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Abstract

Assessing the performance of scheduling heuristics through simulation requires one to
generate synthetic instances of tasks and machines with well-identified properties. Carefully
controlling these properties is mandatory to avoid any bias. We consider the scheduling
problem consisting of allocating independent sequential tasks on unrelated machines while
minimizing the maximum execution time. In this problem, the instance is a cost matrix that
specifies the execution cost of any task on any machine. This article proposes two measures for
quantifying the heterogeneity properties of a cost matrix. An analysis of two classical methods
used in the literature reveals a bias in previous studies. We propose new methods to generate
instances with given heterogeneity properties and we show that heterogeneity has a significant
impact on twelve heuristics.
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1 Introduction

Leveraging the parallelism of multi-core distributed platforms involves efficiently scheduling ap-
plications on several machines [22]. Current studies rely on performance evaluation to determine
the best solution for any underlying problem. This process can be divided into distinct categories:
formal analysis, experiments, simulations, etc. In the case of simulations, a scheduling strategy is
tested in a virtual environment with a given workload. This paper focuses on the generation of
synthetic instances.

Synthetic instances of workload allow a more general evaluation than with specific traces. They
are particularly useful for sensitivity analysis [24], which consists in assessing the impact of the
instance properties on the algorithms. However, the lack of control on the instance properties
makes it difficult to confront the results of independent studies. For instance, although many
papers have compared several scheduling heuristics [9, 10, 16,23], predicting their performance is
still an issue. These problems can be tackled by carefully controlling the instance properties.

Specifically, we consider the scheduling problem noted R||Chax in «|8]y notation [20]. It
consists in scheduling n independent sequential tasks on m unrelated machines. All tasks are
available simultaneously and preemption is not possible. The instance is a cost matriz where each
element e; ; is a positive integer that represents the execution cost of task ¢ on machine j. The
objective is to allocate each task to a machine such that the maximum execution time on any
machine is minimized. More formally, we want to minimize max(}_ (i, j) x e; ;) where (1, j) is
equal to one if task i is scheduled on machine j and zero otherwise.

This problem corresponds to numerous practical situations where a set of tasks, either identical
or heterogeneous, must be distributed on platforms ranging from grids to homogeneous clusters
and including semi-heterogeneous platforms such as CPU/GPU platforms. This is the case of
a master/slave application that is publicly distributed. To efficiently run on several platforms
the master must include a component that chooses where to run each task. The choice of the
scheduling algorithm is a key point for the software performance.



To reflect the diversity of heterogeneous platforms, a fair comparison of scheduling heuristics
must rely on a set of cost matrices that have distinct properties. Controlling the generation of
synthetic random cost matrix in this context enables an assessment on a panel of instances that
is sufficiently large to encompass practical settings that are currently existing or yet to come. In
this generation, it is therefore crucial to identify and control the properties that impact the most
critically the performance such as the heterogeneity.

For this problem, the range-based and CVB (Coefficient of Variation Based) methods proposed
in [6,7] are currently the standard methods used in the literature to generate instances. However,
the properties of the matrices generated with these methods have never been formally analyzed
and previous studies may thus be exposed to a bias.

This paper provides the following contributions:!

e a statistical description of the use of the range-based and CVB methods in the literature
(Section 3);

« a study of how to quantify the heterogeneity properties of a cost matrix (Section 4);

« a formal analysis of the range-based and CVB methods and the identification of a bias that
impacts several studies (Section 4);

o a new method with control over heterogeneity properties (Section 5);

o and, an assessment of the impact of these properties on twelve heuristics (Section 6).

2 Related Work

The concept of heterogeneity was first introduced in the context of cost matrix by Armstrong [8].
He described the heterogeneity quadrant in which cost matrices are divided into four categories
depending on their heterogeneity properties regarding tasks and machines: low/low, low/high,
high/low, and high/high. For instance low/high refers to low task heterogeneity and high machine
heterogeneity. However, no method for generating such matrices was proposed.

The range-based and CVB methods were first proposed to fill this gap in [5] and then in [6,7].
However, task and machine heterogeneities were not formally defined and analyzed. The methods
were assumed to generate matrices with the expected properties and only validated through some
examples.

The limits of these methods were later acknowledged in [3], which proposed to consider the
average coefficient of variation?, skewness and kurtosis of the costs for each task and for each
machine. The proposed scheme (based on decision trees) uses these additional information to
predict scheduling heuristic performance. Despite a wide experimentation plan, the study lacks
discussion and interpretation in particular on the relative importance of the considered measures.
Additionally, no formal analysis was provided. The exhibited decision trees suggest that the average
coefficient of variation plays a significant role and our proposed measures rely on this coefficient.

The MPH (Machine Performance Homogeneity) is introduced in [2] for capturing the het-
erogeneity between the machines while its counterpart for the tasks, the TDH (Task Difficulty
Homogeneity), appears in [1]. We discuss them more extensively in Section 4. In addition, the
TMA (Task-Machine Affinity) is also defined in [2]: it quantifies the specialisation of the system
(i.e., whether some machines are particularly efficient for some specific tasks). Although the three
measures are applied to a real benchmark, no method is proposed for generating matrices with
given MPH, TDH and TMA. It is thus unclear what is the impact of the proposed measures on
heuristic performance. Finally, they show that the range-based and CVB methods do not cover the
entire range of possible values for the MPH and the TMA, which is consistent with the conclusion
of Section 4.

IThe related code, data and analysis are available in [11]. Most of these results are also available in the companion
research report [12] and in a conference paper [13].
2Ratio of the standard deviation to the mean.



Friese et al. [17] present a method for adding tasks in a given cost matrix while preserving some
statistical properties on the costs of each machine (mean, coefficient of variation, skewness and
kurtosis). It ignores the properties of the costs of each task however.

A method for generating matrices with varying affinities (similar to the TMA) is proposed in [4].
It is similar to the noise-based method described in Section 5, but no formal analysis is provided.

Khemka et al. [21] propose a method for changing the TMA of an existing matrix while keeping
the same MPH and TDH. TMA is mentioned to be related to the correlation. Investigating the
correlation properties is left for future work. There is also another body of literature dedicated to
the generation of matrices with given correlation and covariance matrices [18].

Finally, the problem of generating contingency tables is close to our problem. The objective
is to generate a uniform matrix with given row and column sums (we consider average in our
problem instead). One significant approach consists in using Markov chain Monte Carlo (MCMC)
methods [15]. However, when used directly, such methods introduce a large variance in the costs,
which hides the effect of the heterogeneity. The shuffling method we introduce below has similarities
with MCMC methods but limits the introduced variance.

