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Abstract

The Internet development and the availability of reliable
networks led to the emergence of Grid architectures. The
aim of these architectures is to take benefit of widely dis-
tributed resources to improve execution possibilities. De-
pending on their properties, these architectures are usually
classified into desktop grids, resources grids and applica-
tion based grids. Application based grids provide an easy
access to applications deployed on the grid on the ASP (Ap-
plication Service Provider) mode. When these grids grow
of orders of magnitude, application lookup will become a
costly activity of the grid. In this article, we study how a
lookup algorithm scales when the size of the grid grows up.
We exhibit a “lookup throughput” which characterizes the
grid interconnections graph and the lookup algorithm.
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1 Introduction

The emergence of Grid platforms was allowed by the de-
velopment of Internet and the availability of more reliable
networks. The basic idea of grids is to provide comput-
ing resources on demand and applications everywhere. Cur-
rently grids are mainly dedicated to scientific applications.
Several classes of Grid Platforms are distinguished. Desk-
top Grids like [2, 3] provide a framework to collect power
from unexploited personal computers. Usually, these plat-
forms are based on one, or more, servers which distribute
the workload among idle clients. They provide execution
resources at low cost but not all applications can benefit
from this architecture. Only task independent applications
are relevant. Resources Grids, as described by Ian Foster
in [10], allow users to share execution resources. Thus, the
Globus system [9] provides a set of servers which manage



and allocate the resources to applications. This kind of plat-
form is dedicated to the execution of parallel applications
made of a set of tasks that communicate using a standard
parallel communication layer as MPI. This means that only
parallel programming experts can use these platforms and
program the applications that will be executed. However,
people may be interested in using the grid power without
being experts in parallel programming or computer scien-
tists. The basic idea of the applications based grids is that
providers put applications at clients disposal. These appli-
cations run on powerful machines but are simple to access,
as clients just have to send the parameters of their execu-
tions. This approach is normalized by the Global Grid Fo-
rum through the GridRPC [16] interface. This interface de-
fines a simple RPC-like programming interface for access-
ing applications on a grid.

This application oriented approach is not limited to sci-
entific applications and may be used by general purpose ap-
plications. In this case, the dedicated middleware is gen-
erally composed of three different roles: a service lookup,
servers and clients. Examples of middleware platforms for
scientific applications are DIET [6], a scalable Corba-based
environment, Netsolve presented in [1, 19] and NINF de-
scribed in [21]. In these platforms, the lookup function is
centralized in an agent. This means that every client of
the platform accesses the agent to choose the best avail-
able server. However, to provide access to a larger and geo-
graphically distributed set of services these platforms must
be able to scale up. In the DIET case, scaling up is achieved
by interconnecting several lookup agents in an overlay net-
work. In this case, the middleware has to provide a dis-
tributed localization service or lookup service to find avail-
able servers. Localization is usually done by broadcasting
search requests on the overlay network. However, broad-
casting is very throughput consuming and must be con-
trolled to avoid network overflow.

In this paper, we study the capability for a network of
interconnected agents (overlay network) to support this lo-
calization service. In the first section, we introduce the
model of application based grids. In the second section,
we present the service lookup problematic, its application
domain and related works. Then, we describe the algorithm
used to broadcast service localization requests. In the forth
part, we propose a model of the localization problem and
we give details on its simulation using the SimGrid simula-
tor. Finally, we present the results obtained when carrying
out the simulations, analyze them and conclude.

2 Application Based Grids

The notion of service does not have the same meaning
depending on the context. In distributed systems, services
are applications provided to users through interfaces. In

grid middleware, services are rather components offering
system functionalities to applications executing on the grid.
We use the term of application based grids to name the con-
text of our work. Application Based Grids (ABG) define
grid middlewares providing simple access to applications
distributed on the computer grid. The GridRPC [15] model
is an interface to application based grids. ABG are a tenta-
tive to merge Application Service Provider (ASP) with grid
computing. Most of the application based grids lay on a
three parts architecture, as shown on figure 1:
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Figure 1. Architecture of ASP Grid

• the server, a Network Enabled Server or NES, pro-
vides a service. The server encapsulates an application
or a library and makes it accessible by clients. Note
that, in the following, the meaning associated with ser-
vice is a type of application that is accessible through
an interface, as in most distributed systems.

