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Abstract

Nonlinear dynamical systems identification and behavior prediction are difficult problems encountered in many
areas of industrial applications such as fault diagnosis and prognosis. In practice, the analytical description of a
nonlinear system directly from observed data is a very challenging task because of the the too large number of the
related parameters to be estimated. As a solution, multi-modeling approaches have lately been applied and consist in
dividing the operating range of the system under study into different operating regions easier to describe by simpler
functions to be combined. In order to take into consideration the uncertainty related to the available data as well
as the uncertainty resulting from the nonlinearity of the system, evidence theory is of particular interest, because it
permits the explicit modeling of doubt and ignorance. In the context of multi-modeling, information of doubt may be
exploited to properly segment the data and take into account the uncertainty in the transitions between the operating
regions. Recently, the Evidential Evolving Gustafson-Kessel algorithm (E2GK) has been proposed to ensure an
online partitioning of the data into clusters that correspond to operating regions. Based on E2GK, a multi-modeling
approach called E2GKpro is introduced in this paper, which dynamically performs the estimation of the local models
by upgrading and modifying their parameters while data arrive. The proposed algorithm is tested on several datasets
and compared to existing approaches. The results show that the use of virtual centroids in E2GKpro account for its
robustness to noise and generating less operating regions while ensuring precise predictions.

Keywords: Online evidential clustering, Multi-modeling, Belief functions theory, Behavior modeling, Virtual
centroids

1. Introduction

1.1. Nonlinear systems and multi-model approaches
Dealing with nonlinear systems behavior identification and prediction is a widely encountered problem in real

world applications in engineering, industry, time series analysis, prediction and fault diagnosis [1]. Modeling their
behavior from observed data is a difficult task to perform because the identification of nonlinear systems involves
a large number of related parameters to be estimated. Usually, a model consists in a set of functional relationships
between the elements of a set of variables. One way to overcome the complexity related to nonlinearity is to adopt
multi-model approaches [2–5].

Using multi-model approaches is motivated by the difficulty, and sometimes the inability to analytically describe
the system’s behavior in its entire operating range. This problem can be considerably reduced by considering that the
system’s behavior gradually evolves along the operating range. Thus, the system could locally be described by simple
functions corresponding to some operating regions. Such an approach can be seen as a weighted contribution of a set
of models approximating the whole system’s behavior, each of which is valid in a well defined interval or covers a part
of the whole feature space of the problem to be solved. The description of the global system’s behavior is then made
by the combination of the local models. The contribution of each local model to the assessment of the multi-model’s
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output is quantified by an activation degree. So, the general goal is to determine the contribution rate of each local
model in order to minimize the identification error.

The identification task involves two steps: a structural and a parametric identification. The structural identification
consists in determining the number of models and the associated activation degrees. It is based on the partitioning of
the whole system’s feature space and permits the specification of the structure of the local models. The parametric
identification is performed to evaluate the parameters of the local models. One can use either a static or a recursive
methodology [6].

1.2. Uncertainty management in multi-model approaches
Complex system dynamics often generate significant uncertainty, since understanding the response of nonlinear

systems is a very challenging task. In engineering applications, it is very common that the input information to
perform the desired analysis is qualitatively and quantitatively limited. Uncertainty sources are numerous and may
take the form of system variability, environmental and operational conditions, data acquisition errors, among other
sources that vary depending on the application at hand.

This imperfection of the data must be taken into account in the modeling process. In cases where uncertainty
cannot be fully attributed to intrinsic variability (aleatory uncertainty), the uncertainty is said to be epistemic and is due
to lack of knowledge. Aleatory uncertainty refers to the inherent variation associated with the physical system under
question and its environment and cannot be reduced, whereas epistemic uncertainty refers to the lack of knowledge or
incomplete information regarding quantities or processes of the system or the environment. In any case, uncertainty
quantification is required in order to understand the capabilities and limitations of the modeling process. While
probability theory is well suited to deal with aleatory uncertainties (intrinsic variability), other formalisms exist that
are more appropriate to manage epistemic uncertainty [7], among which, fuzzy sets or possibility theory and evidence
theory, also known as belief functions theory [8] which are the most prominent ones.

In the context of multi-modeling, fuzzy set theory has been used to deal with imprecision within data [9, 10].
Recently, fuzzy rule-based models of Takagi-Sugeno (TSK) type [11] have been widely used in modeling applications
of complex systems, due to their flexibility and computational efficiency. TSK models are multi-models with fuzzily
defined regions of validity of the local models. The main advantage of the TSK models is that since the local regions
are fuzzily defined, the resulting global model can be nonlinear (of high order) while the local models can be very
simple. Usually linear (first order) sub-models are considered [11, 12].