3 Matrix Generation Methods

The most used methods for generating cost matrices are the range-based and the CVB (Coefficient
of Variation Based) methods [5-7]. Table 1 summarizes the most frequent notations.

Table 1: List of notations

Symbol  Definition

i index of the tasks
j  index of the machines
n  number of tasks

m  number of machines

ei,; execution cost of task 4 on machine j
w;  weight of task ¢
b; inverse speed of machine j

U(A,B) uniform distribution between A and B
gamma distribution with shape o and
scale 3

Riask parameter for the range-based method
Rumacn  parameter for the range-based method
v parameter for the CVB, shuffling and

task  noise-based methods
parameter for the CVB, shuffling and
noise-based methods
Vioise  parameter for the noise-based method
a fraction of the consistent rows
b fraction of the consistent columns

Vmach

Vigask  first measure of task heterogeneity
Vitmacn  first measure of machine heterogeneity
1WViask  second measure of task heterogeneity
second measure of machine

#Vmach heterogeneity




ALGORITHM 1: Range-based cost matrix generation with the uniform distribution
Input: n, m, Riask, Rmach
Output: a n X m cost matrix

1: for all1 <i<ndo {Generate each row}
2: T[i] < U(1, Ryask)

3: foralll<j<mdo {Generate each value of the row}
4 € T[Z} X U(]., Rmach)

5. end for

6: end for

7. return {e; jhi<i<n,1<j<m

3.1 Range-Based Method

The range-based method generates n vectors of m values that follow a uniform distribution in the
range [1, Rmach] (see Algorithm 1). Each row is then multiplied by a random value that follows a
uniform distribution in the range [1, Rtask] (Line 2). The resulting cost matrix is similar to the
following (where 7 is a vector of n uniform values in [1, Ryagk]):

T[l]U(17 Rmach) e T[l]U(l, Rmach)

T[?’l]U(L Rmach) te T[n]U(l, Rmach)

Proposition 1. When used with parameters Riqs,, and Ropach, the range-based method generates
costs with expected value i(RmSk + 1)(Rmach + 1) and standard deviation ﬁ[(Rmsk — 12(Rinach —

]-)2 + B(Rmach - 1)2(Rtask + 1)2 + 3(Rtask - 1)2(Rmach + 1)2]1/2'

Proof. Each cost is the product of 7[é], which follows a uniform law in the range [1, Riask], and a
random variable that follows a uniform law in the range [1, Ryacn]. Therefore, the expected value
of the costs is the product of the expected values of both distributions, namely (Riask + 1)/2 and
(Rmach + 1)/2

The standard deviation of the product of two random variables with means gy and ps, and
standard deviations oy and oy is \/0703 + p?03 + o7p3. With a similar argument as for the
expected value, we can derive the standard deviation of the costs. O

Table 2 summarizes the properties of this method. Except for low values of Ry.sk and Ryach, the
CV (Coefficient of Variation) remains close to a constant. For instance, when Ri,sk = Rmach = 100,
then the CV is around 0.86. As shown in Section 4, this method is not well-suited to control the
heterogeneity of the resulting cost matrix. Also, given that this method is asymmetric, it may be
expected to handle task heterogeneity differently from machine heterogeneity.

3.2 CVB Method

The CVB method is based on the same principle except it uses parameters that are distinct from
the underlying distribution parameters. In particular, it requires two CV (V;aqx for the tasks and
Vinach for the machines) and one mean (futasx for the tasks). The random values follow a gamma
distribution whose parameters are computed such that the provided CV and mean are respected.

Proposition 2. When used with parameters Vigsk, Vinach and piiask, the CVB method generates

costs with expected value fiyqsx and coefficient of variation /V2 V2, n + VEa+ Voo

Proof. In order to apply the same analysis as in the proof of Proposition 1, we need to prove that
any cost is the product of two gamma distributions. More precisely, we need to prove that the
random generation on Line 8 is equivalent to multiplying ¢[i] by a gamma law with mean one and
CV Vinach.



Table 2: Summary of the cost matrix properties with the range-based method. Asymptotic values
are when both Riagx and Rpyach are large.

Property Value

Expected value 7 (Reask + 1) (Rmach + 1)

) \/(Rmk — 1)*(Rmach — 1)® 4 3(Rumach — 1) (Reask + 1)2+
E 3(Reaskc — 1)*(Rmach +1)°

Standard deviation

l (Rtask—1)2(Rmach_1)2 (Rtask_1)2 (Rmach_l)2
Ccv 5V Frack T2 B 717 T S (Reaek 7192 T 3 (Romaen 7102
Distribution Product of two uniform laws
Asymptotic expected value %RtaSkRmaCh
Asymptotic standard deviation gRtaSkRmach
Asymptotic CV % ~ (.88

ALGORITHM 2: CVB cost matrix generation with the gamma distribution

IHPUt= n, m, ‘/taska Vmach7 Mtask

Output: a n x m cost matrix

T Qlgask 1/‘/3

1 ask

2: Olmach l/Vn%ach

3: Btask <~ Ntask/atask

4: for all 1 <i<ndo
5: q[l] — G(atasku Btask)
6: Bmach [Z] — q[i]/amach

7 forall1 <j<mdo

8 € G(amacm ﬂmaeh ['L])
9: end for

10: end for

11: return {ei)j}lgigmlgjgm

Each cost e; ; is a random variable that follows a gamma distribution with mean g[i] and CV
Viach- The probability that e; ; is no more than x is given by ﬁ*y(a, %) where o = 1/V2, |
B =qli]/a, I'(a) is the gamma function and I'(a, %) is the lower incomplete gamma function.

By contrast, let X be a random variable that follows a gamma distribution with mean one and
CV Vinach. Then, the probability that ¢[i]X is no more than z is the probability that X is no more

than z/q[i]: ﬁ’y(a, x/g[i]) where o = 1/V2, | and 8 = 1/a. It is thus the same as for e; ;.

Thus, Line 8 can be replaced by the product of ¢[i] by a gamma law with mean one and CV
Vinach (i-€., €;j <= q[i]G(0umach; 1/0macn)), which is the product of two gamma distributions.
The proof is then analogous to the proof of Proposition 1. O

Table 3 summarizes the properties of this method, which is more adapted to control the
heterogeneity of the resulting cost matrix. However, it is still asymmetric. Note that the CV is the

same as with the range-based method when we replace Vi, by the CV of the first uniform law,

V12 Riask—1 V12 Rmach—1
6

6 Rtask+1 ’

and Vipach by the CV of the second uniform law, SRR

3.3 Consistency Extension

Both the previous methods produce cost matrices that may not be representative of realistic
settings. For instance, the costs of a given task is not correlated to the costs of another task, which
may often be the case in practice. The consistency extension consists in reordering the costs in
the generated matrix to have an instance that is closer to the uniform case. Specifically, the rows



Table 3: Summary of the cost matrix properties with the CVB method.

