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Abstract—Wireless Body Sensor Networks open up
tremendous important applications such as consistent
monitoring of a patient’s vital signs. One of the main challenges
that a Wireless Body Sensor Network faces is the transmission
of the collected vital signs measurements. Data transmission is
considered to be the greatest consumer of energy in a sensor
node. Multiple data compression techniques have been proposed
in the literature to reduce the size of the collected data. Thus,
the transmission energy consumption. In this paper, we
compare the performance of three resource-aware data
compression techniques that are proposed in the literature and
showed good results: Lightweight Temporal Compression,
Differential Pulse Code Modulation and Discrete Wavelet
Transform lifting scheme. Then, we propose to adapt the lossy
Lightweight Temporal Compression algorithm and combine it
with the lossless Differential Pulse Code Modulation algorithm
in order to achieve a higher level of compression and reduce
the data reconstruction error rate. To evaluate our approach,
multiple series of simulation has been done on vital signs data.
The results showed that our proposed compression scheme
achieved a reduction by up to 95%, and reduced the
transmission energy consumption by up to 5 times.

Keywords—Wireless Body Sensor Network, data compression,
energy efficiency, data reduction.

I. INTRODUCTION

Recently, there is a great demand for Wireless Body
Sensor Networks (WBSN) in many fields, such as medical
care, sports, entertainment, and military [1] [2]. One of the
important applications of a WBSN is distant patients
monitoring. It consists of attaching sensor nodes on a
patient’s body in order to measure its physiological
parameters. The attached sensor nodes, consisting of a
battery, microcontroller (MCU), transceiver, memory, and
sensor unit, transmit periodically the collected measurements
to a coordinator, which is commonly a smartphone or
portable device, which in turn forwards the received data to
the base station [3].

One of the main challenges that wireless sensor networks
and specially WBSNs face in patients monitoring
applications is the energy consumption of sensor nodes due
to data transmission [4] [5] [6]. In this paper, we target the
transmission of vital signs data such as heart rate, respiration
rate, blood pressure, blood oxygen saturation, and blood
temperature. These vital signs are usually calculated based
on raw sensed signals, like the ElectroCardioGram (ECG)
signal and the PhotoPlethysmoGram (PPG) signal. In order
to increase the lifetime of a WBSN, data compression
algorithms can be implemented on sensor nodes to compress
the collected vital signs measurements prior to transmission.
Thus, reducing the transceiver unit energy consumption that
is considered to be the greatest consumer of energy [7].

The compression algorithm implemented on sensor nodes
must have a high compression ratio in order to reduce the
number of transmitted bits and increase the percentage of
energy saving. In like manner, it must have a low
computational time/memory complexity in a way that the
energy saved from transmitting the compressed data must be
greater than the energy consumed by performing additional
computation and processing. Many resource-aware
compression techniques have been used and developed for
data reduction in the context of Wireless Sensor Networks
(WSNs) and WBSNs. A simple lossy temporal compression
algorithm called Lightweight Temporal Compression (LTC)
has been developed in [8] for the compression of
microclimate data. The authors showed that the LTC is
suitable for low power devices and it performs comparably to
the Lempel-Ziv-Welch (LZW) and wavelet compression,
comsumes little CPU, and requires very little storage.

In [9], the authors proposed the simple delta encoding
algorithm, known as Differential Pulse Code Modulation
(DPCM) for accelerometer data compression in WBSN, and
compared it to the Huffman encoding. The results showed
that the delta encoding outperformed the Huffman encoding



in terms of data reduction, computational complexity, and
energy savings. A method referred to as LiftingWise has
been proposed in [10]. The LiftingWise method is a modified
version of the original Discrete Wavelet Transform (DWT)
Lifting Scheme (LS) algorithm in which it can be applied on
a set of data with arbitrary length while the original LS is
applied on a signal Sn of length 2n. This method has been
used to process the data disseminated from objects deployed
in a monitoring environment. It was compared with two
other simple compression techniques appropriate for usage in
WSNs: The Offset compression and Marcelloni
compression [11]. The results had proved the effectiveness of
this method in reducing the number of bits of the collected
data while taking into consideration the limited resources of
sensor nodes.

The objective of this paper is twofold. First, we compare
the performance of three simple resource-aware compression
algorithms: LTC, DPCM (delta encoding), and DWT LS on
numeric vital signs data extracted from raw sensed signals.
Second, we propose to adapt the LTC algorithm and combine
it with the DPCM in order to achieve further compression and
reduce the data reconstruction error rate.

