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Abstract

We study the existence and the stability of periodic waves for a nonlinear model, the Lugiato-

Lefever equation, arising in optics. We give a detailed description of the stability properties of

constant solutions, and then focus on the periodic waves which bifurcate at the onset of Turing

instability. Using a center manifold reduction, we analyze these Turing bifurcations, and prove

the existence of periodic waves. This approach also allows to conclude on the nonlinear orbital

stability of these waves for co-periodic perturbations, i.e., for periodic perturbations which have

the same period as the wave. This stability result is completed by a spectral stability result for

general bounded perturbations. In particular, this spectral analysis shows that instabilities are

always due to co-periodic perturbations.
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1 Introduction

We consider the Lugiato-Lefever equation

∂ψ

∂t
= −iβ ∂

2ψ

∂x2
− (1 + iα)ψ + iψ|ψ|2 + F, (1.1)

in which the unknown ψ is a complex-valued function depending upon the temporal variable t and

the spatial variable x, the parameters α and β are real, and F is a positive constant. This nonlinear

Schrödinger type equation with damping, detuning and driving has been derived in nonlinear optics

by Lugiato and Lefever [8]. In this context, α represents the detuning parameter, F the driving term,

and β the dispersion parameter which may be positive (normal dispersion) or negative (anomalous

dispersion). Notice that upon rescaling x, we may take |β| = 1, hence β = 1 in the case of normal

dispersion, and β = −1 in the case of anomalous dispersion. While intensively studied in the physics
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literature (e.g., see [1] and the references therein), there are relatively few rigorous mathematical

studies of this equation. Of particular interest for the physical problem, is the dynamical behavior

of periodic and localized stationary waves. The underlying mathematical questions concern, in

particular, the existence and the stability of these types of waves.

A first rigorous bifurcation analysis of stationary solutions of the Lugiato-Lefever equation (1.1)

has been done in [10] in the case β < 0 and α < 2. For these parameter values the Lugiato-Lefever

equation possesses one constant solution which undergoes a Turing instability when its modulus is

equal to 1, [8]. Local bifurcations are analyzed by taking as bifurcation parameters the physical

parameter α and the square modulus of the constant solution. Two approaches are presented, for the

bifurcations of periodic solutions, on the one hand, and for the bifurcations of localized solutions, on

the other hand. For the analysis of periodic solutions, the Lugiato-Lefever equation (1.1) is treated as

an infinite-dimensional dynamical system, in a phase space consisting of spatially periodic functions,

and a center manifold reduction is used for the analysis of local bifurcations. Several bifurcations

of periodic waves are studied at the onset of Turing instability and in the parameter regime where

the Turing instability is fully developed. In particular, by analyzing the onset of Turing instability

at α = 41/30, the results in [10] recover the supercritical and the subcritical bifurcations of periodic

solutions found in the physics literature for α < 41/30 and α > 41/30, respectively. Next, localized

solutions are constructed using a spatial dynamics approach, in which the steady Lugiato-Lefever

equation,

0 = −iβ ∂
2ψ

∂x2
− (1 + iα)ψ + iψ|ψ|2 + F, (1.2)

is written as a four-dimensional dynamical system by taking the spatial variable x as evolutionary

variable. Restricting to the same parameter values β < 0 and α < 2, the existence of localized waves

is proved close to the onset of Turing instability of the constant solution, for α > 41/30.

A systematic study of local bifurcations for the steady equation (1.2) has been done later in

[2, 3], for both cases β < 0 and β > 0. Starting from a formulation of the steady equation as a four-

dimensional dynamical system, similar to the one used for localized waves in [10], but taking now the

physical parameters α and F as bifurcation parameters, the local bifurcations have been classified

in [2], and then studied in detail in [3]. Using normal forms and the center manifold reduction,

the existence of various types of solutions has been proved, including periodic waves, localized

waves which are either asymptotically constant or decay to small periodic waves at infinity, and

quasiperiodic waves. These results provide a very good description of the set of bounded solutions,

but their validity is restricted to parameter values which are close to the bifurcation points. Very

recently, tools from global bifurcation theory have been used in [9] for the study of global bifurcations

of periodic solutions of the steady Lugiato-Lefever equation (1.2). The existence of global branches

of periodic solutions is shown using the classical bifurcation theorems of Crandall-Rabinowitz and

Rabinowitz, and their shape and location in the parameter space are determined from a priori

bounds for the steady equation and numerically.

The aim of the present work is to initiate a systematic study of the stability of nonlinear waves

of the Lugiato-Lefever equation (1.1), and in particular of periodic waves. The question of stability

of the steady solutions found in the works mentioned above is widely open. So far, the only stability
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result have been obtained for the periodic waves bifurcating at the onset of Turing instability in the

case β < 0. The local bifurcation analysis in [10] shows that these waves are stable with respect

to co-periodic perturbations if α < 41/30, when the bifurcation is supercritical, and unstable if

41/30 < α < 2, when the bifurcation is subcritical. This result which holds for perturbations which

are H2, has been extended to L2 perturbations in [11], using Strichartz estimates.

We focus here on the periodic waves which bifurcate locally at the onset of instability of constant

solutions. Our approach of the existence problem is the same as the one used in [10] for the analysis

of periodic waves in the case β < 0 and α < 2. We treat the partial differential equation (1.1) as an

infinite-dimensional dynamical system of the form

dU

dt
= G(U, β, α, F ), (1.3)

in which U(t) belongs to a phase space of spatially periodic functions, and use a center manifold

reduction for the analysis of local bifurcations. In contrast to [10], we consider both the cases of

anomalous dispersion, β = −1, and normal dispersion, β = 1, and systematically investigate the

local bifurcations of periodic waves for all values of the physical parameters α and F .

The starting point of our analysis is a detailed stability analysis of the constant solutions of (1.1),

which are equilibria of the above dynamical system (see Section 2). Since these solutions do not

depend upon the spatial variable x, they can be computed explicitly by solving an algebraic equation,

and their stability can be determined using a standard Fourier analysis. We detect two types of

instabilities, the Turing instability mentioned above, in which the instability of the constant solution

is due to nontrivial periodic perturbations (nonzero Fourier modes), and a zero-mode instability in

which the instability is due to constant perturbations (zero Fourier mode). While the expressions

of the constant solutions and the types of instabilities do not depend upon β, the values of the

parameters α and F at which these instabilities occur are different in the two cases β = −1 and

β = 1. In our presentation we focus on the first case (see Sections 2–4), and then only outline the

differences which occur in the second case (see Section 5).

Next, we restrict to the onset of instability and analyze the local bifurcations of steady periodic

waves (see Section 3). Notice that these periodic waves are also equilibria of the dynamical system

(1.3), just as the constant solutions. Relying upon a center manifold reduction, we prove the

existence of steady periodic waves in the case of the Turing instability. For β = −1, we recover

the results known in the physical literature, and in particular the qualitative change of the type

of the bifurcation (super- or sub-critical) which occurs at α = 41/30 and which was analyzed in

[10]. In contrast, for β = 1 we find a subcritical bifurcation, only. In the case of the zero-mode

instability, steady periodic waves exist as well [3], but their existence cannot be obtained using the

present approach (see Section 6). These periodic waves have periods which tend to infinity, as the

parameters approach the bifurcation points, and such solutions are not captured by the dynamical

formulation (1.3) in which the phase space is restricted to periodic solutions with fixed wavelengths.