Property Value
Expected value Itask
Cv \/‘/t'iskvr?lach + Vtisk + Vanach
Distribution Product of two gamma laws

of a submatrix of an rows and bm columns are sorted. Thus, a machine that is faster for a given
task than another machine will likely be also faster for another task. Inconsistent matrices have
a = b = 0 while consistent matrices have a = b = 1 (other matrices are either called semiconsistent
or partially consistent).

3.4 Usage in the Literature

We covered the English articles that cite at least one of the references in which the methods were
initially presented and that were freely available. For each reference, we extracted all the distinct
sets of parameters. Additionally, we differentiated between example cost matrices that illustrate
the generation methods from cost matrices that are used in actual sets of experiments to study
scheduling algorithms. However, the size was ignored as we only consider asymptotic properties
(the impact of the size is assessed in [12, Section 4.6]).

Some data were not specifically provided. The parameters that could be directly inferred from
the article or from similar works are emphasized: this concerns mostly missing parameters for the
consistency extension (the ones from the cited article were taken). Otherwise, they are treated
as missing values (denoted by NA). Some articles lack enough information, which prevented any
parameter extraction.

On the 160 analyzed articles, 78 provide exploitable information on the cost matrix instances.
The rest consists of 40 articles with no description, but which refer to instances described in other
articles and 42 articles with unclear descriptions or approaches that do not fit the current study.
The extracted data are available in [11,12, Appendix B] and summarized below. While most
articles fail to precisely describe the used method, only the range and CV parameters are crucial
for reproducing similar instances. In the end, 342 sets of parameters were extracted in 78 articles
for a total of 210 unique settings: 37 for the range-based method and 173 for the CVB one.

Figure 1 depicts the values used with both methods. Although there is no clear agreement on
which precise parameters are the most relevant, there are some common tendencies. Values for
low heterogeneity are usually 10 and 100 for the range-based method and .1, .25 and .3 for the
CVB method. Values for high heterogeneity are usually 100, 1e3, 3e3 and 1eb for the range-based
method and .3, .35, 4, .5, .6, .7, .9, 1 and 2 for the CVB method.

4 Heterogeneity Measures

Assessing the impact of heterogeneity on heuristic performance requires a method for quantifying
the heterogeneity of the generated cost matrices.

4.1 TDH and MPH

The closest related measures are the TDH (Task Difficulty Homogeneity) and the MPH (Machine
Performance Homogeneity) [1,2]. The TDH computation is described in Algorithm 3. The
value T'D[i] represents the difficulty of task ¢, namely whether it has small costs. After the ordering,
the final sum computes the average ratio between similar tasks in terms of difficulty (which lies in
the interval (0, 1]). If this average is one, then tasks are all similar. If it is close to zero, then the
task heterogeneity is large.
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Figure 1: Parameters used in the literature. Three points are not shown for the CVB method:
(1.4,0.4), (1.8,0.4) and (0.1, 2).

ALGORITHM 3: TDH computation

Input: a n x m cost matrix
Output: the TDH of this matrix
fora111<z<ndo

TDIi] « Y, -
end for

sort T'D in ascending order
t TDli]
return o5 Zz 1 TD[i+1]

The MPH computation is analogous except that the sum on Line 2 is performed on each row
instead of each column. This results in a measure of the machine heterogeneity.

These measures have three major shortcomings (as mentioned in Section 2). First, they are not
intuitive (they require to invert costs, to order sums and to average ratios). Also, they do not rely
on classical statistical measures, which makes deriving formal results more difficult. In particular,
the ordering on Line 4 complicates formal analysis. A last notable problem is that the resulting
values depend on the size of the matrix. In particular, it is close to one when the matrix is large
(even if it is generated with the same parameters and has, intuitively, the same characteristics).
For instance, if we consider only one machine, the following matrices (cost vectors in this case)
have the same TDH: [1,2] and [0.125,0.25,0.5,1,2,4]. The second vector, however, seems more
heterogeneous. As another example, let the minimum TD be 1 and the maximum TD be 100.
Given Proposition 3, the TDH is always greater than 0.60 when there are 10 tasks and it is always
greater than 0.95 when there are 100 tasks. This measure is thus relevant only for comparing small
cost matrices with similar sizes.

ors log(min(TD))/(n—l)
Proposition 3. The TDH cannot be lower than ¢ °\max(TD) .

Proof. The minimum TDH is achieved when the sum Y

Let f : [a1,a,]" 2 — (0,00) be the corresponding multlvarlate function with a; and a,, being
constant. Each value a; for 1 < i < n is greater than or equal to a; because the a; are ordered.

1 where a; = TD[i] is minimum.
1= a;



As ay represents an average cost and is thus strictly greater than zero, all nominators and all
denominators are strictly greater than zero. Therefore, f is a continuous function from the compact
[a1,a,]" 2. The extreme value theorem states that a continuous function from a non-empty
compact space to a subset of the real numbers attains a maximum and a minimum. This proves
the existence of a minimum.

We now show by contradiction that this minimum is achieved when the ratios a?L

equal for 1 <7 < n. Assume it is not the case and let ¢ be the lowest value for which aﬁl #+ ZE,

which can be rewritten as a;4+1 # /a;a;+2. A lower value is attained when a;y1 = /a;a;12
because the partial derivate of f with respect to a;+1 (i-e., —a;’gl + —L-) is zero with this

are all

iyl

value. Therefore, the minimum is achieved when all ratios are equal. This is the case when

(223
Aq41

i—1 an
elog(TD[l])Jrn—l IOg(al ) for 1 S Z S n.
TD[1]
[n]

e min(TD) )y gy
When replacing a; by T'D[i], the TDH simplifies as elog(TD )/( D oor elog(mx(TD))/( TS
the vector T'D is not sorted. O

a; =

4.2 Intuitive Measures of Heterogeneity

We propose below two intuitive measures of task and machine heterogeneity that rely on classic
properties:

o Assuming that the mean of each row represents a task weight, the task heterogeneity may
be defined as the CV (Coefficient of Variation) of the means of the rows (noted Vjigask)-
Analogously, the machine heterogeneity may be measured as the CV of the means of the
columns (noted V' fimach)-

M1 €11 " €1m

cv

Hn €n,1 " Enm

e Alternatively, the CV of one column may represent the task heterogeneity for a given machine.
Therefore, the mean of the CV of the columns may measure the task heterogeneity (noted
1Viask) while the mean of the CV of the rows may measure the machine heterogeneity (noted

MVmach) .