The rest of the paper is organized as follows: Section II
discusses the characteristics of vital signs data in WBSN.
Section III presents some background information about the
LTC, DWT LS, and DPCM algorithms. Section IV explains
our proposed adaptive version of the LTC. Section V details
the experimental results. Section VI concludes the paper.

II. CHARACTERISTICS OF VITAL SIGNS DATA

Vital signs data are collected using WBSN and exhibit
particular statistical characteristics. Table I shows the mean s̄
and the standard deviation σs̄ of the five vital signs samples,
in addition to the mean d̄ and the standard deviation σd̄ of
the differences between consecutive samples. As seen in
Table I, the differences between consecutive samples are
characterized by a low standard deviation. Therefore, these
data can be considered as smooth data, which makes the
compression techniques presented in the following sections
good candidates for vital signs data compression in WBSN.

However, there is always the possibility of noise in the
data due to sensor displacement. Per example, we can find
measurements having a value of zero or artifacts in the form
of unreasonable values such as low heart rates (<30 bpm) or
high respiration rates (>40 bpm). These artifacts affect the
performance of a compression algorithm and increase the
error rate when reconstructing the data (lossy compression).
We can notice in Table I that respiration rate and systolic
blood pressure datasets contains noise since they have greater
values of d̄ and σd̄ as compared to the other datasets.

TABLE I: Statistical characteristics of vital signs data

s̄ σs̄ d̄ σd̄

HR 64.5 1.7 0.1 0.3
RESP 18.4 11.1 0.8 2.5
SpO2 90.6 4.0 0.0 0.1
ABPsys 111.9 21.2 0.3 2.3
BLOODT 36.0 0.0 0.0 0.0

III. RESOURCE-AWARE DATA COMPRESSION
TECHNIQUES

In this section, we present the following resource-aware
data compression techniques: LTC, integer LS based Haar
wavelet transform, and DPCM.

A. Lightweight Temporal Compression

The LTC algorithm was developed for the context of
habitat monitoring in [8]. It is a simple lossy algorithm, just
like the Run Length Encoding (RLE) in the sense that it tries
to represent a long sequence of similar data with a single
symbol by searching for linear trends. The LTC algorithm is
initialized with an error bound e at the beginning. The
greater is the error bound, the more is the saving from
compression.

Consider a dataset x, and an empty set s. As shown in
Figure 1(a), the LTC algorithm is initialized by getting the
first data point (t1, v1) from x, and storing it into z. Then,
the second point (t2, v2) is used to initialize the upper and
lower limits: UL(t2, v2 + e) and LL(t2, v2 − e). After that,
the highLine connecting UL and z, and the lowLine
connecting LL and z are calculated. For each data point
(tj , vj), where j > 2, we transform the point into a vertical
segment using the margin e. If the data point belongs to the
set of all possible lines, we update UL and LL and
recalculate the lowLine and the highLine as seen in
Figure 1(b). When a point (tj , vj) does not belong to the set
of all possible lines, as seen in Figure 1(c), we output z to s,
and set z to be the point (tj−1, (UL + LL)/2). Algorithm 1
illustrates this process.

One of the advantages of the LTC algorithm is that it
achieves high data compression savings on smooth data.
Furthermore, its memory requirements are constant, the
amount of work needed to process a new data point is small,
and needs Θ(n) time to examine n points.

B. Integer Lifting Scheme based Haar wavelet transform

The LS is a technique developed by Sweldens in [12] that
performs the DWT. The integer version of the LS can be used
as a lossless compression method that converts a set of integers
to another set of integers and results in an efficient reversible
implementation [13].

Compressing data using LS consists of three steps: The
first step is split phase that split a sequence of data xj of
length 2j , where j is a positive integer, into odd and even
sets of length 2j−1 each. The second step is predict step, in
which odd set is predicted from even set and transformed into
the differences set denoted by dj−1. The prediction operation
results in smaller values that can be represented in fewer bits.
Note that the integer LS version of the Haar transform is used
in this paper. The Haar transform prediction operation predicts
that the odd element will be equal to the even element. The
odd element is then replaced by the difference between the
predicted value (the even element) and the actual value of the
odd element as defined in Equation 1. The third step is update
step, in which the even set is transformed into the averages
set denoted by sj−1, and each even element in the even set is
replaced with the average of the even/odd pair as in Equation 2.