A first order Takagi-Sugeno model can be seen as a multi-model structure consisting of linear models. It is based
on a fuzzy decomposition of the input space. For each part of the state space, a fuzzy rule can be constructed to
make a linear approximation of the input, and the global output is a combination of all rules. Then, the parameters of
the models (nonlinear parameters of membership degrees and linear parameters for the consequent of each rule) are
tuned in an appropriate learning procedure. Usually, the identification of the linear parameters is addressed by some
gradient descent variant whereas nonlinear parameters are determined by a clustering of the input space. This kind
of approach has been applied to build a neuro-fuzzy predictor in the context of prognosis application in [13]. It was
based on the evolving extended Takagi-Sugeno system (exTS) proposed by Angelov [14].

1.3. On belief functions and their application in TS models
Ramdani et al. [15] exploited the theoretical framework of belief functions to deal with uncertainties in multi-

modeling. The authors developed a multi-modeling strategy founded on a TSK fuzzy model. The basic idea was to
consider a fuzzy rule-based system with a belief structure as output. The focal elements of each rule were formed by a
subset of a collection of functional models, each of which was constructed based on a fuzzy model of Takagi-Sugeno
type. The main advantage of this approach remains in the use of belief functions theory to determine the activation
degrees of the local models because these functions have the particularity to enable the explicit modeling of doubt
and ignorance. Their proposed methodology is an offline approach and requires the entire dataset to be available in
advance for the modeling process.

In this paper, we propose to adapt the offline approach developed in [15] to make it online, in order to deal with
sequential data, meaning that the data arrive gradually. In the sequel, we will use the word “evolving” to qualify an
algorithm which is able to adapt its parameters online.

The proposed algorithm is called E2GKpro and relies on the Evidential Evolving Gustafson-Kessel algorithm
(E2GK) initially developed in [16] to sequentially perform the clustering phase using the formalism of belief functions.
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The clustering is then followed by the online identification of local linear models. Therefore, the estimation of the
local models is dynamically performed by upgrading and modifying their parameters as data arrive. The activation
degrees of each local model are directly provided by the E2GK algorithm in the form of belief masses, and the global
model is a combination of all the local models.

The paper is organized as follows. First, the basics of belief functions theory are given and illustrated on a simple
clustering problem (Section 2). Next, the proposed E2GKpro algorithm is detailed (Section 3). Finally, the algorithm
is applied on several datasets and compared with [15] (Section 4).

2. Background on Evidence Theory

Dempster-Shafer theory of evidence, also called belief functions theory, is a theoretical framework for reasoning
with partial and unreliable information. It was first introduced by A. P. Dempster (1968). Dempster’s work on
upper and lower probabilities led G. Shafer to establish the basis of the theory of evidence [8]. Shafer demonstrated
the usefulness of belief functions for the modeling of uncertain knowledge. Later, Ph. Smets proposed a general
framework, the Transferable Belief Model (TBM) [17], presenting belief functions as an alternative to subjective
probabilities. The TBM is used for uncertainty representation and combination of various pieces of information
without additional priors. In particular, it offers the possibility to explicitly represent doubt and conflict. We give here
some of the basic notions of the theory and refer the reader to [17] for a more complete description.

The central notion of the theory of belief functions is the basic belief assignment (BBA), also called belief mass
assignment, that represents the belief of an agent in subsets of a finite set Ω, called the frame of discernment. It is
defined by:

m : 2Ω → [0, 1]
A 7→ m(A) , (1)

with
∑

A⊆Ω m(A) = 1. A belief mass can be assigned not only to a singleton (|A| = 1), but also to a subset (|A| > 1)
without assumption concerning additivity of the measure m [7]. This property permits the explicit modeling of doubt
and conflict which constitutes a fundamental difference with probability theory. The subsets A of Ω such that m(A) > 0
are called the focal elements of m. Each focal element A is a set of possible values of ω in Ω.

Complete ignorance corresponds to m(Ω) = 1, whereas perfect knowledge of the value of ω ∈ Ω is represented by
the allocation of the whole mass of belief to a unique singleton of Ω, and m is then said to be certain. In the case of
all focal elements being singletons, m boils down to a probability function and is said to be Bayesian.

A BBA m is said to be normal if m(∅) = 0. A normalized BBA m∗ can be computed from a BBA m by:

m∗(A) =


m(A)

1 − m(∅)
if A , ∅

0 otherwise
(2)

This process is called Dempster normalization.
A positive value of m(∅) is considered if one accepts the open-world assumption stating that the set Ω might not

be complete, and thus ω might take its value outside Ω. The conflict is then interpreted as a mass of belief given to
the hypothesis that ω might not lie in Ω. This interpretation is useful in clustering for outliers detection [18].

Several functions - in one-to-one correspondence [17] - can be computed from a BBA. Among these functions,
the plausibility function [19] is defined by:

pl(A) =
∑

B∩A,∅

m(B), ∀A ⊆ Ω , (3)

where pl(A) represents the maximal degree of belief supporting the subset A. It is important to note that pl boils
down to a probability measure when m is a Bayesian BBA and to a possibility measure when the focal elements are
nested [20]. Probability and possibility measures are thus recovered as special cases of belief functions.