• the client accesses the grid to get results from an ap-
plication with its own parameter set. It may be some
kind of interactive tool or interpretor like Mathlab as
well as a program. One of the advantages of ABG is
that clients do not have to install large applications on
their computers as they use them remotely.

• the lookup agent, is in charge of recording the services
available on the grid. When a client looks for a service,
it sends a request to the agent.

This architecture is common to other distributed comput-
ing environments. In fact, this is the common way for client
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to find servers in most Remote Procedure Call or Remote
Method Invocation based platforms. However, the differ-
ence comes from the semantics associated with the lookup
request. Some particularities of the ABG, compare to RPC
or RMI platforms, are the size of the parameters and the
resources consumed by one request. These particularities
must be taken into account by the lookup agent.

Basic ABG implementations manage applications and
servers in a campus or a company department. Applica-
tions and servers are made available to clients through an
agent. Clients send their requests to this entry point which
chooses or selects the best available server. This agent gives
an access only to applications local to the department. So
its application offers set is limited. By interconnecting dif-
ferent access points (agents), a larger set of services may be
proposed to clients and the choice for executing one type of
application will be made on a larger set of servers. In this
case, agents must cooperate to implement a lookup function
to find and select remote servers.

3 Scalable service lookup

To increase the number of services proposed, application
based grids may be interconnected. We may assume that
this interconnection will be extended worldwide one day.
This means that the lookup service associated with a ABG
must scale up. Several propositions exist in the domain of
scalable lookup services and discovery algorithms.

The Corba Trader defines an interconnection graph to
forward lookup requests in the trader federation as pre-
sented in [17]. To search for a service in the trader federa-
tion, the algorithm used broadcasts requests to the neigh-
borhood until a defined Time To Leave (TTL) value is
reached, on a Breadth First Search (BFS) mode. Other well-
known distributed platforms provide lookup servers inter-
connection by adding references to other lookup agents as
in Jini [20] or SDS [7] where administrators can intercon-
nect lookup servers on a hierarchical scheme.

The lookup issue has also become popular thanks to the
peer-to-peer (P2P) systems. In P2P systems, peers are look-
ing for data or files stored somewhere on the network. Dif-
ferent lookup algorithms and architectures were tested on
these networks. These algorithms may be classified as cen-
tralized or distributed. In centralized lookup algorithms,
as Napster [18], location information are centralized on a
server and the client accesses this server when he looks for
a file. However, this does not scale well when the number
of clients grows. Distributed algorithms try to avoid this
bottleneck by distributing the location information among
multiple nodes. Distributed algorithms are either based on
super nodes sharing location information, as in FastTrack or
gnutella [11, 14] or on data structures as Distributed Hash
Tables DHT [13]. These algorithms lay on an infrastruc-

ture which has to be administrated or all the nodes do not
play the same role in the lookup algorithm. The Gnutella
P2P system used, in its early 0.4 version described in [5],
an algorithm that is totally distributed on pairs. The lookup
request was first sent to the neighbors of the initiating peer.
Then, if the resource was not found on these peers, the re-
quest was sent to their neighbor peers, one hop further. Ev-
ery wave of requests increments the hop count until it finds
the resource. This algorithm led to a network overflow: as
the network size has grown up, the number of lookup re-
quests generated so much traffic that the peer network be-
came overloaded. One of the solutions used to limit the
lookup traffic was to limit the broadcast of requests us-
ing Time To Live (TTL). However this does not guaranty
against a network overflow when the requests arrival rate is
too high.