The first measure of task and machine heterogeneity has been criticized for small instances [1].
The MPH is argued to outperform the CV as it is less sensitive to outliers. In this situation, the
CV can be replaced by the quartile coefficient of dispersion, which is a similar standard statistical
measure but is more difficult to formally analyze. Finally, the decision trees in [3] suggest that
varying this measure has an impact on the heuristic performance and is thus significant.

With both measures, it is possible to use the standard deviation instead of the CV. However, the
CV provides a relative measure that is independent from the cost mean. If an absolute measure is
deemed more meaningful, the proposed measures can be adapted by using the standard deviation.

4.3 Coherence with the Uniform Model

The previous measures do not only rely on intuition, they are also consistent with the expectation
when we consider the uniform model. In this model, the cost of executing a task ¢ on a machine j
is given by the product of the task weight, w;, and the machine cycle time, b;. The concept of
task and machine heterogeneity is easy to grasp in the uniform model: it is given by the statistical
dispersion of the weights and the speeds, respectively. We assume that the CV of the weights,
noted C'Vi,sk, is a relevant measure of the task heterogeneity. Analogously, the CV of the speeds,
noted C'Vinach, represents the machine heterogeneity.

It is possible to convert an instance of the uniform model to the unrelated model because this
last model is more general. The cost matrix is generated by combining both vectors {w;}1<i<n



and {b;}1<j<m such that e; ; = w;b;. As we know the heterogeneity properties of a uniform
instance, we expect our proposed measures for the unrelated model to be consistent when applied
on the converted instance.

Proposition 4. Let U = ({w; }1<i<n, {bj }1<j<m) be a uniform instance and E = {e; ; }1<i<n,1<j<m

be the corresponding unrelated instance such that e; j = w;bj. Then, CViqst(U) = Vppasu(E) =
M‘/task(E) and Cvmach<U) = Vﬂmach(E) = Mvmach(E)-

Vo W= wi/m)? .
Proof. By definition, CVisx (U S win whereas V pask (F) is the CV of the

means of the rows. The mean of row ¢ is 23:1 eij/m = w;/m Z;nzl bj. Then, Vyx(E) =
Voo (wig)2n—(O"" wip/n)?
:L wigp/n
V/J/task( ) C‘/tdbk( )
Remember that pViask(E) is the mean of the CV of the columns. The CV of column j, C'V; is

where ¢ = Z;n:l b;/m is the mean of the inverse speeds. Therefore,

\/Zl 1 z,] (Z?*l ei’j/n)2
Zz 1 elv]/n

/T (wib)P 0 — (e (wiby) /)
S (wiby)/m

CV; =

= CV;;ask(U)

The mean of these CV is thus also CViaek (U).
The demonstration is analogous for the machine heterogeneity measures. O

Proposition 4 shows that our proposed measures are consistent with the intuition on uniform
instances.

4.4 Heterogeneity of the Range-Based and CVB Methods

We analyze the asymptotic heterogeneity properties of the CVB method with the proposed measures
depending on the parameters Vi sk and Vipaen. An estimator T' converges to @ when the expected
value of T tends to 6 as the number of samples (n and m in our case) tends to oo.

Proposition 5. The measure V piqsr; of a cost matriz generated using the C'VB method with the
parameters Vigsk and Vipaen converges to Vigsk as n — 0o and m — 0o.

Proof. This proof assumes that the mean of a set of n samples (called the sample mean) of a
random variable with mean p and standard deviation o is a random variable with mean p and
standard deviation ~7-. Moreover, the CV of a set of n samples (called the sample CV) of a random
variable with CV V converges to V as n — oc.

Let p; be the sample mean of the costs on row ¢. This row is the product of ¢[], which is
a random variable that follows a distribution with mean p¢.sx and CV Viagk, and m values that
follow a distribution with mean one and CV Vj,,ch- w4, is thus also the product of the first random
variable and the sample mean of the other m values, which follows a random variable with mean

2 V2
one and CV V\‘;ﬂh Therefore, the mean of u; is pask and its CV is \/ task%”‘ —mach 4 VtQaSk,
which tends to Vi,sx as m — oo. The consistency properties have no impact on u; because only
values on the same row are ordered. O

Proposition 6. The measure V pimach of a cost matriz generated using the CVB method with the
parameters Vigsk and Viyqcn converges to a\/EVmach asmn — 0o and m — 00.

Proof. Let u; be the sample mean of the costs on column j. The measure V jimach is the ratio of
the sample standard deviation of all 1, noted o ftmach, to the sample mean of all 1;, noted ftpimach-



Let’s distinguish the columns where the costs are consistent (1 < j < bm) from the inconsistent
columns (bm < j < m). For the inconsistent columns, p; is the sample mean of n values that follow
a product between a distribution with mean pig,sc and CV Viagx, and a distribution with mean one

V2 2
task ‘/:11mch+v <k+

m’xch

and CV Viacn. Thus, p; follows a distribution with mean pitaqx and CV \/
for bm < j < m. Therefore, the sample mean of p; converges to jitask and its sample standard
deviation converges to zero as n — oo for bm < j < m.

For the consistent columns, a X n rows are sorted. Let g, denotes the p-quantile of a distribution
with mean one and CV Viaa, (it is the value x for which F(z) = p where F is the cumulative
distribution function). Note that e; ; — q[i]g;/@m) as m — oo for 1 <i < an and 1 < j < bm.
Therefore, p; can be decomposed as a weighted sum of sample means (one for the sorted rows and
another for the last rows): the first sample mean follows a distribution with mean fitaskq;/(pm) and

2
CV % while the second follows a distribution with mean pag; and CV \/ Vi “‘az‘i+a3;*k+v ach

Therefore, the sample mean of j1; converges to afiaskq; J(bm) T (1 — a)pttask and its sample standard
deviation converges to zero as n — oo for 1 < j < bm.