The local bifurcation result showing the existence of periodic waves, allows to also conclude on

the nonlinear stability, or instability, of these waves for perturbations which belong to the phase

space of the dynamical system (1.3), hence for co-periodic perturbations which have the same period
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as the wave. The waves found in the supercritical bifurcations are stable, whereas the ones found

in the subcritical bifurcations are unstable. By replacing this phase space with a space of periodic

functions with periods which are integer multiples of the period of the wave, and using a center

manifold reduction again, we can extend this result and conclude on stability, or instability, for

subharmonic perturbations, i.e., periodic perturbations with periods equal to an integer multiple of

the period of the wave. However, the local center manifolds found in these phase spaces shrink to

a point, as the integer multiples tend to infinity, so that we cannot conclude on stability of a given

periodic wave for all subharmonic perturbations (see Section 6).

For the stability analysis, we restrict to the question of spectral stability, but will consider general

bounded, including localized, perturbations of the periodic wave (see Section 4). For such types of

perturbations, the more difficult question of nonlinear stability, or instability, remains open. The

spectral stability is determined by the location in the complex plane of the spectrum of the linear

operator obtained by linearizing the dynamical system (1.3) at a steady periodic wave, and the choice

of the function space depends upon the type of the perturbations. For bounded perturbations the

spectrum is continuous, and we use a Bloch-Floquet decomposition in order to reduce the question

of finding this continuous spectrum to the simpler question of finding isolated eigenvalues of a

family of operators with compact resolvent. Then we locate the potentially unstable eigenvalues

using perturbations arguments for linear operators. Our main result shows that the periodic waves

found in the supercritical bifurcations are also spectrally stable with respect to general bounded

perturbations, whereas the ones found in the subcritical bifurcations are unstable, the instability

being a direct consequence of their instability with respect to co-periodic perturbations.

Acknowledgments. This work was partially supported by a doctoral grant of the Franche-Comté

region (L.D.) and the Labex ACTION program, ANR-11-LABX-01-01 (M.H.).

2 Spectral stability of constant solutions

In this section we recall the stability properties of the constant solutions of the Lugiato-Lefever

equation (1.1) in the case of anomalous dispersion (β = −1).

Constant solutions ψ ∈ C of the equation (1.1) satisfy the algebraic equation

(1 + iα)ψ − iψ|ψ|2 = F.

Upon decomposing into real and imaginary parts, ψ = ψr + iψi, and setting ρ = |ψ|2 = ψ2
r +ψ2

i , we

obtain

ψr =
ρ

F
, ψi =

ρ(ρ− α)

F
, ρ

(
(ρ− α)2 + 1

)
= F 2. (2.1)

For ρ > 0, the cubic polynomial in the left hand side of the last equation above is monotonously

increasing, when α 6
√

3, and has two positive critical points ρ+(α) < ρ−(α), when α >
√

3.

Consequently, the Lugiato-Lefever equation possesses precisely one constant solution when α 6
√

3,
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Figure 2.1: Number of constant solutions of the Lugiato-Lefever equation (1.1): three solutions in the region

between the curves F 2 = F 2
±(α), two solutions along the curves, and one solution otherwise.

for any F > 0. For α >
√

3, there exist two values F−(α) < F+(α),

F 2
±(α) = ρ±(α)

(
(ρ±(α)− α)2 + 1

)
, ρ±(α) =

1

3

(
2α∓

√
α2 − 3

)
,

such that the Lugiato-Lefever equation possesses three constant solutions with ρ = ρj , j = 1, 2, 3,

ρ1 < ρ+(α) < ρ2 < ρ−(α) < ρ3,

when F−(α) < F < F+(α), two distinct constant solutions when F = F±(α), and one constant

solution when F < F−(α) or F+(α) < F . This result is summarized in Figure 2.1 (see also [3]).

The spectral stability of these constant solutions is determined by the location in the complex

plane of the spectrum of the linear operator obtained by linearizing the Lugiato-Lefever equation

(1.1) at such a constant solution. For a constant solution ψ∗ = ψ∗r + iψ∗i as above, with modulus

square ρ∗, the right hand side of the linearized Lugiato-Lefever equation

dV

dt
= A∗V,

defines a linear operator of the form

A∗ = −I + JL∗, (2.2)

where I represents the 2× 2 identity matrix, and

J =

(
0 −1

1 0

)
, L∗ =

(
∂2x − α+ 3ψ∗r

2 + ψ∗i
2 2ψ∗rψ

∗
i

2ψ∗rψ
∗
i ∂2x − α+ ψ∗r

2 + 3ψ∗i
2

)
.

SinceA∗ is an operator with constant coefficients, with the Fourier Ansatz (u(x), v(x)) = eikx(uk, vk),

we find that its spectrum σ(A∗), in both the Hilbert space L2(R) × L2(R) of square integrable

functions and the Banach space Cb(R)× Cb(R) of uniformly continuous functions, is given by

σ(A∗) =
⋃
k∈R

σ(A∗(k)),
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where A∗(k) are the 2× 2 matrices

A∗(k) = −I + JL∗(k), L∗(k) =

(
−k2 − α+ 3ψ∗r

2 + ψ∗i
2 2ψ∗rψ

∗
i

2ψ∗rψ
∗
i −k2 − α+ ψ∗r

2 + 3ψ∗i
2

)
.

A direct calculation then gives

σ(A∗) =
{
λ ∈ C ; λ2 + 2λ+ a(k) = 0, k ∈ R

}
,

in which

a(k) = k4 + 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1.

For any k ∈ R, the sum of the two eigenvalues of A∗(k) is equal to -2, so that their location in

the complex plane depends upon the value of a(k). For a(k) > 1, the two eigenvalues are complex

conjugated with real parts equal to -1, and −1 is a double eigenvalue when a(k) = 1. For a(k) < 1,

the two eigenvalues are real and symmetric with respect to the line Reλ = −1: both eigenvalues

are negative when 0 < a(k) < 1, 0 and −2 are eigenvalues when a(k) = 0, and one eigenvalue is

negative and the other one positive, when a(k) < 0. Consequently, the constant solution changes

its stability when a(k) becomes positive for some values of k. A direct calculation shows that this

occurs in the following two cases:

(i) for α < 2 and ρ∗ = 1, when a(k) is nonnegative and vanishes for precisely two values

k = ±
√

2− α 6= 0 (Turing instability); in the parameter plane (α, F 2) this occurs along

the parabola of equation F 2 = (1− α)2 + 1;

(ii) for α > 2 and ρ∗ = ρ+(α), when a(k) is nonnegative and vanishes at k = 0 (zero-mode

instability); in the parameter plane (α, F 2) this occurs along the half curve F 2 = F 2
+(α) (see

Figure 2.1).