Decision making in the TBM framework consists in the choice of the best hypothesis using the pignistic probability
distribution [17] defined as:

BetP(ω) =
∑

A:ω∈A

m(A)
|A|

, ∀ω ∈ Ω . (4)
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where each mass of belief m(A) is equally distributed among the elements of A. If the BBA is subnormal (m(∅) , 0),
a preliminary normalization step has to be performed (Eq. 2).

Figure 1: An example of basic belief assignments for a clustering problem.

Example 1. Considering a set Ω = {ω1, ω2, ω3} of 3 clusters and N = 5 data points represented in figure 1, Tab. 1
gives an example of belief masses regarding the membership of each data point to the clusters. BBA’s for each data
in Tab. 1 illustrate various situations which shows that data 1 certainly belongs to cluster 2. The mass of belief
m2 represents an imprecise situation where data point 2 belongs to cluster ω2 or ω3. The class of data point 3 is
completely unknown. As m4(∅) = 1, data point 4 is considered as an outlier, i.e., its class does not lie in Ω. Finally,
the more general case of partial knowledge is represented for data 5.

Table 1: Example of basic belief assignment in a clustering problem (see Figure 1 for their graphical representation).

A ∅ ω1 ω2 {ω1, ω2} ω3 {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

m1(A) 0 0 1 0 0 0 0 0
m2(A) 0 0 0 0 0 0 1 0
m3(A) 0 0 0 0 0 0 0 1
m4(A) 1 0 0 0 0 0 0 0
m5(A) 0.02 0.3 0.1 0.2 0.1 0.05 0.03 0.2

For a clustering problem, dealing with doubt between clusters is of particular interest. Doubt is generally en-
countered in data transition and can be useful to limit the number of clusters in the final partition. In the context
of multi-modeling, information of doubt may be used to segment properly the feature space taking transitions into
account in the modeling process.

3. E2GKpro: Evidential Evolving Prediction

The physical system is supposed to evolve and go by different local linear models, unknown in advance. Each
local model has thus to be identified online, as data arrive. The observed data at the current time-step is composed
of a n-dimensional input feature vector xk = [x1 . . . xn]t ∈ Rn and an output yk ∈ R, with k ≥ 1 being the current
time-instant.

Given (xk, yk), E2GKpro proceeds in three phases (after an initialization phase referred to as Step 0):

• Step 1: A clustering phase, which detects the current operating regions of the system. The number of clusters c
can evolve, in particular when a new operating region is detected. At the current instant k, each cluster i = 1 . . . c
is identified by two parameters: a center vi,k ∈ Rn and a covariance matrix Σi,k ∈ Rn×Rn, both adapted according
to (xk, yk). This phase relies on the evidential evolving clustering algorithm called E2GK [16].

4
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• Step 2: A regression phase, which updates the local linear models corresponding to each cluster. A local model
relates xk to yk such that, given only the input xk, the system would be able to predict the output ŷk as close as
possible to the true value yk. Therefore, in this phase, the goal is to optimize the vector of parameters of the i-th
local model, denoted πi = [ai0 ai1 ai2 . . . ain]t, given some observed couples (xk, yk).

• Step 3: A prediction phase, which estimates the value ŷk taken by the output, given the input xk. The prediction
is computed by a weighted sum of local linear models, where the weights are provided directly by the clustering
phase:

ŷk =

c∑
i=1

λi,k · xe,k · πi (5)

where xe,k = [1; xk] is the extended input data vector and λi,k is the normalized activation degree of the i-th
cluster at time k.

This three-phases scheme is quite common in existing work in evolving systems modeling [1]. The originality of
the proposed method lies in the use of the theory of belief functions to both represent the uncertainty concerning the
characterization of local models and estimate their activation degrees.

In the sequel, the whole method is described step by step.

3.1. Step 0: Initialization
Let consider that a few data points are available at the beginning of the modeling, such that two operating regions

(clusters, thus c = 2) can be identified, with a center, a covariance matrix and a local model. This initial configuration
enables us to present in the sequel how the belief functions are generated.

As suggested in [14], the clustering phase can be improved if performed in the input-output space zk = (xk, yk).
Given the initial input-output data zk, a standard clustering algorithm such as the Gustafson-Kessel one, can be used
to find the coordinates vi,k, i = 1, 2 of the two first clusters and to initialize their covariance matrices Σi,k, i = 1, 2.