On one hand HHmach = L ZJ 1 M5 = %(Z?ml (a,utask(b/(bm) +( _a),ut'lsk) (1 b)m,uftusk) =
ablieask er Zj 1%/m) + (1 = a)bpigask + (1 — b)pieask as n — oo. Note that ;- Z] L/ m) =
fol gpdp = 1 as m — oo. Thus, ftmach = ftask @8 7 — 00 and m — oco. On the other hand, as
n — oo and m — oo:

1 «— 1 &
O lbmach = E Z /J/? - E Z Hj
j=1 j=1

bm

= *Zuﬁ* > i

j=bm+1
1 bm
= \ % (autastj/(bm) + (1 - a)utask)2+
j=1
(1 - b)lugask - M?ask
1 bm
= HUtask m Z(a2qu-/(bm) + 2aq]‘/(bm)(1 —a)+
j=1
EmEE
1 bm
= Htaskcy | 0%b7— Z @}y +20(1 Z a5/ (bm)+
(I—a)?b-0

bm
1
— 2 _
= a\/l;,utask b Z 4/ (bm) 1
J=1

Note that ;- Z;’:l qu./(bm) = fol gidp = [ 2?f(x)dz = V2,41 asm — oo with the substitution
p = F(x) and dp = f(x)dx where f is the probability density function of a distribution with mean
one and CV Vacn. This requires the distribution to be continuous, which is the case for the
gamma distribution. Therefore, opmach = a\/g,utaskaaCh and V mach = aVbVipach as n — 0o and
m — 00. ]
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Table 4: Summary of the heterogeneity properties of the CVB method.

Measure Value
V,U/task Vrtask
VV2 +V2 ifa=0
VA task mach task mach
H ¥ task {thask F(1—b)® ifa=1
V,U/mach a\/EVmach
MVmach Vmach

Proposition 7. The measure uViqsi of a cost matriz generated using the CVB method with the

2 . . .
parameters Vigsi, and Vigen converges to \/‘/taskvmac + Vi + Vmach as n — oo if the matriz is

inconsistent and to bViaep + (1 — b \/ o ok mach + Vask + Vmach asn — oo and m — oo if a =1.

Proof. Let V; be the sample CV of column j. When a = 0, the values on column j follow a
distribution that is the product of a distribution with mean p,sx and CV Vi,gk, and a distribution
with mean one and CV Viyacn. Therefore, V; converges to /V2 V2, . + V2, + V2, . asn — oo.
Since thib value does not depends on j, 1V;ask (the sample mean of these sample CV) also converges
to \/ abk ach + Vzask + Vmach as n — oo.

When a = 1, V; still converges to \/Vtask 2 T Via + V2, as n — oo for bm < j < m.
However, p; (the sample mean of column j) converges to fitaskqj/(bm) a8 7 — 00 and m — 00
while o; (the sample standard deviation of column j) converges to fiask Viaskd; /(bm) @S M — 00
and m — oo for 1 < 7 < bm. Thus, V; convergebtthask asn—>ooandm—>oofor 1 <5 <bm.
Therefore, uViask converges to bCViask + (1 — b \/ ok Vs ach + Vt%sk + Vmach as n — oo and

m — 00. O

Proposition 8. The measure pVyacn of a cost matriz generated using the CVB method with the
parameters Vigsk, and Vipaen converges to Vigen a8 m — 00.

Proof. Let V; be the sample CV of row i. The values on row i follow a distribution that is the
product of ¢[i] and a distribution with mean one and CV Viacn. Therefore, V; converges to Vipach
as m — oco. Since this value does not depend on 4, uViacn (the sample mean of these sample CV)
also converges to Vipach as m — oco. O

Table 4 synthesises the previous formal results. They can be extended to the range-based

method by replacing Viasx by the CV of the first random variable (r Rm“ J&) and Vipacn by the

CV of the second one (@%). Indeed, the proofs only use the mean and the CV of the
underlying distributions. Moreover, the uniform distribution is also continuous. Although the
formal analysis of thabk for arbitrary Values of a was unsuccessful, the following formula provides
a close estimate: a?bViask + (1 — a2b)\/V2 V2, . + V2abk + V2

In the case of complete consistency (i.e., when a = b = 1), Vigask = ptViask = Viask and
V ttmach = #Vmach = Viach, which supports the proposed heterogeneity measures. This special case
is due to the fact that consistent cost matrices are closer to uniform instances than inconsistent
ones and both measures are equivalent for uniform instances.

However, the CVB method has two issues. As a consequence of the asymmetry of the generation
method, the task heterogeneity is not symmetric to the machine heterogeneity. For instance, we
have puViask = \/ ok Vs mac Vmsk + V2 o ochy whereas Viimach = Vinach for inconsistent matrices.
This makes the generation method less direct as the parameters must be chosen such as to
circumvent this asymmetry. In particular, if a high machine heterogeneity is required, then the
task heterogeneity will also be high.

The second issue is related to the impact of the consistency parameters on the heterogeneity
properties. It biases comparisons of scheduling methods when cost matrices are used with different
consistency settings because these matrices will also have different heterogeneity properties. The

11
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Figure 2: Heterogeneity properties (V pgask and Vpimacn) of cost matrices used in the literature.
Two points are not shown for the CVB method: (1.4,0) and (1.8, 0).

1

i

range-based method presents an even stronger bias as both Vi,sx and Viaen tend to
Riask — 00 and Rpyach — 00 (the heterogeneity properties are thus often similar).

as

4.5 Task and Machine Heterogeneity in Previous Studies

For each of the instances summarized in Section 3, we computed both heterogeneity measures using
the formulas of Table 4 and the input parameters: Riasx and Rpyach for the range-based method;
Viask and Vipacn for the CVB method; and the consistency parameters, a and b, for both methods.
For the case when 0 < a < 1, uViask was measured on a single 1000 x 1000 cost matrix that was
generated with the range-based or the CVB method. When the consistency values are missing,
matrices are assumed to be inconsistent. Finally, the mean is set to 1 when it is not given with the
CVB method because it has no impact on any measure.

Figures 2 and 3 depict the values for the measures proposed above. The range-based method
has a clear bias because many heterogeneity values have never been obtained. Also, the consistency
parameters invalidate the claimed properties of the cost matrices with respect to the heterogeneity
quadrant for both heterogeneity measures: some hihi instances have the same machine heterogeneity
as lolo instances on Figure 2, whereas some lohi instances have the same task heterogeneity as hilo
instances on Figure 3.

This analysis is also consistent with the observation made in [2] about the fact that the
range-based and CVB methods do not cover the entire range of possible values for the MPH.

As mentioned in Section 4.2, both proposed heterogeneity measures are relative. This allows a
direct comparison between each heterogeneity value. Using the standard deviation instead would
require normalizing them for this analysis.