In Figure 2.2 we represent the shape of the largest real eigenvalue λ(k) in these two cases, and in

Figure 2.3 we summarize the stability properties of the constant solutions of the Lugiato-Lefever

equation (1.1). Notice that the onset of Turing instability moves from the parameter region where

the equation has one constant solution to the parameter region where the equation has three constant

solutions as α is increased above the value 7/4. At α = 2 the Turing instability reaches the double

constant solution ρ+(α) and becomes a zero-mode instability for α > 2.

Remark 2.1 The symmetry of the spectrum with respect to the vertical line Reλ = −1 is a conse-

quence of the particular structure of the linear operator A∗ in (2.2), in which the operators J and

L∗ are skew-symmetric and symmetric, respectively. This property implies that the spectrum of the

product operator JL∗ is symmetric with respect to the imaginary axis (e.g., see [5]), so that the

spectrum of A∗ is symmetric to the vertical line Reλ = −1.
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Figure 2.2: Shape of the largest eigenvalue λ(k) for k close to ±
√

2− α in the case of the Turing instability

(left plot) and for k close to 0 in the case of the zero-mode instability (right plot).

3 Bifurcations of periodic waves

In this section we analyze the Turing bifurcation which occurs for α < 2 and F 2 = (1 − α)2 + 1,

when ρ∗ = 1. We fix α < 2 and take as bifurcation parameter F 2 = F 2
1 + µ, with F 2

1 = (1− α)2 + 1

and small µ.

Dynamical system

For F 2 = F 2
1 + µ, we denote by ψ∗µ = ψ∗rµ + iψ∗iµ and ρ∗µ = |ψ∗µ|2 the constant solution of the

Lugiato-Lefever equation (1.1) and its square modulus, respectively, given by (2.1). At µ = 0

we have the constant solution with modulus ρ∗0 = 1, at which the Turing instability occurs, and

according to the linear stability analysis in Section 2, λ = 0 is an eigenvalue of the corresponding

linearized operator A∗, with eigenmodes (u(x), v(x)) = eikx(uk, vk), k = ±
√

2− α. We therefore

expect periodic bifurcating solutions to have wavenumbers ±
√

2− α, and hence look for solutions

of the Lugiato-Lefever equation (1.1) close to the branch of constant solutions ψ∗µ of the form

ψ(x, t) = ψ∗µ + (u+ iv)(y, t), y =
√

2− αx,

with u and v real-valued, 2π-periodic functions in y. The resulting equation is a system for the

couple U = (u, v)T of the form
dU

dt
= A∗µU + F(U, µ), (3.1)

in which A∗µ is the linear operator

A∗µ = −I + JL∗µ,

with

J =

(
0 −1

1 0

)
, L∗µ =

(
(2− α)∂2y − α+ 3ψ∗rµ

2 + ψ∗iµ
2 2ψ∗rµψ

∗
iµ

2ψ∗rµψ
∗
iµ (2− α)∂2y − α+ ψ∗rµ

2 + 3ψ∗iµ
2

)
,

and the nonlinear terms F(U, µ) are given by

F(U, µ) = J (R2(U,U, µ) +R3(U,U, U)) ,
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Figure 2.3: Stability of constant solutions of the Lugiato-Lefever equation in the case of anomalous dispersion

(β = −1). Stable branches are represented by solid lines, unstable branches by dashed lines, and we set

F 2
1 = (1 − α)2 + 1 and F 2

α/2 = α(4 + α2)/8. The shape of the largest eigenvalue λ(k) is given at the points

where the solutions loose their stability and for the unstable solutions.

where R2(·, ·, µ) is the bilinear map defined through

R2(U1, U2, µ) =

(
ψ∗rµ(3u1u2 + v1v2) + ψ∗iµ(u1v1 + u2v2)

ψ∗iµ(u1u2 + 3v1v2) + ψ∗rµ(u1v1 + u2v2)

)
,

for Uj = (uj , vj)
T , j = 1, 2, and R3 is the trilinear map satisfying

R3(U,U, U) =

(
u(u2 + v2)

v(u2 + v2)

)
.

As phase-space for the dynamical system (3.1) we choose the space of 2π-periodic, square-integrable

functions X = L2(0, 2π) × L2(0, 2π). In this space, the linear operator A∗µ is closed with domain

Y = H2(0, 2π) ×H2(0, 2π), the linear operators J and L∗µ are skew- and self-adjoint, respectively,

and the nonlinear map F(·, µ) is smooth in Y.
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The dynamical system (3.1) possesses one discrete and one continuous symmetry which will

play an important role in our analysis. As a consequence of the invariance of the Lugiato-Lefever

equation (1.1) under the reflection x 7→ −x and under spatial translations x 7→ x + a, a ∈ R,

the dynamical system (3.1) is equivariant under the action of the reflection operator T and of the

translation operators Ta defined through

(T U)(y) = U(−y), (TaU)(y) = U(y + a), y ∈ R, (3.2)

i.e., both A∗µ and F(·, µ) commute with T and Ta, for any µ.

Center manifold reduction

With the choice of the phase space above, the linear operator A∗µ has compact resolvent, since its

domain Y is compactly embedded in X . Consequently, A∗µ has discret spectrum, and the calculations

in Section 2 imply that at µ = 0 the spectrum of A∗0 is given by

σ(A∗0) =
{
λ±(n) = −1±

√
1− (2− α)2(n2 − 1)2, n ∈ Z

}
.

The eigenvalues λ±(n) are either negative or have negative real parts when n 6= ±1, and λ+(±1) = 0.

We can therefore decompose σ(A∗0) into a stable and a central spectrum,

σ(A∗0) = σs(A∗0) ∪ σc(A∗0), (3.3)

with

σc(A∗0) = {0}, σs(A∗0) = {λ ∈ C ; Reλ < −δ},

for some δ > 0. Here 0 is a double semi-simple eigenvalue with associated eigenvectors

ζ =

(
α

2− α

)
eiy, ζ =

(
α

2− α

)
e−iy.

In order to apply the center manifold theorem, we rewrite the dynamical system (3.1) in the

form
dU

dt
= A∗0U + G(U, µ), (3.4)

with

G(U, µ) = J (R1(U, µ) +R2(U,U, µ) +R3(U,U, U)) ,

where R1(·, µ) is the linear map

R1(U, µ) = (A∗µ −A∗0)U,

and J , R2, R3 are defined as above. Upon checking the hypotheses of the center manifold theorem [6,

Chapter 2, Theorem 3.3], we conclude that the dynamical system (3.4) possesses a two-dimensional

center manifold,

Mc(µ) = {U ∈ Y ; U = Aζ +Aζ + Ψ(A,A, µ), A ∈ C},

which contains all sufficiently small bounded solutions of (3.4), for any µ sufficiently small. Here Ψ

is a map of class Ck, for any arbitrary but fixed k > 2, defined in a neighborhood of 0 in C×C×R,

where C × C = {(A,A) ; A ∈ C}, and taking values in the spectral subspace Xs associated to the

stable spectrum σs(A∗0) of the operator A∗0.