3.1.1. Step 0a: Computing the partition
Given the centers and the covariance matrices, the evidential partition matrix, which estimates the belonging

degree of the k-th data point to each possible subset of clusters Ai ∈ 2Ω\∅, can be computed [16]:

mik =
|Ai|
−1 · d−2

ik∑
Al,∅

|Al|
−1 · d−2

lk + δ−2
, (6)

and the mass assigned to the empty set is equal to:

m∅k = 1 −
∑
Ai,∅

mik , (7)

where dik denotes the distance between data point zk and subset Ai, and δ ∈ R+ controls the amount of data considered
as outliers (δ = 10 was chosen in [16]).

Only singleton focal elements (clusters ωk ∈ Ω) are associated with centroids but the particularity of the mass
computation in the evidential evolving clustering algorithm (E2GK) holds in the consideration of virtual centroids
located at the barycenters of subsets of clusters [18]. This makes the proposed approach different from usual clustering
approaches (possibilistic and probabilistic ones).

In Eq. 6, the distance dik between a data point at time k and any nonempty subset Ai ⊆ Ω, Ai , ∅ is computed by
first defining the center of each subset Ai as the barycenter vi,k of clusters’ centers composing Ai:

vi,k =
1
|Ai|

c∑
l=1

bli · vi,k, (8)

with

bli =

{
1 if ωl ∈ Ai,
0 otherwise (9)

5

ha
l-0

07
19

55
8,

 v
er

si
on

 1
 - 

20
 J

ul
 2

01
2



The covariance matrix Σi,k can be computed as:

Σi,k =
1

N − 1
·

N∑
k=1

∑
A j3ωi

(zk − vi,k) · (zk − vi,k)t , (10)

which is an analog in the evidential framework of the fuzzy covariance matrix computed for any nonempty subset of
clusters.

The Mahalanobis-like distance dik is then used to cope with clusters with arbitrary shape. For any nonempty subset
of clusters Ai represented by its center vi,k and its covariance matrix Σi,k, the distance di,k is given by:

d2
ik =

∥∥∥zk − vi,k

∥∥∥2
S i,k

= (zk − vi,k) · S i,k · (zk − vi,k)t , (11a)

S i,k =
[
det(Σi,k)

]1/n
· Σ−1

i,k , (11b)

Given the definition of the initial clusters, the local models can be initialized.

3.1.2. Step 0b: Initializing the local models
Let θi be the parameters of the local linear model for the i-th cluster. Let Xi denote the set of input points belonging

to the i-th cluster and Yi the corresponding outputs. The local linear model can be optimized by a standard least squared
approach:

θi =
(
XT

i · Xi

)−1
· XT

i · Y (12)

At this stage, the initialization is completed. The E2GKpro algorithm can now be run online: if the observed data is
an input-output couple zk then the clustering and the local models can be updated, whereas if only the input data xk is
observed, a prediction ŷk of the output can be estimated.

3.2. Step 1: Updating the clusters when an input-output datum is observed
When a new input-output datum zk is observed, the boundary of each cluster is first estimated (Step 1a) in order

to know whether the new data point is close or far from the closest cluster. Then the clustering structure is modified
(Step 1b) by either adapting the existing clusters or by adding a new cluster. The consistency of the structure is then
checked before updating the local models (Step 2).

3.2.1. Step 1a: Find the clusters’ radii
The radius ri of the i-th cluster is computed by:

ri = median
∀zk∈ i-th cluster and λik>c−1

∥∥∥zk − vi,k

∥∥∥
S i,k

, (13)

where λik is the confidence degree that point xk belongs to a singleton cluster (ωi ∈ Ω). The confidence degrees can
be estimated by several processes as proposed in [16] such as the pignistic transformation (Eq. 4) which transforms
the belief mass distribution m.,k into a probability distribution suitable for decision-making:

λi,k =
∑

A j,ωi∈A j

m j,k

|A j|
(14)

The closest cluster to zk is then found by:

p =
c

argmin
i=1

d2
ik (15)

and according to the Mahalanobis-like distance d2
pk between both the center of the closest cluster and zk, two possible

cases are considered:

• Case 1: d2
pk ≤ rp, i.e. zk belongs to an existing cluster, inducing a clusters’ update;

• Case 2: d2
pk > rp, i.e. zk is too far from existing clusters, involving the creation and the validation of a new

cluster.

6
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3.2.2. Step 1b: Adapting the structure
Case 1: if d2

pk ≤ rp, the updating of the p-th cluster is performed by modifying the closest cluster’s center:

vp,k+1 = vp,k + θ · ∆ , (16)

where
∆ = zk − vp,k , (17)

and θ ∈ [0, 1] is the updating rate.
The inverse of the covariance matrix as well as its determinant, which are used to estimate the belief masses, can

be recursively adapted by [21]:

Σ−1
p,k+1 =

I −
θ · Σ−1

p,k · ∆
t · ∆

ξ

 · Σ−1
p,k ·

1
1 − θ

, (18)

where I is the identity matrix and
ξ = 1 − θ + θ · ∆ · Σ−1

p,k · ∆
t (19)

and
det

(
Σp,k+1

)
= (1 − θ)n−1 · det

(
Σp,k

)
· ξ. (20)

The partition matrix can then be computed by first estimating the Mahalanobis-like distance (Eq. 11b) and then the
belief masses (Eq. 6, 7).