Service Based Grids are slightly different from peer net-
works. The request looks for an application and the re-
sources which will be consumed by this application. When
an execution may last for several hours, days or weeks, the
execution server has to be carefully chosen. For this rea-
son, the client request must be forwarded between agents
in order to choose the server that best fits the execution
needs. For instance, the server may proposes the best ex-
ecution performances or security guaranties. In platforms
like Diet or Netsolve, performance prediction is used to se-
lect the best offer before scheduling execution requests on
servers. This selection implicitly balances the load between
the servers. This selection makes the lookup process dif-
ferent from traditional lookup processes where the search is
stopped when an instance is found.

4 Application Lookup algorithm

By interconnecting application based grids, we extend
the set of application offers for the clients. Each ABG is
locally managed and remains independent from the others.
The interconnection of application based grid is done by
a local administrator which declares the reference of other
application based grid agents in the local agent, as in most
lookup architectures. Then, the interconnection network of
ABGs constitutes an overlay network above the Internet.
The wider the ABG will be interconnected, the bigger the
offers set will be and it may grow up to become world wide.
The problem we face is how this interconnection network
performs when the network size scales up? Probably, the
load of lookup requests will grow and overloads the net-
work as that is arisen for Gnutella. So what is the limit
of requests arrival rate? How the network and algorithm
parameters will affect the performances of the lookup pro-
cess? These are some of the questions that we try to answer.

Of course, the answer depends on several parameters:
the underlying network characteristics, the overlay network
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interconnections, the traversal algorithm used for service
lookup, etc. As the set of parameters to be evaluated is too
large, we had to set some. In this paper, we mainly focus
on the overlay network characteristics. One of the charac-
teristics we want to exhibit is that the overlay network may
be characterized by some kind of throughput when a steady
state is reached.

The algorithm used to look for services on the overlay
network is based on the multi-waves broadcast algorithm
already used by Gnutella. First, the client sends its request
for an application to the agent it depends on. If the agent
did not record a server providing this application, it for-
wards the request to other agents, on the overlay network.
At a first step it sends the request to its direct neighbors that
can be reached at one hop and waits for their responses. If
none of the neighbors know a server for the application then
the agent initiates a second wave of requests which queries
the neighbors one hop further. The agent continues until it
reaches a max-hop count or it finds a server providing this
application.

To be sure that an agent is not asked twice for the same
application, each request is identified by a request identifier
and the neighbors of an agent are numbered. When an agent
receives a request for the first time, it records the identifier
and the number of the link it has received the request on,
thus it records the emitter agent. Then, it looks up its local
server repository for the application requested. If the ap-
plication is present, the agent replies with a proposition to
the broadcasting agent and the algorithm stops. If it is not
available, the receiving agent replies to the sending agent
that it does not provide the application. If the agent re-
ceives a request already recorded, that means it has already
given a negative answer to this request. So, it forwards it to
its neighbors if the hop count is under the Time-To-Leave
value.

Several answers are possible to the forwarded request.
The neighbors may have a server that provides the applica-
tion. In this case, the lookup algorithm stops. The neigh-
bors may not have any offer but have neighbors that have
not been contacted, in this case the lookup algorithm for-
wards the request to these neighbors during the following
wave. Last, the neighbors may not have any offer and have
no non-contacted neighbors, in this case the lookup algo-
rithm marks the agent has ended and indicates it to the for-
warder agent by sending an end message. When an agent
receives an end message, it marks its neighbor as ended and
does not forward more requests to this neighbor as this part
of the graph is completely traversed. When all the neigh-
bors of an agent are ended, this means that this agent is
ended and the algorithm sends an end message to the father
agent. When all the neighbors of the broadcasting agent
are ended, this means that the graph is completely traversed
and, if no proposition is received, they are no offer for this

application.
This multi-waves algorithm intends to limit the number

of messages sent by an agent when a server provides the ap-
plication in the neighborhood of the agent. It performs well
if several instances of the application are available on the
network but generates more messages than a simple broad-
cast algorithm when few servers provide this application on
a wide network. Several improvements to this algorithm are
possible mainly to limit the number of exchanged messages.
However, our aim is rather to evaluate the overlay network
capabilities than to provide the best algorithm.