9



Reduced equation

The dynamics on the center manifold is governed by the reduced equation

dA

dt
= f(A,A, µ), (3.5)

in which f is a complex-valued map obtained by inserting the Ansatz

U = Aζ +Aζ + Ψ(A,A, µ),

into the dynamical system (3.4) and then projecting on the eigenvector ζ. This reduced equation

captures the qualitative changes which occur in the dynamics of the full system (3.4) at the bifur-

cation point µ = 0. We summarize in the lemma below the properties of the reduced vector field f

which are needed in our bifurcation analysis.

Lemma 3.1 For any µ sufficiently small, the vector field f in (3.5) has the following properties.

(i) The complex-valued map f is of class Ck in a neighborhood of 0 in C×C×R, for any arbitrary

but fixed k > 2.

(ii) There exists a real-valued map g of class Ck−1 defined in a neighborhood of 0 in R2 such that

f(A,A, µ) = Ag(|A|2, µ),

for any A sufficiently small.

(iii) The coefficients of the leading order terms in the Taylor expansion of f ,

f(A,A, µ) = c11Aµ+ c30A|A|2 +O(|A|(|µ|2 + |A|4)), (3.6)

are given by

c11 =
1

(2− α)2
, c30 =

4F 2
1 (30α− 41)

9(2− α)2
.

Proof. (i) This property follows from the fact that the map Ψ provided by the center manifold

theorem is of class Ck.

(ii) Recall that the dynamical system (3.1) is equivariant under the action of the operators T
and Ta, a ∈ R. According to [6, Section 2.3.3], these equivariances are inherited by the reduced

equation (3.5), so that f satisfies

f(A,A, µ) = f(A,A, µ), f(eiaA, e−iaA,µ) = eiaf(A,A, µ),

for any a ∈ R and A sufficiently small. Applying the result in [6, Chapter 1, Lemma 2.4], the

second equality above implies that f is of the form (3.6) with g a complex-valued function, and then

from the first equality above we conclude that g is a real-valued function. This proves the second

property.
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(iii) We compute the coefficient c11 from the equality

∂f

∂A
(0, 0, µ) = λ1(µ), (3.7)

in which λ1(µ) is the continuation of the eigenvalue 0 of the operator A∗0 for small µ, i.e., λ1(µ) is

the largest eigenvalue of A∗µ (e.g., see [6, Chapter 2, Exercise 3.5]). According to the linear stability

analysis in Section 2, λ1(µ) is a double eigenvalue and it is the largest root of the polynomial

λ2 + 2λ+ aµ(
√

2− α) = 0, (3.8)

in which

aµ(
√

2− α) = (2− α)2 + 2(α− 2ρ∗µ)(2− α) + α2 − 4αρ∗µ + 3ρ∗µ
2 + 1 = 3ρ∗µ

2 − 8ρ∗µ + 5.

Differentiating (3.7) with respect to µ and taking µ = 0 we find

c11 =
dλ1
dµ

(0).

The right hand side in this equation can be computed from (3.8), and after some elementary calcu-

lations we find the formula of the coefficient c11 in (iii).

For the computation of the coefficient c30, we may set µ = 0 in the following calculations.

Inserting the Taylor expansion of the reduction function Ψ,

Ψ(A,A, 0) = Ψ20A
2 + Ψ11AA+ Ψ20A

2
+ Ψ30A

3 + Ψ21A
2A+ Ψ21AA

2
+ Ψ30A

3
+O(|A|4),

in the system (3.4), for µ = 0, and collecting successively the terms of orders O(A2), O(AA), and

O(A2A) we obtain the equalities

0 = A∗0Ψ20 + JR2(ζ, ζ, 0),

0 = A∗0Ψ11 + 2JR2(ζ, ζ, 0),

c30ζ = A∗0Ψ21 + J
(
2R2(ζ,Ψ11, 0) + 2R2(ζ,Ψ20, 0) + 3R3(ζ, ζ, ζ)

)
.

Solving the first two linear equations we obtain

Ψ20 =
2F1

9(2− α)2

(
6 + 4α− 3α2

2(5− 3α)(2− α)

)
e2iy, Ψ11 =

4F1

(2− α)2

(
α2 − 2

−2(1− α)(2− α)

)
,

and by taking the scalar product of the third equality with an eigenvector ζad in the kernel of the

adjoint operator (A∗0)ad satisfying
〈
ζ, ζad

〉
6= 0, we obtain

c30 =
1

〈ζ, ζad〉

〈
J
(
2R2(ζ,Ψ11) + 2R2(ζ,Ψ20) + 3R3(ζ, ζ, ζ)

)
, ζad

〉
.

We may slightly simplify the computation of the coefficient c30 by taking ζad = J ζ2, so that

c30 =
1

〈ζ,J ζ2〉
〈
2R2(ζ,Ψ11) + 2R2(ζ,Ψ20) + 3R3(ζ, ζ, ζ), ζ2

〉
,
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and observing that

A∗0ζ2 = −2ζ2. (3.9)

Indeed, since J and L∗0 are skew- and self-adjoint operators, respectively, and J 2 = −I, we have

that

0 = (A∗0)ad(J ζ2) = −(I + L∗0J )(J ζ2) = −J (I + JL∗0)ζ2 = −J (2I +A∗0)ζ2,

which implies (3.9). Then a direct calculation gives

ζ2 =

(
α− 2

α

)
eiy,

which together with the expressions of ζ, Ψ11, and Ψ20 gives the formula for c30 in (iii), and completes

the proof of the lemma.

Steady bifurcation with O(2) symmetry

The properties of the reduced vector field f in Lemma 3.1 show that for the reduced system (3.5)

a steady bifurcation with O(2) symmetry occurs at µ = 0, provided c30 6= 0 (e.g., see [6, Section

1.2.4]). This bifurcation can be easily studied using polar coordinates A = reiθ, in which the system

decouples

dr

dt
= c11µr + c30r

3 +O(r(|µ|2 + r4)),

dθ

dt
= 0.

The second equation implies that the angle variable θ is always constant, and the first equation

shows a pitchfork bifurcation for the radial variable r. This bifurcation is supercritical when c30 < 0

and subcritical when c30 > 0. For the reduced system (3.5) we obtain the following result (see also

Figure 3.1).

Theorem 1 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of anomalous disper-

sion. Assume that α < 2, α 6= 41/30, and F 2 = F 2
1 + µ. Then the reduced system (3.5) undergoes

a steady bifurcation with O(2) symmetry at µ = 0. The bifurcation is supercritical when α < 41/30,

and subcritical when α > 41/30. More precisely, the following properties hold in a neighborhood of

0 in C, for µ sufficiently small.

(i) If α < 41/30 and µ < 0, then the reduced equation possesses a unique equilibrium A = 0 which

is stable.

(ii) If α < 41/30 and µ > 0, then the reduced equation possesses the unstable equilibrium A = 0 and

a circle of stable equilibria Aµ(φ) = rµe
iφ, for φ ∈ R/2πZ, which surrounds this equilibrium.