Case 2: if dpk > rp, the number of clusters is incremented (c ← c + 1). The initialization of the parameters of the
new cluster can be performed by accepting the incoming data zk as the new center (vc,k+1) and the covariance matrix
(Σc,k+1, more precisely both its inverse and determinant) can be chosen equal to the covariance matrix of the closest
cluster, i.e. Σp,k. Another strategy, which appeared practically much more efficient in different applications, is to
consider the n · (n + 1)/2 last data points as being relevant for the new cluster and to use them to estimate both its
center and covariance matrix.

The creation of a cluster makes the partition evolve with the possibility to drastically reduce the number of points
in some clusters. It was proposed in [16] to validate the partition by ensuring that each cluster in the new partition has
a minimum of points denoted Ptol. If a cluster does not satisfy this constraint, it is simply removed. Therefore, the
number of clusters can increase and decrease accounting for a better modeling of the data structure as demonstrated
in [16].

The parameter Ptol controls the minimum number of points in each cluster and also enables the user to guarantee
the validity of both the covariance matrices and the local models (as detailed below). This parameter is context-
determined and its sensitivity was studied in [16].

3.3. Step 2: Online estimation of the local models’ parameters

For online applications, the estimates of the parameters of local linear models at a given instant k, i.e. πi,k =

[ai0,k ai1,k ai2,k . . . ain,k]t should be computed given their previous estimates πi,k−1 and the new input vector zk.
Since the models are linear, it can be performed by a recursive least squared approach:

Ci,k = Ci,k−1 −
λi(xk−1) · Ci,k−1 · xte,k−1 · xe,k−1 · Ci,k−1

1 + λi(xk−1) · xte,k−1 · Ci,k−1 · xe,k−1
(21a)

π̂i,k = π̂i,k−1 + Ci,k · xe,k−1 · λi(xk−1) ·
(
yk − xte,k−1 · π̂i,k−1

)
(21b)

with k > 2 (time-step), i = [1, c] (c is the number of clusters which equals the number of local models), xe,k = [1; xk]
is the extended input data vector, and Ci,k ∈ R(n+1)×(n+1) is the covariance matrix of the i-th local model at time k,
which is updated by the Ricatti equation as in the Kalman filter. The initial conditions (k = 1) are set to π̂1 = 0 and
ci,1 = α · I, where I is the identity matrix and α a large value (for example 100).
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3.4. Step 3: Prediction
Given an input datum xk, the goal of the prediction phase is to estimate the value ŷk taken by the output. A simple

weighted sum of local linear models can be applied:

ŷk = Ψt · θ (22)

where Ψ = [λ1,k · xek; . . . ; λi,k · xek; . . . ; λi,c · xek] is the vector of the inputs weighted by the normalized activation
degrees of the local models, and θ = [π1,k; . . . ; πi,k; πc,k] is the vector of the parameters of the linear local models.

3.5. Complexity issues
Belief functions are defined on the power set of the set of clusters, therefore, given zk, 2c belief masses have to be

estimated. For some practical applications, where the processing time has to be as short as possible, this drawback of
E2GKpro needs to be dealt with. In [16], a solution that relies on the concept of k-additive belief masses was proposed.
It consists in computing the belief masses for subsets with a cardinality less or equal to a given number [22].

For time-series analysis, if the processing time is an important criterion, we propose to consider a 2-additive belief
mass, which is practically relevant because of the following reasons:

• The belief masses on singletons (subset with cardinality equal to one) represent the activation degrees of clusters
and reflects how close is located a data point to the centers.

• The belief masses on unions of two clusters (subset with cardinality equal to two) represent the cases where the
system is possibly making a transition between operating regions that could mean a change from one functioning
mode to another.

In E2GKpro, the complexity can be further reduced if the masses are not used as such. Indeed, the algorithm is
based on the activation degrees of singletons computed from the belief masses. Therefore, we propose to compute di-
rectly the normalized activation degrees using the pignistic transformation (Eq. 14), without storing the belief masses.
For a given point zk:

• Compute the belief mass m j,k for a given subset A j with |A j| ≤ 2,

• Update λi,k ← λi,k + m j,k/|A j| if wi ∈ A j (initial values of λ being set to 0).

In case the plausibility transform [19] is used instead of the pignistic one for decision-making, one can apply a similar
scheme by updating λi,k as follows:

λi,k ← λi,k + m j,k/|A j| if wi ∩ A j , ∅. (23)

4. Experiments

4.1. Non linear static function approximation [15]
To illustrate the proposed methodology, the following univariate function was chosen:

y(x) = 3 · exp(−x2) · sin(π · x) + η (24)

This function was taken from [15] for comparison purpose. In this definition, η is a Gaussian noise with zero mean
and σ2 = 0.15. By using random inputs x uniformly distributed in [−3, 3], 300 samples of y(x) were obtained.