5 Controlling the Heterogeneity
We are interested in generating cost matrices that have specific heterogeneity properties according

to the measures introduced in Section 4. We propose two methods that both alter a cost matrix
generated from uniform instances for which we control the task and machine heterogeneities. These

12
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Figure 3: Heterogeneity properties (1tViask and pViach) of cost matrices used in the literature. The
x-scale is twice as large as in Figure 2 for the CVB method because large values of Vi.cn tends to
increase the measure puV;.sx. One point is not shown for the CVB method: (2.01,2).

cost matrices have specific properties in terms of consistency and correlation between each row
and each column, and the proposed methods introduce some randomness in it. They both possess
the same time complexity (i.e., O(nm)).

5.1 Shuffling Method

The first proposed method shuffles the costs in the matrix that corresponds to a uniform instance
(see Algorithm 4). It first generates the task weights on Line 2 and the inverse of the machine
speeds on Line 5. The corresponding matrix is computed on Line 9 before starting the shuffling
part. For each cost e; j, another cost e; ; is selected on a different row and column (Lines 14
and 15). The same amount is then removed from these costs and is added to two other costs, e; ;
and ey j (one that is on the same row as the first cost and on the same column as the second,
and another one that is on the same row as the second cost and on the same column as the first).
This step (Lines 25 to 28) preserves the mean of each row and the mean of each column. The
heterogeneity properties thus remain the same.

The transferred amount is the largest value (in absolute) such that no cost among the four
considered costs becomes lower than the minimum one among them (this prevents costs to be
arbitrarily low). For instance, if e; ; is the minimum cost (i.e., e; ; = min(e; j, €y j,€i 75 € 7)),
there are two cases: if e; jy < ey j, then e; j; becomes the new minimum and the added value to
€i,j and to €t ! is €i,5' — €i,53 otherwise, it is €' 5 — €45+

Maintaining both the minimum and the maximum cost is not possible because the cost matrix is
generated from a uniform instance. This method focuses only on preventing costs to be arbitrarily
low because it is critical to guarantee positive costs.

Proposition 9. When used with parameters Vigsk and Viacn, the shuffling method generates costs
with expected value 1.

Proof. Costs in the matrix corresponding to the uniform matrix follow a distribution that is the
product of two distributions with mean one. Therefore, the expected value of the costs in the

13



ALGORITHM 4: Shuffling cost matrix generation with gamma distribution
Input: n, m, Viask, Vinach
Output: a n X m cost matrix

1: forall1 <i<ndo

2: Wi = G(l/‘/tislv ‘/tzxsk)

3: end for

4: for all 1 < j <m do

5: bj — G(l/vn?lach’ Vnzlach)

6: end for

7. for all1 <7 <n do

8 foralll<j<mdo

9: € < wibj

10: end for

11: end for

12: for all1 <i<ndo

13: for alll1<j<mdo

14: i~ (U(l,n—1)+i—1 modn)+1
15: J+<UlQn-1)47—1 modm)+1
16: if e, ; = min(e; j, €y ;,€; 5/, €ir ;) then
17: d <+ min(ei/,j — €45, €45 — ez}j)
18: else if €5 = min(eizd, €55 61'/7]*/) then
19: d<+ — min(ei,j — €’ j, €l j — ei’,j)
20: else if e; j; = min(e; ., ey ;) then
21: d <+ — min(ei,j — €45, € j1 — ei,j/)
22: else
23: d min(ei/,j — €1 75 €45 — 61‘/,]‘/)
24: end if
25: € < €ij +d
26: €15 < € j — d
27: €i,j/ < €45 — d
28: €jrj/ < €y 5 + d

29: end for
30: end for
31: return {ei’j}lgign’lgjgm

matrix before the shuffling step is also one. The shuffling step does not change the expected value
of the costs because the amount that is taken on any cost is given to another cost. O

Proposition 10. The measure V piqsr, 0f a cost matrix generated using the shuffling method with
the parameters Vigsi and Vigen converges to Vigsi as n — 0o.

Proof. Analogously to the proof of Proposition 9, the shuffling step has no impact on the mean of
each row and each column. The measure V a5k is thus the same for the final cost matrix as for
the intermediate matrix that corresponds to a uniform instance.

As a corollary of Proposition 4, the sample CV of the sample means of all rows in this
intermediate matrix is equal to the sample CV of the vector {w;}1<;<,. This last sample CV
converges to Viask as m — oo. O

Proposition 11. The measure V pimqen 0f a cost matriz generated using the shuffling method with
the parameters Vigsi and Vigcn converges to Vigen as m — 00.

Proof. Due to the symmetry of the shuffling method, the proof is analogous to the proof of
Proposition 10. O

14



Table 5: Summary of the cost matrix properties with the shuffling method.

Property Value
Expected value 1

V,utask ‘/task
V,“mach Vmach

ALGORITHM 5: Noise-based cost matrix generation with gamma distribution
Input: n, m, Viask, Viach, Vaoise
Output: a n X m cost matrix

for all 1 <i<ndo
Wi <= G(l/‘/taslw task)

end for

fora111<j<md0
b — G(l/ mach> Vnzlach)

end for

forall1 <i<ndo
for all1 <j<mdo

e < wibj x G(1/V2

end for

: end for

: return {e; ;}1<i<n,1<j<m

V2

noise’ nOlSe)

_ =

Table 5 summarizes the formal results related to the shuffling method.

5.2 Noise-Based Method

The second method, described in Algorithm 5, relies on a simple idea, which was also used in [4]:
each cost of a matrix, which corresponds to a uniform instance, is multiplied by a random variable
with mean one (Line 9).

Proposition 12. When used with parameters Vigsk, Vinach and Viyoise, the noise-based method gener-

ates costs wzth eatpected value one and CV \/‘/taskvriachvr%mse Vvt?zskvn%bach + VvtaskVT%ozse + VnZLachVnQozse
+Vvt?zsk + Vn2mch + V’r%ozse

Proof. Each cost is the product of three random variables that have all the same mean one.
Additionally, their CV (and standard deviations in this case) are Viask, Vinach and Vieise. The
global CV can be derived by remarking that the CV of the product of two random variables with
CV Vi and Vy is /V2VE + V2 + V2. O

Proposition 13. The measure V sk of a cost matriz generated using the noise-based method
with the parameters Vigsk, Vimach and Viyoise converges to Vigsk as n — 0o and m — 0o.

