, 2006. 

[13] Karnopp D.C., Margolis D.C., Rosenberg R., System Dynamics: Modeling and 
Simulation of Mechatronic Systems, John Wiley, New York, 2006. 

[14] Kobi, A., Nowakowski, S., Ragot, J. Fault detection–isolation and control 
reconfiguration. Mathematics and Computers in Simulation, vol. 37, n° 2–3, pp. 
111–117, 1994. 

[15] Kohda T., Inoue K., Asama H., Computer aided failure analysis using system 
bond graphs, in: Proc. ICBGM’01, Simulation Series, vol. 33, n° 1, pp. 71–76, 
ISBN: 1-56555-103-6, 2001. 

[16] Linkens, D., & Wang, H. Qualitative bond graph reasoning in control 
engineering: Fault diagnosis. In International conference on bond graph 
modeling and simulation (ICBGM’95), Simulation Series, vol. 27, n° 1, pp. 189–
194, ISBN 1-56555-037-4, 1995. 

[17] Maciejowski, J. M. Modelling and predictive control: Enabling technologies for 
reconfiguration. Annual Reviews in Control, 23, 13–23, 1999. 

[18] Medjaher K., Samantaray A.K., Ould Bouamama B., Staroswiecki M.. 
Supervision of an industrial steamgenerator. Part II: Online implementation. 
Control Engineering Practice, vol. 14, pp. 85–96, 2006. 

[19] Mukherjee A., Karmakar R., Modelling and Simulation of Engineering Systems 
Through Bond Graphs, Alpha Sciences International, 2000. 

[20] Murakami T, Nakajima N. Computer-aided design-diagnosis using feature 
description. In: Gero JS, editor. Artificial intelligence in engineering: diagnosis 
and learning. Elsevier,  pp. 199–226, 1988. 

[21] Oh, K. W., Quek, C. BBIPS: A blackboard-based integrated process supervision. 
Engineering Applications of Artificial Intelligence, vol. 14, n° 6, pp. 703–714, 
2001. 

[22] Ould Bouamama B., Medjaher K., Samantaray A.K., Staroswiecki M.. 
Supervision of an industrial steamgenerator. Part I: Bond graph modelling. 
Control Engineering Practice, vol. 14, pp. 71–83, 2006. 

505 
 

ha
l-0

06
35

54
9,

 v
er

si
on

 1
 - 

25
 O

ct
 2

01
1



 
Maintenance Modelling and Applications 
 

506 
 

[23] Ould Bouamama B., Medjaher K., Bayart M., Samantaray A.K., Conrard B.. 
Fault detection and isolation of smart actuators using bond graphs and external 
models. Control Engineering Practice, vol. 13, pp. 159–175, 2005. 

[24] Ould Bouamama B, Medjaher K, Samantaray AK, Staroswiecki M. Supervision 
of an industrial steam generator. Part I: Bond graph modelling. Control Eng 
Practice, vol. 14, n° 1, pp. 71–83, 2006. 

[25] Ould Bouamama B., Samantaray A.K., Staroswiecki M., Dauphin-Tanguy G., 
Derivation of constraint relations from bond graph models for fault detection and 
isolation, in: Proc. ICBGM’03, Simulation Series, vol. 35, n°. 2, pp. 104–109, 
ISBN: 1-56555-257-1, 2003. 

[26] Patton R.J., Frank P.M., Clark R.N., Fault Diagnosis in Dynamic System: Theory 
and Application, Prentice-Hall, Englewood Cliff, NJ, 1989. 

[27] Patton, R. J., Chen, J.. Observer-based fault detection and isolation: 
Robustness and applications. Control Engineering Practice, vol. 5, n° 5, pp. 
671–682, 1997. 

[28] Paynter H.M. Analysis and design of engineering systems. MIT Press; 1961. 
[29] Staroswiecki M., Comtet-Verga G., Analytical redundancy relations for fault 

detection and isolation in algebraic dynamic systems, Automatica, vol. 37, pp. 
687–699, 2001. 

[30] Staroswiecki M., Quantitative and qualitative models for fault detection and 
isolation, Mechanical Systems and Signal Processing, vol. 14, n° 3, pp. 301–
325, 2000. 

[31] Tagina M., Cassar J.P., Dauphin-Tanguy G., Staroswiecki M., Monitoring of 
systems modelled by bond graph, in: Proc. ICBGM’95, Simulation Series, vol. 
27, n°. 1, pp. 275–280, ISBN: 1-56555- 037-4, 1995. 

[32] Thoma J.U., Introduction to Bond Graphs and their Application, Pergamon 
Press, 1975. 

[33] Thoma J.U., Ould Bouamama B., Modelling and Simulation in Thermal and 
Chemical Engineering: Bond Graph Approach, Springer-Verlag, 2000. 

[34] Van Dijk J., Breedveld P.C., Simulation of system models containing zero-order 
causal paths—I. Classification of zero-order causal paths, Journal of the Franklin 
Institute, vol. 328, n° 5–6, pp. 959–979, 1991. 

[35] Van Dijk J., Breedveld P.C., Simulation of system models containing zero-order 
causal paths—II Numerical implications of class 1 zero-order causal paths, 
Journal of the Franklin Institute vol. 328, n° 5–6, pp. 981–1004, 1991. 

[36] Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., A review of 
process fault detection and diagnosis. Part 1: Quantitative model based 
methods, Computers and Chemical Engineering, vol. 27, pp. 293–311, 2003. 

[37] Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., A review of 
process fault detection and diagnosis. Part 2: Qualitative models and search 
strategies, Computers and Chemical Engineering, vol. 27, pp. 313–326, 2003. 

[38] Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N., A review of 
process fault detection and diagnosis. Part 3: Process history based methods, 
Computers and Chemical Engineering, vol. 27, pp. 327–346, 2003. 

[39] Venkatasubramanian, V. Process fault detection and diagnosis: Past, present 
and future. In Proceedings of 4th IFAC workshop on on-line fault detection and 
supervision in the chemical process industries (pp. 3–15). South Korea, 2001. 

[40] Venkatasubramanian V.. Prognostic and diagnostic monitoring of complex 
systems for product lifecycle management: Challenges and opportunities. 
Computers and Chemical Engineering, vol. 29, pp. 1253–1263, 2005. 

[41] Wang H., Linkens D., Intelligent supervisory control, A qualitative bond graph 
reasoning approachWorld Scientific Series in Robotics and Intelligent Systems, 
vol. 14, World Scientific Pub. Co., Singapore, ISBN: 981-02-2658-6, 1996. 

ha
l-0

06
35

54
9,

 v
er

si
on

 1
 - 

25
 O

ct
 2

01
1