In [15], the input-output data zk = (xk, yk) were clustered using the Gustafson-Kessel algorithm (GK) with K =

7 clusters. Then, the approximation using a TS model was estimated: GK+LS (resp. GK+WLS) means that a
least squared algorithm (resp. weighted LS) was applied on the clustering results, whereas GK+FUSION stands
for the combination (made offline) of GK+LS with GK+WLS using belief functions. The performance of these
approximations was assessed by the mean squared error (MSE) recalled for comparison purpose in Table 2. The MSE
is defined as:

MSE =
1
N

N∑
k=1

(ŷk − y(k))2 (25)
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Figure 2: Most activated clusters and their centers.

and the NDEI, which is often used in process identification [23], is also depicted (for E2GKpro). It is defined by:

NDEI =

√
MS E
σ(y)

(26)

where σ(y) is the standard deviation of the target (true value of y).
The results provided by the proposed E2GKpro algorithm are provided in Table 2. “E2GKpro + KF” means

that E2GKpro was used with the Kalman filter as proposed in Section 3.3 with Ptol = 40, θ = 0.1, and using zk =

(xk, yk−1, yk). Compared to [15], the input-output data vector was extended with the previous output due to the online
filtering process (Section 3.3).

Model Parameters MSE NDEI
GK+LS, offline [15] K = 7, zk = (xk, yk) 0.0058 -

GK+WLS, offline [15] K = 7, zk = (xk, yk) 0.0196 -
GK+FUSION, offline [15] K = 7, zk = (xk, yk) 0.0181 -

E2GKpro+KF, online Ptol = 40, δ = 10, zk = (xk, yk−1, yk) 0.0020 0.0332

Table 2: Error on the first dataset. The variance on the results of E2GKpro was lower than 10−5.

The results of E2GKpro were obtained by first generating 30 datasets (since η is a random variable), then running
E2GKpro and finally averaging. E2GKpro (online) algorithm with the Kalman filter reduced the error made by the
“GK+FUSION” (offline) algorithm proposed in [15] by approximately 90 percents. Note that this improvement was
obtained with 6 clusters instead of 7 as in [15]. The result provided by “GK+LS” (offline clustering followed by least
squared) is better than the online strategy because the models are optimised using all the data and using more clusters.
This approach is however not well-suited for data streams.

As an illustration of E2GKpro results on this first application, let us first consider the clustering provided in
Figure 2. It depicts the most probable cluster for each data point as well as the cluster centers. The segmentation
presents a sequence of well-separated clusters.

Figure 3 is a pictorial representation of the prediction along time provided by the Kalman filter integrated in
E2GKpro algorithm to estimate the parameters of the local models.

The next figure (4) illustrates the evolution of the three parameters in the six local models, i.e. πi,k = [ai0,k ai1,k
ai2,k]t, i = 1 . . . 6 (see Section 3.3), along time. The evolution is made smooth by the Kalman filter, which also explains
the most important errors in the nonlinearities. When a new cluster is added in E2GKpro, a new local model is created
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Figure 3: Prediction and error provided by the scheme “E2GKpro + KF”.
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Model Parameters # rules NDEI
E2GKpro+KF Ptol = 40, θ = 0.1, δ = 10 35 0.3263

eTS [14] θ 113 0.0954
DENFIS [23] θ, Dthr 58 0.276
DENFIS [23] – 883 0.033
ESOM [25] ε, α, σ, γ, Tp 114 0.32
ESOM [25] – 1000 0.044
EFuNN [26] θ, S thr, Ethr, lr1, lr2,WLSE 193 0.401
EFuNN [26] – 1125 0.094

RAN [27] τ, ε, θ, κ, δmax, δmin 113 0.373
NEURAL gas [27] – 1000 0.062

Table 3: Error on the second dataset for the proposed approach (E2GKpro) using the Kalman filter (KF), and comparison with other approaches in
terms of NDEI and number of parameters (the meaning of parameters for each method can be found in the reference given in the first column).

Model Parameters # rules NDEI
E2GKpro+KF Ptol = 40, θ = 0.1, δ = 10 43 0.3621

eTS [14] θ 124 0.3096

Table 4: Error on the second dataset with noise.

and initialized. The discontinuities are due to the initial values of local model parameters, in particular the covariance
matrix.

Finally, for a given data point at instant k, the opposite of the maximum degree of belief regarding the membership
of this point to each cluster:

Confk = 1 −
c

max
i=1

λik, (27)

reflects the remainder of the mass not assigned to the most probable cluster. This value can be interpreted as a
confidence degree in the fact that the current partition (Eq. 6, 14) does not well fit the newest data. An illustration of
this confidence degree is depicted in Figure 6 which emphasizes that the highest values of the confidence degree are
obtained for the nonlinear parts generally located between two existing clusters.