To evaluate the behavior of the algorithm when the num-
ber of interconnected agent grows up, we model its context
and simulate it.

5 Modelling

The agents interconnection network can be seen like a
connected graph with non-oriented edges. The vertexes of
the graph are the agents and the edges the links of the over-
lay network. Using this model, we evaluate the number of
messages generated by a lookup request: first by maximiz-
ing it then by calculating an average messages number in
case of a tree network.

5.1 Maximum messages number

The lookup algorithm widely broadcasts requests to find
an application. The request arrival rate determines the per-
formances of the algorithm as the network may become
overloaded. This arrival rate depends on the number of
messages generated by a lookup request. This number of
messages depends on several parameters such as the max-
imum hop count used to forward a request, the number of
neighbors of an agent and the number of applications in the
network.

If the arrival rate is low, the load generated by requests
does not disturb the network traffic. But when this arrival
rate grows up, some congestion can occur and have an ef-
fect on the network performances. To evaluate these conse-
quences, we maximize the number of messages generated
by one request. The traversal of the graph using the lookup
algorithm, without using waves nor TTL, generates 2 × L
messages (request and reply for each link), where L is the
number of links.

However, when we introduce waves in the algorithm,
the number of messages also depends on the graph topol-
ogy. For instance on a star graph, where every vertex is
connected to one central node, the number of messages is
2× (N − 1) messages, where N is the number of vertexes.
Thus, in the case presented on figure 2, there are 24 mes-
sages (two per link) for one wave on 13 nodes. In the case
presented on figure 3, there are 30 messages for two waves
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Figure 2. Message broadcasting on a star

on 13 nodes, 6 messages for the first wave and 24 for the
second.

D
ep

th
 2

D
ep

th
 1

Figure 3. Message broadcasting on a tree

Let Mk be the number of messages generated by wave
k. Thus, the maximum number of messages for a TTL of T
is MT .

5.2 Calculation of Mk :

To maximize the messages number, we assume that,
from one node, the graph used is a tree, as shown on fig-
ure 3, to avoid accessing the same node twice. Then we
compute the number of messages when the graph is com-
pletely traversed. The parameters used in this calculus are
the following:

• d, the interconnection degree, is the average number
of neighbors for an agent. This means that an agent
broadcasts a request to d neighbors.

• T , the maximum lookup depth, is the maximum num-
ber of hops for a request. It is also the number of waves
of the algorithm. The same value is used for all agents
and requests.

The number of messages generated by one wave is two
times the number of agents reached by this wave: for each
emitted message an agent gets a response message. The first
wave generates 2×d messages as the node has d neighbors.
The second wave generates 2 × d2. Thus, if the TTL is
set to 2, the maximum number of messages is the number
of messages generated by the first wave plus the number of
messages generated by the second wave, 2d + 2d2. This
can be generalized at wave k. The number Vk of messages
needed to access all the nodes at k hops is:

Vk = 2
k∑

i=1

di

The number of messages generated by a request of depth
k is the sum of the messages generated by the requests of
waves 1 to k. Thus, the total number of messages generated
by wave k is:

Mk =
k∑

i=1

2
i∑

j=1

dj

That can be simplified in:

Mk =
k∑

i=1

2(k − (i− 1))di

This result shows the maximum number of messages
generated in this case. We can note that this value has an
exponential progression on the TTL value. However, all the
requests do not generate the maximum number of messages.
We compute a mean number of messages depending on the
probability to find an application on an agent.