Fig. 1: The algorithm clarified. (a) LTC is initialized with a fixed point, and a point that is transformed into vertical line segment that
decides the set of all possible lines. (b) The set of all lines is reduced with each new point. (c) When a point does not belong to the set of all

possible lines, the past dataset is topped off and the procedure begins once again

Algorithm 1 LTC algorithm

Require: x, n, e //Vector x of length n, error bound e
Ensure: s // Set of data points

1: z ← (t1, v1)
2: UL← v2 + e
3: LL← v2 − e
4: highLine← calculateHighline(z, UL)
5: lowLine← calculateLowline(z, LL)
6: for j = 3 to n do
7: ul← vj + e
8: ll← vj − e
9: if highline below ll or lowline above ul then

10: s.add(z)
11: z ← (tj−1, (UL+ LL)/2)
12: UL← ul
13: LL← ll
14: highLine← calculateHighline(z, UL)
15: lowLine← calculateLowline(z, LL)
16: else
17: if UL > ul then
18: UL← ul
19: end if
20: if LL < ll then
21: LL← ll
22: end if
23: highLine← calculateHighline(z, UL)
24: lowLine← calculateLowline(z, LL)
25: end if
26: end for
27: s.add(z)
28: s.add((tn, vn))
29: return s

dj−1 = x[2n+ 1]j − x[2n]j . (1)

sj−1 = x[2n]j + bdj−1/2c. (2)

The aforementioned operations can be repeated j times
on a dataset of length 2j . The final result is dataset sj of one
average (the mean value of all samples) and j sets of
differences [13].

The Haar wavelet is well known for its simplicity and speed
of computation. It has a time complexity of Θ(n log n) and
allows a fully in-place calculation of the forward transform.

C. Differential Pulse Code Modulation

The DPCM is a lossless compression method that is
based on the fact that neighboring samples are correlated.
Correlated values are usually similar, so their differences are
small, resulting in compression. DPCM can be applied by
keeping the first sample as a reference and changing every
next sample with the difference between this sample and the
previous one:

d(k) =

{
x(k), if k = 0

x(k)− x(k − 1), if k > 0
(3)

The DPCM is very simple. It has a time complexity of
Θ(n) and requires the less number of calculations as compared
to LTC and LS algorithms.

IV. PROPOSED ADAPTIVE LIGHTWEIGHT TEMPORAL
COMPRESSION

The LTC algorithm presented in the previous section takes
a dataset x with an error bound e as input and returns a set s
of data points as output. One of its weaknesses is that it suffers
when the data are noisy. In the worst case, when no line can be
fit between more than two consecutive points, the output of the
algorithm may require more bits than that needed to represent
the uncompressed dataset. Furthermore, it poorly reconstructs
noisy data. In order to minimize the reconstruction error rate,
we adapted the LTC in a way that when a point (tj , vj) does
not belong to the set of all possible lines, as seen in Figure 1(c),
we add the points (tj−1, vj−1) and (tj , vj) to s instead of only
adding the point midway between UL and LL (Algorithm 2,
lines 12-15). As a result, the compression ratio of the algorithm
will decrease since additional points are added to the output
set s. To achieve the trade-off between the compression ratio
and the reconstruction error, we combined the adapted lossy
LTC algorithm with the lossless DPCM algorithm. Note that in
implementation, each data point (i, v) in s consists of the index
i of the measurement in the dataset and its value v in order
to reconstruct the data at the base station. Consider a vector



x containing vital signs measurements. In the first place, we
apply the adapted LTC algorithm on x, which results in a set
s of data points. Then, for each data point in s, we add its
index into a set I , and its value into a set V . After that, we
compress the set of indexes I and the set of values V using
the DPCM. This process is defined in Algorithm 2.

This adaptation ensures the reduction of reconstruction
error rate and the achievement of additional compression
level even if the data are noisy.