Proof. Let u; be the sample mean of row ¢. This row is the product of w;, which follows a
distribution with mean one and CV Vs, and m values that are each the product of a random
variable with mean one and CV Vi, and a random variable with mean one and CV Vjise. s is
thus also the product of w; and the Sample mean of the other m values, which follows a random

Vitoise T Vinacn T Viioise

variable with mean one and CV \/ mach —nolse —mac

. Therefore, the mean of p; is one and

V2 e Viise P V2 aen +Ver V2 +V2 Ve
its CV is \/‘/;:ask mach “noise™ “mach T Tnoise | ‘/t2ask+ Vnach Vaoise ™ Vinach nom, which tends to Vcask as
m — 0o. Therefore, the sample CV of all p; converges to Vtask as n — oo and m — oo. O

Proposition 14. The measure V pimacn of a cost matriz generated using the noise-based method
with the parameters Vigsk, Vimach and Vioise converges to Vigen a8 n — 00 and m — oo.
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Table 6: Summary of the cost matrix properties with the noise-based method.

P -
rop Value
erty
Ex-
pected 1
value
VeV Vi e + Vg Vidaen + Vg Vi et
v task ¥ mach Y noise task ¥ mach task ¥ noise
2 2 2 2
Vmachvnmse + Vvtask + Vmach + Vnmse
Distri-
e Product of three gamma laws
bution
V/Ltask Wask
,U‘/task \/ task n01se + Vvt?xsk +V n01se
V:U/mach Vmach
,Uvmach \/ mach nome + Vr121ach + Vn201§e

Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of
Proposition 13. O

Proposition 15. The measure puViqsi of a cost matriz generated using the moise-based method
with the parameters Vigsk, Vimach and Vioise converges to \/Vt V2 + V2, +V2 asn — 00.

ask ’ noise task noise

Proof. Let V; be the sample CV of column j. Each column is the product of b; and n values that are
each the product of a random variable with mean one and CV V¢ and a random variable with mean
one and CV Vjpise. Thus, V; converges to the CV of this product (i.e., /V2 V.2 + V2, + Vi)
Vjcisk + V11201$c asn — oo. [

2
as n — oo. Therefore, the measure uVi,sx converges to \/V2, V2. . +

Proposition 16. The measure yVyacn of a cost matriz genemted using the noise-based method with

2 2
the parameters Vigsk, Vinach and Vipise converges to \/ o achVroise T Virach Vnmse as m — oo.

Proof. Due to the symmetry of the noise-based method, the proof is analogous to the proof of
Proposition 15. O

Table 6 summarizes the formal results related to the noise-based method.

This method requires one additional parameter: Vise. When the objective is to have cost
matrices with specific values of V pgask and V pimacen (for large n and m), we propose to set Vioise
to min(Viask, Vinacn ). This limits the amount of noise in the costs.

Contrary to the shuffling method, the noise-based method can also generate cost matrices with
specific values of uViask and puViaen (asymptotically). The parameters can be fixed as follow: if
/L‘/task < ,uvmacha then ‘/task = 0, Vnoise = ,LL‘/task and mech = \/( V mach M‘/task)/( V2ask + 1)7
otherwise, Vinach = 0, Vioise = 4Vmach and Viagx = \/ (V2 — wV2 )/ (V2 4, + 1). This setting
maximizes the amount of noise.

Even though the shuffling method has less formal results (probably due to its combinatoric
operations), the noise-based method has two drawbacks: the additional parameter is not trivial to
determine and the method introduces more variation in the costs than the shuffling method. This
makes this method more complex to use.

6 Impact on Scheduling Heuristics

This section assesses the impact of the heterogeneity properties defined in Section 4 on the relative
performance of some classic heuristics.
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Table 7: Summary of the scheduling heuristics for the R||Cpax problem.

Name Ref Complexity Remark

OLB [10] nm Opportunistic Load Balancing
MET [10] nm Minimum Execution Time

MCT [10] nm Minimum Completion Time
Min-min [10] n2m Earliest finish time of smallest task
Max-min [10] n®m Earliest finish time of largest task
Suff [14] n’m Task that will suffer most first

GA [10] - Genetic Algorithm

HEFT [25] nm+nlog(n) Heterogeneous Earliest-Finish-Time
HLPT [19] nm +nlog(n) Heterogeneous version of LPT
GreedySuff nmlog(m) Greedy allocation based on sufferage
BalSuff — Reconsider MET mapping

BalEFT — Reconsider MET mapping

6.1 Scheduling Heuristics

Our intention here is not to find the best heuristic but rather to show the impact of the cost matrix
generation method on the performance results. We use classical heuristics from the literature
summarized in Table 7. Most of them (OLB, MET, MCT, Min-min, Max-min, HEFT, HLPT, Suff)
are list-based algorithms. The Genetic Algorithm (GA) relies on an initial population containing
a solution obtained with Min-min. In addition to these classic heuristics, we added two more
elaborated methods (the Bal prefixed methods) that try to reconsider an initial mapping obtained
from MET (Minimum Execution Time) mapping: any task is moved to the machine that will finish
it the earliest if it does not increase the maximum completion time. These heuristics are described
in [12, Appendix CJ.

Getting relevant reference values (lower bounds on the makespan) for our performance measures
is not straightforward in practice due to the heterogeneity of the problem. We thus rely on a
variation of the genetic algorithm to provide an estimation of these values. The initial population
is initialized, in addition to other random individuals, with all the solutions obtained by the other
algorithms. The population evolution is based on the algorithm description given in [10]. An elite
chromosome is maintained so that the resulting solution cannot be worse than any of the initial
solutions and thus the genetic algorithm is no worse than any of the other algorithms.

6.2 Settings

Cost matrices are generated with three different methods: the shuffling method and the noise-based
method with two approaches to set the noise (see Section 5.2). In all cases, there are two parameters:
Vittask and V piproc for the first two methods and pViask and pVproc for the last one. These two
parameters are distributed in the range [0.001, 10] with 30 equidistant values using a probit scale
(i.e., 0.001, 0.0014, 0.0019, 0.0026, ..., 5.3, 7.3, 10).

All methods rely on the gamma distribution. However, when the CV is close to 10, it may
generate zero values (it occurs in 1.4% of all the generated costs) due to rounding. The resulting
cost matrix is altered to avoid this by setting to 2.225074e-308 (this is the value of the smallest
non-zero normalized floating-point number, double.xmin, in R 3.3.0) each zero value. Otherwise
some tasks may have no weight, which requires specific handling and is not realistic. The impact is
however marginal and concerns only matrices for which Vigsx > 2.8 or Viacn > 2.8.