5.3 Average messages number

Let X be the probability to find the application on an
agent. This probability is modelled by a discrete random
variable which may take two values: 1 if the application is
found, otherwise 0. The probability to find an application is
set to p, thus:

P (X = 1) = p
P (X = 0) = q with q = 1− p

We assume that the probability is the same one for all the
agents. The average number of messages N generated by
one request is:
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N =
T∑

k=1

P (N = Mk)Mk

Where P (N = Mk) is the probability that the number of
messages is equal to Mk. As Mk is a discrete variable, the
probability is null when this variable is not defined.

When the graph is a tree, their are dk agents at level k.
So, the probability to find an application at level k is:

(1− qdk

)
The probability to get Mk messages for a request of

depth k is the probability to find the application at this level.
It depends on the value of k compared to the maximum
depth (TTL) T :

• for k < T : we did not find it at levels from 1 to k − 1
but we did at level k:

P (N = Mk) = (1− qdk

)
k−1∏
j=0

qdj

• for k = T : no application were found until level T−1

P (N = Mk) =
k−1∏
j=0

qdj

Thus the average number of messages for a TTL of T is:

N =
T∑

k=1

P (N = Mk)
k∑

i=1

2(k − (i− 1))di

5.4 Example

In this example, we calculate the average number of mes-
sages generated by a request on figure 3, by using the pre-
vious result. The interconnection degree is d = 3, the max
lookup depth is T = 2 and the probability to find the appli-
cation on an agent is p = 0.2 (q = 1− p = 0.8).

The request may be satisfied either at a depth of one or
two:

N =
2∑

k=1

P (N = Mk)Mk

⇒ N = P (N = M1)M1 + P (N = M2)M2

The number of messages generated at level 1 is:

M1 =
1∑

i=1

2(1− (i− 1))3i ⇒M1 = 6

And the probability to get 6 messages is:

P (N = M1) = (1− (0.8)3
1
)

0∏
j=0

(0.8)3
j

⇒ P (N = M1) = 0.488

The number of messages generated at level 2 is:

M2 =
2∑

i=1

2(2− (i− 1))3i ⇒M2 = 30

And the probability to get 30 messages is:

P (N = M2) =
1∏

j=0

(0.8)3
j

⇒ P (N = M2) = 0.51

So, in this case, we have an average of 14.34 messages per
request for a TTL of 2:

N = 6× 0.488 + 30× 0.51 = 18.24

Using these results, we can calculate the average number
of messages generated by one request and, with this num-
ber, we can calculate the consumption of resources in the
agents network. For instance, we may calculate the network
throughput or the CPU power consumed by the agents. Let
assume an overlay network is composed of several agents
interconnected with an average degree of 3. If all the agents
have the same behavior then one agent will generate an av-
erage of 18.24 messages per request. Now, if we assume
that an agent emit an average of 10 requests of 1 Kbyte
per second, then the number of messages generated by one
agent is 182 and the network consumption is 1.42 Mb/s just
for application lookup!

However this result is an average value for the consump-
tion of the resources and it does not take several parameters
or configurations into account. The model used to get this
result assumes that all the nodes have the same character-
istics and the structure of the overlay network is regular (a
tree). A more general model would lead to a too complex
modelling. For instance, the given equation does not take
into consideration links between nodes of the same depth.
The use of these links will increase the number of messages
for the same interconnection degree. Nevertheless, if we in-
tegrate these links in the equation, to be more precise, the
equation will depend on the network structure and it will
not be the same for all the nodes.

So, to better understand the behavior of the lookup al-
gorithm we need to simulate it step by step. This allows
the study of more realistic scenarios and exhibits the per-
formances depending on the parameters.

6 Simulation

We want to exhibit through this simulation the limits of
an overlay network and its dependence on parameters such
as the interconnection degree of the graph or the maximum
depth of request forwarding in the lookup algorithm.
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To simulate the algorithm execution, we use the Sim-
Grid simulator [4, 12]. This simulator provides a core of
functions to simulate distributed applications in heteroge-
neous environments. These functions are used to develop
a specific simulator. Some basic entities provided by Sim-
Grid are hosts, tasks, processes and channels to exchange
messages. Code may be assigned to processes to imple-
ment algorithms. A platform file gives all the character-
istics of the platform used: cpu number and speed, links
latency, throughput and interconnections. Our implementa-
tion is based on SimGrid 2.9.