4.2. Prediction on a chaotic time-series [14]

The proposed E2GKpro algorithm was tested on a benchmark problem: the Mackey-Glass chaotic time-series
prediction. The results are compared with several existing approaches.

The time-series is generated by:

x(t) =
a · x(t − τ)

1 + x10(t − τ)
− b · x(t) , (28)

with the same parameters as in [14, 23]: a = 0.3, b = 0.1, τ = 20 and x0 = 1.2. Two sets of data were built as proposed
in [23]: 3000 data points from t = 201 to t = 3200 for training, and 500 data points from t = 5001 to t = 5500 for
validation. In [14], the time-step was chosen equal to 1 (as done in this paper), while 0.1 was chosen in [23].

The aim of the task is to predict the value taken by the signal 85 steps ahead, i.e. x(t + 85), while using as inputs
the vector [x(t − 18) ; x(t − 12) ; x(t − 6) ; x(t)]. As suggested in [14], the performance is assessed by the NDEI
criterion. The results are reported in Table 3 with a comparison with some well-known algorithms of the literature
(see [24] for a complete review). The most important parameters are also mentioned in the table in order to quantify
the amount of supervision required to tune the algorithms. Note that the parameter Ptol in E2GKpro was set to 40, as
in the previous application.

This table shows that E2GKpro generates a model with only 35 rules, which is the smallest number of rules com-
pared to the present literature. The error rate, represented by the NDEI, makes it quite competitive, with sometimes
better results than existing approaches. The obtained model can thus be practically useful because the less the number
of rules is (while ensuring low error), the easier is the interpretation. Table 4 gives the NDEI for the case where the
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Figure 4: Evolution of the parameters for each rule in the first application.
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Figure 6: Confidence degree in the fact that the current partition does not well fit the newest data.
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Mackey-Glass time-series is corrupted by 5% uniform random noise as proposed in [14]. This result shows that the
E2GKpro algorithm is robust to noise since the NDEI is quite stable. This conclusion was also drawn in [16] where the
clustering based on E2GK (without prediction) outperforms [21] in the presence of noise. The use of virtual clusters
in belief mass computation accounts for the low number of rules and for the stability of the results against noise.

As shown in [16], the most critical parameter in E2GKpro is the parameter Ptol, which was shown to be much less
sensitive than in [21] because of the use of belief functions. In both applications presented in this paper, Ptol was set
to the same value (40). Concerning the parameter δ, it sets the amount of mass assigned to the empty set, which is
then spread out over λ after decision-making. In all E2GK applications, this parameter was set to δ = 10. Concerning
θ, it is a common threshold found in all evolving algorithms, which makes them more or less sensitive to the influence
of a new data point. In both applications presented in this paper, θ = 0.1.

Finally, Figure 7 illustrates the evolution of the error made by E2GKpro with the Kalman filter. As in many
filtering approaches, the error is generally high when the variation is important, for example between 5200 and 5300.

4.3. Application on a real-world dataset from the PRONOSTIA platform
4.3.1. Description of PRONOSTIA

As a second multi-dimensional case, we chose to implement the proposed method on a dataset provided by the
PRONOSTIA platform. PRONOSTIA is an experimentation platform (Figure 8) dedicated to the test and valida-
tion of the machinery prognosis approaches, focusing on bearing prognostics. It was developed in the Department
of Automatic Control and Micro-Mechatronic Systems (AS2M) of FEMTO-ST1 institute. The main objective of
PRONOSTIA is to provide real experimental data [28] that characterize the degradation of a ball bearing along its
whole operational life (until fault/failure). The collected data are vibration and temperature measurements of the
rolling bearing during its functioning mode.

The internal bearing ring is put in rotation, while the external bearing ring is maintained fixed. A radial load is
applied on the external bearing ring in order to simulate its functioning. To speed up the degradation, the load exceeds
the maximal load recommended by the supplier. The originality of this experimental platform lies not only in the
conjunction of the characterization of both the bearing functioning (speed, torque and radial force) and its degradation
(vibrations and temperature), but also in the possibilities, offered by the platform, to make the operating conditions of
the bearing vary during its useful life. Figure 8(c) depicts a bearing before and after the experiment.

The bearing operating conditions are determined by instantaneous measures of the radial force applied on the
bearing, the rotation speed of the shaft handling the bearing, and of the torque inflicted on the bearing. During a test,
the rolling bearing starts from its nominal mode until the fault state. The bearing behavior is measured using different
types of sensors (Figure 8(b)) such as miniaturized acceleration sensors and temperature probe.