(iii) If α > 41/30 and µ < 0, then the reduced equation possesses the stable equilibrium A = 0 and

a circle of unstable equilibria Aµ(φ) = rµe
iφ, for φ ∈ R/2πZ, which surrounds this equilibrium.
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•

α < 41/30, µ < 0

• •

•
•

•

•

•
•

•

α < 41/30, µ > 0

• •

•
•

•

•

•
•

•

α > 41/30, µ < 0

•

α > 41/30, µ > 0

Figure 3.1: Phase portraits in the A-plane of the reduced system (3.5).

(iv) If α > 41/30 and µ > 0, then the reduced equation possesses a unique equilibrium A = 0 which

is unstable.

In the cases (ii) and (iii) we have

rµ =
3

2F1|41− 30α|1/2
|µ|1/2 +O(|µ|).

Going back to the Lugiato-Lefever equation (1.1), the equilibrium A = 0 of the reduced equation

gives the constant solution ψ∗µ in (2.1), whereas the circle of nontrivial equilibria Aµ(φ) = rµe
iφ

corresponds to a family of periodic solutions in x. The positive solution Aµ(0) = rµ gives an even

periodic solution of the Lugiato-Lefever equation (1.1), with Taylor expansion

ψµ(x) = ψ∗0 +
3(α+ i(2− α))

F1|41− 30α|1/2
cos(
√

2− αx) |µ|1/2 +O(|µ|), (3.10)

and, since the rotation invariance of the reduced system (3.5) is inherited from the translation

invariance of the Lugiato-Lefever equation (1.1), the other equilibria on the circle correspond to

translations in x of this even periodic solution.

Remark 3.2 The local bifurcation in Theorem 1 is known in the physics literature as a pitchfork

bifurcation, which is indeed the bifurcation obtained when restricting this bifurcation analysis to

solutions of the Lugiato-Lefever equation which are even in x. The case α = 41/30, when the

coefficient c30 vanishes, has been analyzed in [10].

4 Spectral stability analysis

In this section, we study the spectral stability with respect to localized, or bounded, perturbations

of the periodic solutions found in Section 3. The bifurcation result in Theorem 1 implies that the

periodic solutions found for α < 41/30 (supercritical bifurcation) are stable, whereas those found

for α > 41/30 (subcritical bifurcation) are unstable, for perturbations which belong to the space Y,

i.e., for co-periodic perturbations (see Section 6). In particular, this implies that, for perturbations
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which are bounded or localized, the solutions found for α > 41/30 are also unstable, but leaves open

the question of stability of the solutions found for α < 41/30.

Linearized problem and Bloch operators

Consider the even periodic solution ψµ(x) given by (3.10), for α < 2, F 2 = F 2
1 +µ, and µ sufficiently

small as given in Theorem 1. As for the bifurcation analysis, it is more convenient to work with

2π-periodic functions, and replace x by y =
√

2− αx. Linearizing the Lugiato-Lefever equation

(1.1) at ψµ(x), and using the variable y instead of x, we obtain the linearized equation

dV

dt
= AµV, (4.1)

where Aµ is the linear operator

Aµ = −I + JLµ,

the operator J is defined as before, and

Lµ =

(
(2− α)∂2y − α+ 3ψ2

rµ(y) + ψ2
iµ(y) 2ψrµ(y)ψiµ(y)

2ψrµ(y)ψiµ(y) (2− α)∂2y − α+ ψ2
rµ(y) + 3ψ2

iµ(y)

)
,

in which ψrµ(y) and ψiµ(y) represent the real and imaginary parts, respectively, of the periodic

solution. According to the formula (3.10), we have the expansions

ψrµ(y) = ψ∗r + αψ1 cos(y) |µ|1/2 +O(|µ|),

ψiµ(y) = ψ∗i + (2− α)ψ1 cos(y) |µ|1/2 +O(|µ|),

where ψ∗r and ψ∗i are the real and imaginary parts, respectively, of the constant solution ψ∗0, and

ψ1 = 3/F1|41− 30α|1/2. The linear operator Aµ is closed in both the Hilbert space L2(R)× L2(R)

and in the Banach space Cb(R)×Cb(R), just as the operators A∗ in Section 2, with dense domains

H2(R)×H2(R) and C2
b (R)×C2

b (R), respectively. The space L2(R)×L2(R) corresponds to localized

perturbations of the periodic wave and the space Cb(R)× Cb(R) to bounded perturbations.

In contrast to the operator A∗ in Section 2 which has constant coefficients, the linear operator Aµ
is a differential operator with 2π-periodic coefficients. For the analysis of its spectrum, we therefore

use a Floquet-Bloch decomposition, instead of Fourier analysis, which shows that its spectrum is the

same in both spaces above, and that it is given by the union of the spectra of the Bloch operators,

Aγ,µ = −I + JLγ,µ,

where

Lγ,µ =

(
(2− α)(∂y + iγ)2 − α+ 3ψ2

rµ(y) + ψ2
iµ(y) 2ψrµ(y)ψiµ(y)

2ψrµ(y)ψiµ(y) (2− α)(∂y + iγ)2 − α+ ψ2
rµ(y) + 3ψ2

iµ(y)

)
,

acting in L2(0, 2π) × L2(0, 2π) with domain the subspace of 2π-periodic functions H2
per(0, 2π) ×

H2
per(0, 2π), for γ ∈ (−1/2, 1/2] (e.g., see [4, 7]). The difference between the spectrum of the oper-

ator Aµ when acting in L2(R) × L2(R) or in Cb(R) × Cb(R) is that it is purely essential spectrum
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in L2(R) × L2(R) and continuous purely point spectrum in Cb(R) × Cb(R). In contrast, since the

operators Aγ,µ have compactly embedded domain, their resolvent is a compact operator, and there-

fore their spectrum is purely point spectrum consisting of isolated eigenvalues with finite algebraic

multiplicities. Our purpose now is to determine the spectrum of the Bloch operators Aγ,µ, for

γ ∈ (−1/2, 1/2] and µ sufficiently small.

Notice that the spectrum σ(Aγ,µ) of Aγ,µ is symmetric with respect to the line Reλ = −1 in

the complex plane, just as the one of the operator A∗ in Section 2, since J and Lγ,µ are skew- and

self-adjoint operators, respectively. In addition, the equalities

Aγ,µ = A−γ,µ, Aγ,µT = T A−γ,µ, (4.2)

where the operator T in the last equality is the reflection operator defined in (3.2), imply that

σ(Aγ,µ) = σ(A−γ,µ) = σ(Aγ,µ).

Spectral analysis of the Bloch operators

We analyze the spectra of the operators Aγ,µ in two steps, first for values of γ outside a fixed, but

arbitrary, neighborhood of 0 (Lemma 4.1), and then for small γ (Lemma 4.2).

Lemma 4.1 For any γ1 ∈ (0, 1/2), there exist positive constants µ1 and δ1, such that the spectrum

of Aγ,µ satisfies

σ(Aγ,µ) ⊂ {λ ∈ C ; Reλ < −δ1},

for any γ ∈ (−1/2, 1/2], |γ| > γ1 and |µ| < µ1.