In the case of the lookup algorithm, agents are simulated
by processes executing the algorithm on a host. The inter-
connections between agents, the overlay network, are sim-
ulated by links. The requests are sent through messages on
these links. When an agent receives a request it activates a
task to handle it.

Applications are recorded in agents. Several servers
which provide the same application may be recorded in the
same agent. So the agents just record the different appli-
cation types as application offers. Before the simulation
the application offers are statically distributed among the
agents. Then, on a lookup request, an agent searches in
its repository if it recorded this application. If the offer is
present, then the agent creates an evaluation task. This task
simulates an evaluation of the application offer as execution
performances of the server or properties checking.

The SimGrid simulator uses a platform description file
to generate the links between hosts. This platform file gives
a list of every existing link between nodes. Because the size
of the interconnection graphs is too big to be defined by
hand when the number of nodes exceeds few hundreds and
to generalize our results on different graphs, the intercon-
nection definition is based on general characteristics and,
thus, it is not limited to one particular graph. Characteristics
we are interested in are the number of hosts, the intercon-
nection degree of the hosts and the type of graph (random,
grid, shuffle-exchange, etc.). To generate graphs depending
on these characteristics, we developed a generator which
produces graphs depending on properties given in parame-
ters. This graph generator allows to define links properties:
throughput and latency. All the links have the same prop-
erties. The same configuration file sets the hosts (agents)
properties as cpu speed, duration to process and evaluate a
request.

As said before, using the defined graph, we distribute the
application offers among agents. As the size of the graph
may grow up to several hundreds of hosts, this distribution
cannot be done by hand and we use a statistic distribution.
This distribution depends on two parameters: the number
of different application types and the number of application
instances per type.

The last parameters given for a simulation define the

lookup algorithm and the requests properties. For the
lookup algorithm, the maximal depth for stopping a broad-
cast (TTL) and the maximum number of offers returned on
a request can be given. For the requests, the properties are
the number of requests handled during a simulation, their
distribution among the hosts and their arrival rate law (ran-
dom or uniform).

The result of the simulation is observed through output
values. These output values are periodically captured and
stored in results files. The observed values are:

• number of requests at a time: this value gives the load
of the agents network according to time.

• number of researches at a time: this value gives the
number of requests that are in the evaluation process
of the hosts. These requests do not use the network for
the moment but they will do it as soon as they will be
finished with the evaluation process.

• number of messages at a time: this value gives the
number of messages that are currently on the links.
This gives a accurate value on the current network load
.

• number of messages per request: this value gives the
number of messages generated by each request.

• duration of a request: the time between the creation of
the request on a host and its termination.

• ratio of satisfied requests: this value is expressed in
percentage. As some requests may not find an appli-
cation offer corresponding to their request, this value
gives the ratio between satisfied requests and not satis-
fied requests.

7 Results

In this part, we present results we got with different sim-
ulations. The first characteristic we exhibit is the idea of
“lookup throughput”. By lookup throughput, we mean the
number of requests managed by the agents or rather the re-
quest arrival rate supported by the network without being
overloaded.

7.1 Lookup throughput

Figure 4 shows the number of requests in the agent net-
work for different arrival rates ranging from 1.5 ms to 3
ms (mean time between two requests) in a network of 100
agents. The links throughput is set to 1 Mb/s and the cpu
consumption in an agent for one request is 1 ms. There is
100 offers available in the agent network with 10 different
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Figure 4. Number of requests (1)

types of application. Thus, on very agent, the probability of
finding an application is 0.1.