Algorithm 2 Adaptive LTC

Require: x, n, e //Vector x of length n, error bound e
Ensure: s // Set of data points

1: s.add((t1, v1))
2: z ← (t1, v1)
3: UL← v2 + e
4: LL← v2 − e
5: highLine← calculateHighline(z, UL)
6: lowLine← calculateLowline(z, LL)
7: for j = 3 to n do
8: ul← vj + e
9: ll← vj − e

10: if highline below ll or lowline above ul then
11: z ← (tj−1, (UL+ LL)/2)
12: if (tj−1, vj−1) not in s then
13: s.add((tj−1, vj−1))
14: end if
15: s.add((tj , vj))
16: UL← ul
17: LL← ll
18: highLine← calculateHighline(z, UL)
19: lowLine← calculateLowline(z, LL)
20: else
21: if UL > ul then
22: UL← ul
23: end if
24: if LL < ll then
25: LL← ll
26: end if
27: highLine← calculateHighline(z, UL)
28: lowLine← calculateLowline(z, LL)
29: end if
30: end for
31: if (tn, vn) not in s then
32: s.add((tn, vn))
33: end if
34: I ← get Indexes(s)
35: V ← get V alues(s)
36: DPCM(I)
37: DPCM(V )
38: return [I, V ]

V. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of the aforementioned compression
techniques has been evaluated using a custom Java-based
simulator. In the followings, we discuss the results obtained
from applying the LS, DPCM, LTC, and our adaptive version
of LTC (LTC*) on datasets collected from the online
Multi-parameter Intelligent Monitoring in Intensive Care

(MIMIC) I database “Numerics” of PhysioNet [14]. Note
that the error bound for the LTC and LTC* algorithms was
set to 1 in our simulation. We tested the compression
techniques on the following vital signs: heart rate (HR),
respiration rate (RESP), blood oxygen saturation (SpO2),
systolic blood pressure (ABPsys), and blood temperature
(BLOODT). Furthermore, we suppose in our simulation that
each vital sign is observed by one sensor node.

Multiple simulations have been run on each vital sign
measurements over 43 periods. We consider that the
collected measurements are accumulated in the memory of
the sensor node, and transmitted after each period p = 60sec.

Three metrics are discussed in the followings: data and
communication compression, loss of information, and
transmission energy consumption.

A. Data and communication compression

The performance of the compression techniques is
computed using the Compression Ratio (CR) as denoted in
Equation 4:

CR(%) = 100×
(

1− comp size

uncomp size

)
, (4)

where comp size and uncomp size are the sizes in bits of
the compressed and uncompressed bitstreams respectively.

Table II presents the compression ratios obtained by the
four compression algorithms. The results show that the
performance of the LTC algorithm strongly depends on the
statistical characteristics of the data. Therefore, it achieved a
CR by around 91% in the case of smooth data (HR, SpO2,
and BLOODT), and by around 63% when the data are less
smooth (RESP). On the other hand, the DPCM algorithm
outperformed the LS algorithm on all vital signs
measurements and achieved compression ratios that vary
between 35% and 50%. As can be seen, the highest
compression ratios were achieved by the proposed LTC*
algorithm. Note that the performance of both LTC* and LTC
algorithms was close, as the performance of the LTC* was a
little better.

TABLE II: Compression ratios (%) obtained by the four compression
algorithms on the five vital signs measurements

LTC LS DPCM LTC*
HR 92.3 45.0 50.3 95.1
RESP 63.0 38.6 43.6 66.5
SpO2 90.3 30.3 34.9 94.1
ABPsys 87.5 43.0 47.0 92.4
BLOODT 91.9 44.0 47.7 94.4

The reduction in the size of the data (data compression)
has a direct reflection on the communication cost in WBSN.
Hence, reducing the packet length ultimately reduces the
radio on-time of the transceivers (communication
compression) [15]. Table III illustrates the number of packet
transmissions achieved by each algorithm after 43 periods.
Considering that each packet can contain at most 25 bytes of
payload, we can see that the LTC and LTC* algorithms



achieved the greater packet transmissions reduction. They
performed the same number of packet transmissions in the
case of HR, SpO2, and BLOODT datasets, as the LTC*
further reduced this number in the case of RESP, and
ABPsys datasets (noisy datasets).

TABLE III: Number of packet transmissions achieved by each
algorithm after 43 periods

Uncompressed LTC LS DPCM LTC*
HR 129 43 86 86 43
RESP 129 64 87 86 61
SpO2 129 43 86 86 43
ABPsys 129 47 87 87 44
BLOODT 129 43 86 86 43

B. Lossy compression vs loss of information

Since the LTC compression algorithm is lossy, we need
to assess how much the reconstructed data at the base-station
differ from the uncompressed (original) data. To do so, we
calculate the Root Mean Squared Error (RMSE) as denoted in
Equation 5:

RMSE =

√√√√ 1

n

n∑
i=1

(
Ai −Bi

)2
, (5)