Proof. We use a perturbation argument in which we regard the operator Aγ,µ as a small per-

turbation of the operator Aγ,0, which has constant coefficients. The spectrum of Aγ,0 is easily

obtained from the linear stability analysis in Section 2, in which we restrict to the Fourier modes

k =
√

2− α (n+ γ), so that

σ(Aγ,0) =
{
λ±(n, γ) = −1±

√
1− (2− α)2((n+ γ)2 − 1)2

}
.

The results in Section 2 also show that the two eigenvalues λ±(n, γ) are either negative or have

negative real parts except for the eigenvalues λ+(±1, 0) which vanish. Consequently, for any γ1 ∈
(0, 1/2), the exists δ0 > 0, such that the spectrum of Aγ,0 satisfies

σ(Aγ,0) ⊂ {λ ∈ C ; Reλ < −δ0}, (4.3)

for any γ ∈ (−1/2, 1/2], |γ| > γ1.

For small µ, the operator Aγ,µ is a bounded perturbation of the operator Aγ,0 with uniform

bound in γ of order O(|µ|1/2). Consequently, for any δ > 0 and any γ ∈ (−1/2, 1/2], we have that

σ(Aγ,µ) ⊂ {λ ∈ C ; dist (λ, σ(Aγ,0)) < δ} ,

provided µ is sufficiently small. Together with the property (4.3) this proves the lemma.
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Lemma 4.2 There exist positive constants γ2, µ2, and δ2 such that, for any |γ| < γ2 and |µ| < µ2,

the spectrum of Aγ,µ decomposes into two disjoint subsets

σ(Aγ,µ) = σ−(Aγ,µ) ∪ σ0(Aγ,µ), (4.4)

with the following properties:

(i) σ−(Aγ,µ) ⊂ {λ ∈ C ; Reλ < −δ2} and σ0(Aγ,µ) ⊂ {λ ∈ C ; Reλ > −δ2};

(ii) the set σ0(Aγ,µ) consists of two simple and real eigenvalues λ1,2(γ, µ) with Taylor expansions

λ1(γ, µ) = − 2

(2− α)2
µ− 2(2− α)2γ2 + o(|µ|+ |γ|2),

λ2(γ, µ) = −2(2− α)2γ2 + o(|γ|2).

Proof. For small γ and µ, the operator Aγ,µ is a small relatively bounded perturbation of the

operator A0,0. The latter operator is precisely the operator A∗0 considered in Section 3, for which we

have the spectral decomposition (3.3). A standard perturbation argument then implies the spectral

decomposition (4.4) for Aγ,µ, with the property (i), and such that σ0(Aγ,µ) consists of precisely two

eigenvalues λ1,2(γ, µ), which are the continuation of the double eigenvalue 0 of A0,0, for sufficiently

small γ and µ. It remains to compute the Taylor expansions of these eigenvalues in (ii).

Consider a basis {ζ1(γ, µ), ζ2(γ, µ)} of the two-dimensional spectral subspace of Aγ,µ associated

to σ0(Aγ,µ), which is a smooth continuation for small γ and µ of the two-dimensional kernel of A0,0,

and denote by M(γ, µ) the 2 × 2 matrix representing the action of Aγ,µ on this basis. Since Aγ,µ
depends smoothly upon γ and |µ|1/2, we have the same smoothness properties for the vectors in the

basis and for the matrix M(γ, µ). The eigenvalues λ1,2(γ, µ) in σ0(Aγ,µ) are the two eigenvalues of

the matrixM(γ, µ), and our purpose is to compute a Taylor expansion in γ and |µ|1/2 of these two

eigenvalues, from a Taylor expansion of the matrix M(γ, µ).

At γ = µ = 0, we have M(0, 0) = 0, and we take as basis the even and odd real eigenvectors

ζ1(0, 0) =

(
α

2− α

)
cos(y), ζ2(0, 0) =

(
α

2− α

)
sin(y),

which are the real and imaginary parts, respectively, of the vector ζ used for the bifurcation analysis

in Section 3. With this choice for the eigenvectors at γ = µ = 0, due to the symmetries (4.2), which

are inherited by the matrix M(γ, µ), the elements on the main diagonal and on the antidiagonal of

the matrixM(γ, µ) will be even real and odd purely imaginary in γ, respectively. Furthermore, the

real and imaginary parts of the vectors ζ1(γ, µ) and ζ2(γ, µ) will be even and odd in γ, respectively,

and have opposite parities in y: the real part of ζ1(γ, µ) and the imaginary part of ζ2(γ, µ) are even

functions in y, whereas the imaginary part of ζ1(γ, µ) and the real part of ζ2(γ, µ) are odd functions

in y.

We start by computing an expansion of M(γ, µ) for the particular values µ = 0 and γ = 0. For

µ = 0, the operator A(γ, 0) has constant coefficients, so that we can explicitly compute the basis
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and the matrix M(γ, 0). We find

ζ1(γ, 0) =

(
α

2− α

)
cos(y)− 2(2− α)F 2

1

α

(
0

1

)
sin(y) iγ +O(γ2),

ζ2(γ, 0) =

(
α

2− α

)
sin(y) +

2(2− α)F 2
1

α

(
0

1

)
cos(y) iγ +O(γ2),

and

M(γ, 0) =

(
−2(2− α)2γ2 +O(γ4) O(|γ|3)

O(|γ|3) −2(2− α)2γ2 +O(γ4)

)
.

For γ = 0, the symmetries above imply that the matrix M(0, µ) is diagonal,

M(0, µ) =

(
λ1(0, µ) 0

0 λ2(0, µ)

)
,

so that ζ1(0, µ) and ζ2(0, µ) are eigenvectors associated to the eigenvalues λ1(0, µ) and λ2(0, µ),

respectively. Due to the translation invariance of the Lugiato-Lefever equation, the derivative

(ψ′rµ(y), ψ′iµ(y)) of the periodic wave, which is an odd function, belongs to the kernel of the op-

erator A(0, µ). Consequently, (ψ′rµ(y), ψ′iµ(y)) is proportional to the odd eigenvector,

ζ2(0, µ) = − 1

ψ1|µ|1/2

(
ψ′rµ(y)

ψ′iµ(y)

)
=

(
α

2− α

)
sin(y) +O(|µ|1/2),

and the corresponding eigenvalue vanishes, λ2(0, µ) = 0. For the computation of the eigenvalue

λ1(0, µ), we use the center manifold constructed in Section 3. The key observation is that the linear

operator A(0, µ) coincides with the linear operator obtained by linearizing the dynamical system

(3.4) at the periodic wave (ψrµ(y), ψiµ(y)). Since the center manifold is locally invariant for the flow

of the dynamical system (3.4), the two eigenvalues λ1(0, µ) and λ2(0, µ) are the two eigenvalues of

the 2× 2 matrix obtained by linearizing the reduced system (3.5) at the real equilibrium rµ which

corresponds to the even periodic wave. A direct computation gives

λ1(0, µ) = − 2

(2− α)2
µ+O(|µ|3/2), λ2(0, µ) = 0,

so that

M(0, µ) =

− 2

(2− α)2
µ+O(|µ|3/2) 0

0 0

 .