On the figure it is rather obvious that an arrival rate of
1.5 ms will saturate the agents network and that an arrival
rate lower than 2.5 ms can be easily supported. However,
for arrival rates between these two values more details are
needed. For instance, when the arrival rate is set to 2 ms, the
curve slowly goes up which seems to indicate a saturation
of the network . To define more precisely the threshold of
saturation, we used a shorter range of arrival rate variations.
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Figure 5 gives more precise indications on the network
saturation for uniform arrival rates ranging from 2 ms to
2.5 ms. On this figure the difference between saturated and
unsaturated curves is less obvious. We can note that, in a
first phase, the number of requests grows. Then, according
to the arrival rates, the value seems to stabilize for arrival
rates greater or equal to 2.2 ms. For 2 ms, the value indi-
cates a saturation but for 2.1 ms it is not possible to decide

if there is a saturation or not: the network is in an unsta-
ble state. Since the network goes through an unstable state
between arrival rates that do not saturate the network and
arrival rates that clearly overload it, we can conclude that
defining a metric to precisely set the lookup throughput is
mandatory.
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Figure 6. Intervals for stability

To characterize the lookup throughput we need to de-
fine a criterion based on the number of requests, such as
this lookup throughput is defined by the maximum thresh-
old where the arrival rate does not saturate the agents net-
work. As the requests number is dynamic and not pre-
dictable, there is no absolute threshold that determines if
the value is stable or not. So, we have defined a relative
criterion based on the evolution of the requests number. We
take two intervals in the simulation, as shown on figure 6.
The first one is taken at the beginning, after the initializa-
tion phase when the network is not filled by requests, and
the second is taken at the end, before the finalization phase
where no more requests arrive. We compute the average
number of requests in these two intervals. If the difference
of these average values is less than a threshold, the network
is considered as stable. It is considered as unstable other-
wise.

7.2 Network accumulation

To have a better understanding of the reasons of the net-
work accumulation, we have identified the factors that influ-
ence the performances of requests processing. The requests
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Figure 7. Number of messages

completion depends on the resources used by a lookup re-
quest: the underlying physical network throughput when
the messages circulate on this network, the execution time
in agents and the evaluation time spend in servers. We vary
these parameters to show their links with request comple-
tion performances.

First, we have studied the number of messages in the
agents network on figure 7. This figure is very similar to
figure 4. This indicates that, at a given time, most of the
lookup requests are contained in messages circulating on
the network. So, the accumulation of requests is actually in
messages on network links. This was also confirmed by ob-
serving the number of on going evaluations which is stable
over this time. These curves show clearly that the physical
network is the bottleneck of the lookup algorithm.
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Figure 8. Requests with no network cost

To verify this result, we have changed the links param-
eters to suppress the message exchange cost. In figure 8,
the network latency was suppressed and the link throughput

(physical network) was set to 100 000 Mbs. On this fig-
ure, we can note that the agents network throughput raises
significantly up as a request arrival rate of 0.09 ms does not
overload the network. This proves that the physical network
throughput is the critical resource needed by the lookup al-
gorithm.

Note that another accumulation of request arise in the
agents network for arrival rates above 0.09 ms. This accu-
mulation is due to agents processing of requests and the lim-
ited computing resource: a processor is not infinitely fast.
The mean cpu consumption time is set to 1 ms per request.
This was checked by giving no cost to request processing.
In this case, the number of requests in the agent network is
constant over the time and directly depends on the request
arrival rate.