Where Ai is the original measurement, Bi is the
reconstructed measurement, and n is the number of
measurements. Furthermore, we calculate the Scores Root
Mean Squared Error (S-RMSE) defined by Equation 6:

S −RMSE =

√√√√ 1

n

n∑
i=1

(
S(Ai)− S(Bi)

)2
, (6)

Where S is a function that assigns a score to each vital
sign measurement. The assigned score is based on the
scoring template for the National Early Warning Score
(NEWS) used in U.K [16]. A regular healthy range is
defined for each vital sign, and the allocated score reflects
how much the measured sample differs from this range. The
more is a vital sign measurement outside the defined normal
range, the higher is the assigned score, which indicates its
severity level. What is more important to us is to not miss
the information carried by a measurement. In other words,
the score assigned to each measurement based on the NEWS
system reflects the critical level of the vital sign, which must
remain intact when reconstructing the data.

TABLE IV: RMSE and S-RMSE between the original dataset and
the reconstructed dataset

LTC LTC*
RMSE S-RMSE RMSE S-RMSE

HR 0.713 0.0 0.701 0.0
RESP 1.778 0.428 0.643 0.227
SpO2 0.348 0.02 0.34 0.018
ABPsys 1.206 0.06 0.688 0.025
BLOODT 0.0 0.0 0.0 0.0

Table IV shows the RMSE and S-RMSE between the
original data and the reconstructed data after applying the
LTC and LTC* algorithms. We can see that the LTC
algorithm yields high RMSE when there is noise in data
(RESP, ABPsys). On the other hand, the proposed LTC*
yields a RMSE that is close to 0.5, and a S-RMSE that is
close to 0.1 on all vital signs data. Here shows the
importance of our proposed LTC* algorithm, which achieved
an insignificant loss of information. Figure 2 shows the
reconstruction of 1 period RESP data using LTC and LTC*.
It is clear that the LTC* reconstructed signal fits the original
signal more than the LTC reconstructed signal.
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Fig. 2: Reconstruction of 1 period RESP data using LTC and LTC*

C. Transmission Energy Consumption

In this section, we estimate the transmission energy
consumption of the sensor nodes after each period when
applying the four compression algorithms. To do so, we use
the radio model proposed in [17]. The equation used to
calculate transmission costs is defined by Equation 7.

ETX(k, d) = Eelec × k + βamp × k × d2. (7)

Where k is the sizes in bits of the bitstreams to be
transmitted, and d is the distance in meters between the
sensor node and the coordinator. Note that in this model, the
radio dissipates Eelec = 50nJ/bit to run the transmitter
circuitry and βamp = 100pJ/bit/m2 for the transmitter
amplifier. In our simulation, we consider that the distance
between a sensor and the coordinator is d = 1m.

Figures 3 and 4 illustrate the variation of the transmission
energy consumption of RESP sensor node where the data are
noisy and HR sensor node where the data are very smooth.
We can notice in Figure 3 that the performance of the LTC
algorithm is not stable over time. So that after some periods,
the transmission energy consumed by the LTC algorithm is
greater than the one consumed by the DPCM and the DWT LS.
On the other hand, the proposed LTC* algorithm achieved the
lowest transmission energy consumption among all methods.
In the case of smooth data as shown in Figure 4, the LTC
and LTC* algorithms achieved a better reduction in the energy
consumption compared to the DWT LS and DPCM algorithms.
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VI. CONCLUSION

Data compression can be considered as a direct way to
reduce the energy consumption due to wireless transmission.
In this paper, we compared the performance of three
resource-aware compression techniques: LTC, DWT lifting
scheme, and DPCM on vital signs measurements calculated
from raw sensed signals. The results showed that the lossy
LTC achieved the higher compression ratio on smooth data
with insignificant loss of information. However, the data
reconstruction error increased when the data became noisy,
which leads to missing some important features. On the other
hand, the lossless DWT lifting scheme and DPCM algorithms
yielded a constant performance and achieved a data reduction
by between 35% and 50%, with a little preference for the
DPCM over the DWT lifting scheme. In order to achieve a
higher compression with a minimal loss of information, we
proposed to adapt the LTC algorithm and combine it with the
lossless DPCM algorithm. The adapted LTC achieved the
higher compression ratio among the other algorithms on

smooth and noisy data and reduced the data reconstruction
error rate. Thus, increasing the lifetime of the WBSN.
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