Summarizing the above results, we conclude that

M(γ, µ) =

−2(2− α)2γ2 − 2

(2− α)2
µ ic1γ|µ|1/2

ic2γ|µ|1/2 −2(2− α)2γ2



+

O(γ4 + γ2|µ|1/2 + |µ|3/2) O(|γ|3 + |γµ|)

O(|γ|3 + |γµ|) O(γ4 + γ2|µ|)

 ,
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in which it remains to compute the real constants c1 and c2. Consider the expansion of the linear

operator

A(γ, µ) = A00 +A10iγ +A01|µ|1/2 +A20γ
2 +A11 iγ|µ|1/2 +A02|µ|+O((|γ|+ |µ|1/2)3),

and the expansions of the two vectors in the basis

ζj(γ, µ) = ζj00 + ζj10iγ + ζj01|µ|1/2 + ζj20γ
2 + ζj11 iγ|µ|1/2 + ζj02|µ|+O((|γ|+ |µ|1/2)3), j = 1, 2,

in which the vectors ζj00 = ζj(0, 0), j = 1, 2 are known. Inserting these expansions into the equality

Aγ,µ
(
ζ1(γ, µ) ζ2(γ, µ)

)
=M(γ, µ)

(
ζ1(γ, µ)

ζ2(γ, µ)

)
,

we find at orders O(|γ|) and O(|µ|1/2) the equalities

A00ζj10 +A10ζj00 = 0, A00ζj01 +A01ζj00 = 0, j = 1, 2,

which allow to compute the first order terms ζj10 and ζj01, j = 1, 2, in the expansions above, and

at order O(|γ||µ|1/2) the equalities

A00ζ111 +A10ζ101 +A01ζ110 = c1ζ200,

A00ζ211 +A10ζ201 +A01ζ210 = c2ζ100.

which determine ζ111, ζ211, and the coefficients c1 and c2. Taking into account the action of the

operators Aij on the different Fourier modes, and the known expressions of ζj00 = ζj(0, 0), j = 1, 2,

which only involve the Fourier modes ±1, we conclude that c1 = c2 = 0. Consequently,

M(γ, µ) =

−2(2− α)2γ2 − 2

(2− α)2
µ 0

0 −2(2− α)2γ2



+

O(γ4 + γ2|µ|1/2 + |µ|3/2) O(|γ|3 + |γµ|)

O(|γ|3 + |γµ|) O(γ4 + γ2|µ|)

 ,

which implies the expansions of the eigenvalues in (ii), and completes the proof of the lemma.

Spectral stability and instability

The results in Lemma 4.1, Lemma 4.2, and the connection between the spectra of the operator Aµ
and of the Bloch operators Aγ,µ, imply that the periodic waves are stable with respect to general

bounded perturbations in the case α < 41/30 (supercritical bifurcation) and unstable in the case

α > 41/30 (subcritical bifurcation). The instability is due to the eigenvalue λ1(0, µ) of the operator

A0,µ, which is positive in this case, since µ < 0. This recovers the instability result for co-periodic

perturbations already found in Theorem 1, on the one hand, and implies that λ1(γ, µ) is positive for
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sufficiently small γ, thus the periodic wave is also unstable for periodic perturbations with nearby

periods, on the other hand. For localized and bounded perturbations this leads to an instability

interval (0, λ1(0, µ)] in the spectrum of the operator Aµ. More precisely, we have the following

result.

Theorem 2 Consider the Lugiato-Lefever equation (1.1) in the case β = −1 of anomalous disper-

sion. Assume that α < 2, α 6= 41/30, and F 2 = F 2
1 +µ. Consider the periodic solutions ψµ(x) of the

Lugiato-Lefever equation (1.1) given by (3.10), for µ > 0 if α < 41/30 and for µ < 0 if α > 41/30,

and the associated linear operator Aµ in (4.1), acting in either L2(R) × L2(R) or Cb(R) × Cb(R).

For any µ sufficiently small the following properties hold.

(i) If α < 41/30 and µ > 0, then the spectrum of the linear operator Aµ lies in the closed left

half complex plane, and the periodic solution ψµ(x) is spectrally stable with respect to bounded

perturbations.

(ii) If α > 41/30 and µ < 0, then the spectrum of the linear operator Aµ lies in the closed left half

complex plane, except for a finite interval of positive real numbers (0, cµ], with cµ = O(|µ|),
and the periodic solution ψµ(x) is spectrally unstable with respect to co-periodic, localized, and

bounded perturbations.

5 The case of normal dispersion

In this section we consider the Lugiato-Lefever equation (1.1) in the case β = 1 of normal dispersion.

The key difference with the case β = −1 of anomalous dispersion occurs in the linear stability

analysis of constant solutions, which have now different stability properties. As a consequence,

periodic waves will bifurcate at different parameter values, but the bifurcation analysis in Section 3

and the stability analysis in Section 4 stay the same, including computations.

Constant solutions

In both cases of normal and of anomalous dispersion, the constant solutions of the Lugiato-Lefever

equation (1.1) are the same (see Figure 2.1). The first difference between the two cases arises in

the linear stability analysis of these constant solutions. For a constant solution ψ∗ = ψ∗r + iψ∗i ,

with modulus square ρ∗, the linear operator A∗ has the same form (2.2), but the linear operator L∗

changes, the terms ∂2x having now a coefficient −1,

L∗ =

(
−∂2x − α+ 3ψ∗r

2 + ψ∗i
2 2ψ∗rψ

∗
i

2ψ∗rψ
∗
i −∂2x − α+ ψ∗r

2 + 3ψ∗i
2

)
.

Then the sign of the coefficient of k2 changes in L∗(k) and in the formula of a(k) in the spectrum

of linear operator A∗,

σ(A∗) =
{
λ ∈ C ; λ2 + 2λ+ a(k) = 0, k ∈ R

}
,
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Figure 5.1: Stability of constant solutions of the Lugiato-Lefever equation in the case of normal dispersion

(β = 1), for α >
√

3 (for α 6
√

3 the unique constant solution is stable). Stable branches are represented by

solid lines, unstable branches by dashed lines, and we set F 2
1 = (1 − α)2 + 1 and F 2

α/2 = α(4 + α2)/8. The

shape of the largest eigenvalue λ(k) is given at the points where the solutions loose their stability and for the

unstable solutions.

in which

a(k) = k4 − 2(α− 2ρ∗)k2 + α2 − 4αρ∗ + 3ρ∗2 + 1.

This implies a change in the stability properties of the constant solutions, which are summarized in

Figure 5.1 . A Turing instability occurs now for α > 2, ρ∗ = 1, and F 2 = (1−α)2+1, for wavenumbers

k = ±
√
α− 2, and a zero-mode instability occurs for α >

√
3, ρ∗ = ρ−(α), F 2 = F−(α), and for√

3 < α < 2, ρ∗ = ρ+(α), F 2 = F+(α).

Periodic waves

As in Section 3, we consider the onset of Turing instability which occurs in this case for α > 2, but

the same values ρ∗ = 1 and F = F1, F
2
1 = (1−α)2 + 1. We fix α > 2, take as bifurcation parameter

F 2 = F 2
1 +µ, and denote by ψ∗µ = ψ∗rµ + iψ∗iµ and ρ∗µ = |ψ∗µ|2 the corresponding constant solution of

the Lugiato-Lefever equation (1.1) and its square modulus, respectively, given by (2.1).