For each pair of parameters, 200 cost matrices are generated with n = 100 tasks and m = 30
machines. For each scenario, we compute the makespan of each heuristic. We only consider the
relative difference from the reference makespan: |C' — Cpin|/Cmin Where C' is the makespan of a
given heuristic and Cy,iy is the best makespan we obtained (the genetic algorithm initialized with
all the solutions obtained by the other heuristics). The closer to zero, the better the performance.
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6.3 Results

Figure 4 contains heat maps of the relative performance for each algorithm. On each figure, we use
a logarithmic scale on both axes: the z-axis gives the heterogeneity value for the tasks (V piask or
1Viask) while the y-axis gives the heterogeneity value for the machines (V pimacn 0r #Viach). The
bottom-left area represents almost homogeneous instances (same cost for each execution) while the
top-right area is the most heterogeneous one. The heterogeneity values covered by the range-based
and CVB methods in the literature are represented with dark rectangles on each sub-figure.

The scales on each heat map start at 0.001. We consider that an heterogeneity that is below
this value is negligible and that a heuristic that is closer to the reference makespan than this value
is good enough. For instance, BalSuff may be considered near-optimal when the heterogeneity
values are below 1%.

Figure 4 uses the shuffling method with the heterogeneity measure Vptask/V fimach. Similar
figures can be obtained with the noise-based method using either of the heterogeneity measures [12,
Figures 6 and 7).

Figure 5 plots the best heuristic depending on the heterogeneity properties. Contour lines
show the number of heuristics which performance is closer to the best heuristics than 0.001. For
instance, there are at least 5 heuristics whose relative performances are almost equivalent when
task heterogeneity is high (i.e., if the best heuristic average relative difference from the reference
value is 0.004, then at least 5 other heuristics have a relative difference lower than 0.005).

The heuristics are ordered by the number of instances for which no other heuristic produces a
better solution. When several heuristics are equivalent for a given tile, the appearing heuristic
is the one that is the best the least often. This allows one to see even the settings for which the
worst heuristics may be good.

6.4 Analysis

The settings cover a large part of the possible instances for the R||Cpax problem. Specific scheduling
problems may be associated to some areas on the figures. Problems considering homogeneous (i.e.,
identical) tasks are situated on the left area: P|p; = p|Chmax (i.e., same machine speeds) in the
bottom corner and Q|p; = p|Cmax (i-e., distinct machine speeds) for the above part. Inversely,
problems considering tasks with varying weights allocated to homogeneous machines, the P||Cpax
problem, are situated on the bottom area. While the first two problems can be solved in polynomial
time, the last problem is NP-complete.

The heat maps suggest that the area where the heterogeneity values are between 0.1 and 1 is
more challenging for most heuristics (areas in dark blue on the heat maps are 30% far from the
reference). This is confirmed by Figure 5 where there is often a single best heuristic with these
settings. Oppositely, many heuristics are close to the best one when the task heterogeneity is low
or high, or when the machine heterogeneity is high. On one hand, execution costs are similar when
the coefficient of variation is below 0.1. A non-optimal allocation will thus have a lower impact
than with higher heterogeneity. On the other hand, most execution costs are close to zero when the
coefficient of variation is higher than 1 and bad allocations may be easy to avoid because there are
few allocations that are extremely critical while most of them are not. It is thus easier to generate
a reasonable schedule.

When the machine heterogeneity is low (with medium task heterogeneity), there is often a
single best heuristic. This suggests that these settings leads to difficult instances. As mentioned
above, this is close to the P||Cpax problem. We may conclude that dealing with heterogeneous
tasks is more difficult than with heterogeneous machines, which is also supported by the asymmetry
of the heat maps.

Finally, Figure 5 shows the best heuristics: BalSuff when both heterogeneity properties are
comparable, BalEFT when the machine heterogeneity is higher than the task heterogeneity and
HEFT/HLPT when the task heterogeneity is high.

Overall, we used two generation methods and two heterogeneity measures (one with the shuffling
method and two with the noise-based method) and this analysis stands in all cases.
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Figure 4: Heuristic performance relatively to the best case with the shuffling method. Values below
0.001 are white and values above 1 are black. Contour lines correspond to the levels in the legend
(0.001, 0.003, ...). The rectangles correspond to the properties covered by the range-based and
CVB methods in the literature (see Figure 2).
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Figure 5: Best heuristic in the average case with the shuffling and the noise-based method with
Vptgask and V pimach or pViask and pViaen as parameters. Contour lines correspond to the number
of heuristics with a performance closer to the best heuristic performance than 0.001. The dark
rectangles correspond to the properties covered by the range-based and CVB methods in the
literature (see Figures 2 and 3).

The range-based and CVB generation methods used in the literature could not provide these
results due to two factors: the heterogeneity properties of the generated instances have a limited
coverage (shown by the dark rectangles) and the erroneous claimed properties of these matrices
prevent an unbiased analysis.

6.5 Discussion

This study focuses on the impact of some measures (either Visasx and Vipimacn, or pViask and
1Vmach) on the performance of twelve heuristics. However, other properties could be measured. If
we consider the skewness and the kurtosis as in [3], we can think of 4 x 4 measures for the rows
and as many for the columns. The main limitation of this study is to ignore the effect of all these
possible measures. In addition, this study cannot be directly extended to assess all their possible
interactions.

Another limitation is related to the effect of outliers. For large instances, the law of large
number applies and the measures proposed in Section 4 correspond to the characteristics of the
cost matrices. However, for small instances, we suggest switching to robust measures such as the
median, the interquartile range and the quartile coefficient of dispersion instead of the mean, the
standard deviation and the CV, respectively.

7 Conclusion

This study shows that the methods used in the literature for generating cost matrices are biased:
the claimed heterogeneity properties of these instances are invalidated by the two measures we
proposed to quantify them. We also show that the range of instances that has been used are
restricted. It is specifically the case for the range-based method that covers only a minor fraction
of all the possible settings in terms of heterogeneity. By providing new cost matrix generation
methods, we show that heuristics for the R||Ciax problem have interesting behavior outside this
restriction. For instance, BalEFT is the best heuristic when the task heterogeneity is low and this
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could not have been shown with the instances used in the literature. Overall, this study provides
tools to help the assessment of scheduling strategies.

In addition to all the possible measures mentioned in Section 6.5, we plan to analyze other
properties, in particular the correlation. It would also be interesting to see if the conclusions hold
for some variations of the R||Cpax problem such as considering arrival times or online scheduling.
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