7.3 Influence of network throughput

To characterize the influence of the physical network
throughput on the agents network capacity, we determined
the request arrival rate which verifies a stable state (using
the criterion introduced in section 7.1). This request arrival
rate was determined for a given number of agents (100, 500,
1000, 1500, and 2000) and for different network through-
puts. The results are given in figure 9. On these curves we
can see that the number of requests in the agents network
linearly depends on the network throughput. For example,
with 2000 agents, when the network throughput increases
from 50 Kbs to 0.5 Mbs, the number of requests increases
from 5000 to 50000. The figure also shows that the lookup
throughput linearly depends on the agents number for the
tested network throughputs. This means that the lookup al-
gorithm scales well in this context. Nevertheless, it is im-
portant to note that all the experiments were done with a
lookup depth of 2 and a probability to find an application of
0.5 and that the results are highly dependent on these values.
It is obvious that, as the lookup depth increases, the number
of requests raises up and that this number raises down when
we increase the probability to find an application.

An important remark is that the first measurements were
done with 1 Mbs of network throughput. The results show
that, in this context, an agent is able to handle about 4.5 re-
quests per second without overloading the network. How-
ever, this means that, to handle 4.5 requests per second per
agent, we use 1 Mb of network throughput that is rather
large just for applications lookup. This result does not cor-
respond to the one given by theoretical calculation in 5.4.
All reasons that may be invoked show the difference be-
tween theory and practice: the network is here not regular
and the computing time on agents has not been taken into
account.
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7.4 Influence of Time-To-Leave value

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 r

eq
ue

st
s

Time

(A) prof2
(B) prof3
(C) prof4
(D) prof5
(E) prof6

Figure 10. Requests Number with TTL

In the previous results, the TTL value was set to 3. The
TTL value sets the hop count, or depth, where messages
are not more forwarded to neighbors. It is obvious that this
parameter has a great influence on the network load as the
number of messages generated by one request depends on it.
Figure 10, gives the results obtained when TTL varies from
2 to 6 in a hundred nodes network. Note that on a tree with
an interconnection degree of 3, a request reaches at most 81
(34) nodes with a TTL of 4 and all the network with a TTL
of 5 (35 = 243). For this reason, curves for a depth 5 and 6
are very close. The difference between curves (B) and (C)
confirms the influence of the TTL value. In this experiment
the probability to find an application is 0.2. In this case, the
agent has a good probability to find an application offer in
two waves. However, TTL above 2 have an influence on the

load of the agents network. This can be explained by the
random choice of the graphs. Other experiments done with
a probability of 0.5 shows that the application offer is found
without generating much messages and the agents network
is not overloaded whatever TTL we use.

8 Conclusion

In this article, we study the throughput of a network of
agents for a lookup algorithm. The context and properties
of the lookup algorithm are slightly different of classical
lookup algorithm. Our context is the context of applica-
tion based grids where clients look for application types
and performances. In this context, applications cannot be
simply recorded in a centralized repository for two reasons.
First, applications are structured by administrative domains
where people need to keep control on the applications use.
Second, clients choose the executing server for the applica-
tion according to an evaluation of their performances. This
performance evaluation needs to access the server to use dy-
namic data.

The algorithm used is based on a simple multi-waves
broadcast. We did not have the intention of finding the best
algorithm but we rather wanted to test the network of agents
capability to handle requests. First, we give the theoretical
limit for the lookup network throughput by calculating the
maximum number of messages generated by one request.
But the result is complex and is limited to regular networks
as trees. Then, we simulated the network and pointed out
that the lookup throughput mainly depends on the physi-
cal network throughput rather than on the execution time
on each node and that the lookup algorithm is very network
consuming.

Note that, all these results may also be applied to certain
classes of peer to peer systems for requests broadcasting.
In the case where pair may not look for resources available
in the network but rather broadcast administrative informa-
tions. In both cases, the underlying network is an overlay
network. Our results give interesting information on the
cost and the limited capabilities of an overlay network to
support broadcast.

To follow this work, we are improving the algorithm per-
formances by implementing offer caches that record previ-
ously found offers on agents. An other improvement of the
algorithm is based on the use of proxy-offers broadcasted
by agents as described in the Corba Trader specification.
We also plan to evaluate more parameters as the overlay
network structure. Finally, this example will be used as
a comparison base for different broadcast algorithms and
structures as described in [8].
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