In this case, the Turing instability occurs for modes k = ±
√
α− 2. We therefore look for solutions

of the Lugiato-Lefever equation (1.1) close to the branch of constant solutions ψ∗µ of the form

ψ(x, t) = ψ∗µ + (u+ iv)(y, t), y =
√
α− 2x.

Inserting this Ansatz into the Lugiato-Lefever equation (1.1) we obtain exactly the same equation

(3.1) as in the case of anomalous dispersion. Since the constant solutions are the same in the two

cases, the only difference could occur for the coefficient of the term ∂2y in the formula of the linear

operator L∗µ. But since y =
√
α− 2x in this case, instead of y =

√
2− αx in the case of anomalous

dispersion, this coefficient is also the same. Consequently, all arguments, including computations,

in Section 3 remain valid, with the only difference that now α > 2. This implies that in this case
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the reduced system (3.5) undergoes a subcritical steady bifurcation with O(2) symmetry with the

properties (iii) and (iv) in Theorem 1.

The stability analysis in Section 4 is also the same. For the same reason as above, the linear

operator Aµ in (4.1) does not change, and we conclude that the periodic waves are unstable with

the properties in Theorem 2 (ii). We summarize these results in the following theorem.

Theorem 3 Consider the Lugiato-Lefever equation (1.1) in the case β = 1 of normal dispersion.

Assume that α > 2 and F 2 = F 2
1 + µ, F 2

1 = (1 − α)2 + 1. For any µ < 0 sufficiently small the

following properties hold.

(i) The equation possesses an even periodic solution ψµ(x) with wavenumber
√
α− 2 and Taylor

expansion (3.10), which is unstable with respect to co-periodic perturbations.

(ii) The spectrum of the linear operator Aµ obtained by linearizing the equation at this periodic

solution and acting in either L2(R) × L2(R) or Cb(R) × Cb(R) lies in the closed left half

complex plane, except for a finite interval of positive real numbers (0, cµ], with cµ = O(|µ|).
Consequently, the periodic solution ψµ(x) is spectrally unstable with respect to localized and

bounded perturbations.

6 Discussion

We conclude with a brief discussion of the nonlinear stability problem and of the local bifurcations

which occur at the onset of zero-mode instability.

Nonlinear stability: co-periodic and subharmonic perturbations

Besides showing the existence of periodic waves, the local bifurcation result in Theorem 1 also implies

their nonlinear stability with respect to perturbations which belong to the domain Y of the linear

operator A∗µ in the dynamical system (3.1), i.e., for co-periodic perturbations which are H2. Since

at the bifurcation point µ = 0 the operator A∗0 does not have unstable spectrum, the leading order

dynamics is given by the behavior of the solutions on the center manifold. Therefore, the bifurcating

periodic waves, which correspond to the circle of equilibria on the center manifold, are unstable in

the subcritical bifurcation, whereas they are stable in the supercritical bifurcation. In this latter

case, for initial data ψ(x, 0) = ψµ(x)+φ0(x), sufficiently close to a periodic wave ψµ(x), the solution

ψ(x, t) of the Lugiato-Lefever equation converges to a translated periodic wave ψµ(x+ a), for some

a ∈ R,

‖ψ(·, t)− ψµ(·+ a)‖H2
per
→ 0, as t→∞.

The decay rate is given by the convergence rate towards equilibria on the center manifold, hence it

is slowly exponential, O(e−dµ), for some d > 0.

This result which holds for co-periodic perturbations can be extended to subharmonic perturba-

tions by enlarging the phase space X = L2(0, 2π)× L2(0, 2π) of 2π-periodic functions to the phase
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space XN = L2(0, 2πN) × L2(0, 2πN) of 2πN -periodic functions, for some arbitrary, but fixed N .

The key difference is that now the spectrum of the operator A∗0 possesses additional eigenvalues,

σ(A∗0) =
{
λ±(n,N) = −1±

√
1− (2− α)2(n2/N2 − 1)2, n ∈ Z

}
.

These additional eigenvalues have negative real parts, so that the spectral decomposition (3.3) still

holds, but with a constant δN → 0, as N → ∞, and 0 remains a double semi-simple eigenvalue

with the same associated eigenvectors ζ and ζ which belong to X ⊂ XN . Since X is an invariant

subspace for the dynamics of (3.1), the resulting center manifold lies in X and the reduced dynamics

is described by the same reduced system (3.5). Consequently, the result in Theorem 1 holds in XN ,

implying in particular the stability of the periodic waves with respect to subharmonic perturbations.

However, this result is not uniform in N , since the spectral gap in the decomposition (3.3) tends

to 0, as N → ∞. For a given periodic wave ψ∗µ, we can therefore conclude on stability for a finite

number of integers N , only. A stability result which holds for arbitrary values N , would allow to

conclude on stability, at least spectral, with respect to general bounded perturbations, but such a

result cannot be obtained using the center manifold approach in Section 3. The spectral analysis in

Section 4 shows the spectral stability for localized and bounded perturbations, but leaves open the

question of nonlinear stability.

Zero-mode instability

The local bifurcations induced by the zero-mode instability of the constant solutions found in Sec-

tion 2 can be analyzed using the same approach as in Section 3. Focusing on parameter values

close to zero-mode instability, the Lugiato-Lefever equation is written as dynamical system of the

form (3.1) in the same way, and we may take as phase space L2(0, L)× L2(0, L), for any arbitrary,

but fixed L, hence considering functions which are L-periodic in the spatial variable x. With this

choice, the corresponding linear operator has purely point spectrum, again, which lies in the open

left half complex plane, except for 0 which is now a simple eigenvalue. Applying the center mani-

fold theorem, we obtain a one-dimensional manifold on which the dynamics is governed by a scalar

ordinary differential equation. However, since the eigenvector associated with the simple eigenvalue

0 is a constant function, and since the subspace of constant functions is invariant for the dynamics

of (3.1), the center manifold lies in this subspace and the only bifurcating solutions found in this

way are the constant solutions of (1.1). We point out that in this approach we cannot replace the

phase space L2(0, L)×L2(0, L) by a space of functions defined on the real line, e.g., L2(R)×L2(R),

because with such a choice the linear operator A∗0 has continuous spectrum and no spectral gap

allowing to use the center manifold reduction.

As mentioned in the Introduction, an alternative approach for the existence problem is the

spatial dynamics approach used in [3]. In the setting from [3], this zero-mode instability corresponds

to a reversible 02-bifurcation, in which bounded steady solutions bifurcate which are localized or

periodic. The Turing instability studied in Section 3, corresponds to a reversible 1:1-resonance, or

(iω)2-bifurcation, and besides periodic solutions, localized and quasi-periodic solutions bifurcate in

this case, as well. While this spatial dynamics approach provides a very detailed description of the
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set of bounded solutions, with no restriction to periodic waves, it does not give any information

about the stability of these solutions, which is an open problem.
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