The raw signals provided by the sensors are processed in order to extract relevant information concerning bearings
states. Several techniques have been implemented and gathered in a signal processing toolbox with Matlab (Fig. 8(d)):
time-domain methods (RMS, skewness and kurtosis, crest factor, K-factor, Peak-to-Peak), frequency-domain meth-
ods (spectral and cepstrum analysis, envelope detection), time-frequency domain (short-time Fourier transform) and
wavelets (discrete transform).

4.3.2. Prognostic on the PRONOSTIA platform
The data used here are available on the PRONOSTIA website2. More precisely, the data related to the first

functioning condition are used.
From the horizontal accelerometer data, two features are generated:

• The RMS which is computed at a given time k in a window of size 50. Let S be the signal of the accelerometer
and µ(S W ) its average value, then:

RMS (k) =

√√√
1
W

k∑
i=k−W+1

(S (i) − µ(S W ))2 (29)

1Franche-Comte, Electronics, Mechanics, Thermal Processing, Optics - Science and Technology
2See http://www.femto-st.fr/ieee-PHM2012-data-challenge.
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Figure 7: Prediction (top) and error (bottom) for E2GKpro+KF in the second application.
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(a) (b)

(c) (d)

Figure 8: 8(a) The PRONOSTIA platform, 8(b) close-up view on sensors for degradation measurement, 8(c) example of degraded bearings and
8(d) the software for degradation analysis.

16

ha
l-0

07
19

55
8,

 v
er

si
on

 1
 - 

20
 J

ul
 2

01
2



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−50

−45

−40

−35

−30

RMS

P
S
D

Figure 9: A set of data obtained from the PRONOSTIA platform.

• The mean value of the power spectral density in the same window as the RMS, denoted PS D(k).

An illustration of these features is given in Figure 9 for the testing data used in the sequel. The data depicts a typical
behavior of wear with a small amount of data with high variance close to the end of the experiment (top, right-hand
side), while the normal behavior is represented by a larger amount of data points gathered in a smaller space (bottom,
left-hand side). The variance is partly due to the high level of noise generated by the vibrations during the experiment.

Let x(k) = [RMS (k) PS D(k)]t the feature vector at instant k. The goal is to predict xRMS (k+100) and xPS D(k+100)
given xin = [x(k − 18) x(k − 12) x(k − 6) x(k)]t. For each data point, xin is a vector with 4 × 2 elements and the
output vector is xout = [xRMS (k + 100) xPS D(k + 100)]t. The clustering is performed in the input-output space made
of 10 elements. Given an input data vector (with 8 elements), the prediction is estimated by projecting the centers and
the covariance matrix onto the input space, then computing the degree of membership to each cluster, followed by the
regression.

The engine is launched and the bearing is gradually degraded. The data are processed along time by E2GKpro, so
that clusters representing operating regions are created and the local models estimated. Only one experiment is used
to tune the parameters of E2GKpro. The data related to the training dataset is given in Figure 9. The local models are
updated as displayed in Figure 10 for the four first rules. The local model being initialized, the predictions 100 steps
ahead can be estimated. The result of the prediction on the training data is depicted on Figure 11 (NDEI = 0.4986).

The second experiment is then used as a testing dataset. An interesting characteristic of the PRONOSTIA’s data
holds in the fact that all experiments depict different degradation trends, although bearings with similar mechanical
properties were used. An illustration of this variability is represented in Figure 12. In this kind of application, the use
of online methods is thus well justified. This figure also shows the position of the clusters found during both training
and testing. In the latter case, E2GKpro starts with the local models estimated during the former but E2GKpro still
adapts the models accounting for new clusters in the new operating regions encountered in the testing dataset.

The result of the prediction on the second experiment (with features depicted in Figure 9 and on the left-hand side
of Figure 12) is shown in Figure 11. In this example, E2GKpro generates smooth predictions, which appear useful in
this real-world application because it gives the global trend of the functioning behavior. Another interesting aspect is
the updated set of operating regions found during testing (Figure 12), which can then be used for another experiment.

5. Conclusion

E2GKpro is an evidential approach proposed for detecting, adapting and combining local models in order to
analyze complex systems behavior based on sequential data. The approach relies on three main processes performed
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Figure 10: Evolution of the parameters for rules 1 to 4 in the third application.
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Figure 11: Real data and prediction on the training dataset.
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Figure 12: Illustration of high variability: training and testing data.

online: 1) the on-line clustering of the data describing the system to determine the different operating regions, 2)
the creation, adaptation or removing of models locally computed for each cluster, and 3) the prediction of the future
evolution.

Experiments were conducted on two benchmark datasets and one real-world problem on the PRONOSTIA plat-
form. The results demonstrated the ability of the proposed method for an online segmentation of multi-dimensional
time-series and reliable predictions. A comparison with other approaches was also made and emphasized the great
interest of using belief functions. In particular, the number of rules is decreased compared to usual approaches, while
ensuring limited error by using the concept of virtual centroids to represent transitions between operating regions.
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