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Abstract— This paper presents the control of a two degrees of
freedom (2-DOF) piezoelectric actuator that exhibits hysteresis
nonlinearity, creep nonlinearity, badly damped vibration and
cross-couplings without using feedback sensors. The principle
consists in compensating first the hysteresis, then the creep and
finally the vibration. The proposed compensation technique is
multivariable and therefore is also able to reduce the cross-
couplings which are unwanted phenomena. The experimental
tests demonstrate that the hysteresis which initially exceeds 19%
is reduced to about 0.01% while the creep is reduced from 5.5%
to 0.04%. Regarding the vibration, the related overshoot which
was initially 45% is completely removed.

Note to Practitioners This paper describes an approach
to control and to automate dexterous precise positioning
systems based on multi-axes piezoelectric actuators. Two
problems have motivated the approach investigated in the
paper: i) the presence of nonlinearities (hysteresis and
creep), of badly damped vibration and of cross-couplings
in the multi-axes piezoelectric actuators, ii) and the lack
of convenient sensors to feedback control them. Therefore,
this paper proposes multivariable and complete feedfor-
ward control approach that does not require external
sensors. This sensor-less control architecture permits a low
cost and a high integration features additionally to the fact
that it is of great interest in applications at small scales
where implementation of real-time measurement system is
often difficult.

Index Terms— Multi-DOF piezoactuators, multivariable mod-
eling, multivariable feedforward control, hysteresis, creep, badly-
damped vibration, cross-couplings.

I. INTRODUCTION

Piezoelectric actuators (PEA) rank among the most used
actuators in micro/nano-applications. Their notoriety is thanks
to their high bandwidth, high resolution, high stiffness and
high force generation, rapidity of the response (high operating
bandwidth) and the ease of integration in micro/nano-systems.
From the operational point of view, most of PEA can be
categorized into two main groups. The first group includes all
mono-axis piezoelectric actuators. These actuators are made to
provide displacements along one direction. Among them we
can name piezostacks and piezocantilevers, these latters being
very used in micro/nano-assembly and manipulation tasks.
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Comté and CNRS, 24 rue Savary, 25000 Besançon, France.
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The second group includes actuators able to provide displace-
ments along several axes. Piezostages and piezoelectric tubes
(piezotubes) are among these actuators. They are mainly used
for spatial positioning tasks, such as scanning microscopy.
However, PEA are also known to exhibit unwanted phenomena
that compromise the overall performances of the tasks, such
as their precision or even their stability. These phenomena are
principally the hysteresis nonlinearity, the creep nonlinearity
and the badly damped vibration that appears when a PEA is
excited with a brusque input voltage. To counterbalance these
phenomena, control of the PEA is essential.

The control of PEA has raised many works available in
the literature. Their objectives are to reduce the nonlinearities
and the vibration that typify the actuators in order to reach
some desired tasks performances. The most used strategies
are based on feedback architecture which permits to ensure
robustness against eventual external disturbances or against
model uncertainties [1]–[9]. Though these strategies offer very
interesting performances, they are not usually implementable
for small scales piezoelectric systems. In fact, there is a lack of
convenient sensors at these scales such that the implementation
of feedback control architecture is often impossible [1], [10].
Indeed, sensors capable of furnishing the required bandwidth
and resolution to measure the piezoelectic actuators perfor-
mances are bulky and expensive, examples include optical
triangulation based sensors, camera based measurement and
interfermetry based sensors. Even if they are employable in
laboratory experiences, they cannot be used in batch produced
systems because of the cost. Furthermore, due to their sizes,
they are not convenient for measuring the displacements
of multi-axes systems. In counterpart, sensors that can be
embedded easily (strain gage, capacitive...) are limited in
performances, mainly in term of signal-to-noise ratio, range
of measurement and bandwidth. An alternative way to using
external sensors consists in using the piezoelectric actuator as
its proper sensor by exploiting simultaneously the direct and
the converse piezoelectic effects. This approach is called self-
sensing approach and has been initially developed for vibration
damping [11]–[17]. Due to the charge leakage within the
piezoelectric actuator, self-sensing could not be used when
the displacement or force is constant or at low frequency.
However, by modeling the leakage and by compensating it
thanks to an algorthim, static and dynamic self-sensing has
been made possible [18], [19].

Another interesting alternative to external sensors based
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control is the open-loop control. It is an architecture that does
not require sensors at all. Open-loop or feedforward control
architecture for piezoelectic actuators has been extensively
studied and applied because of its low-cost and high integra-
tion features (no external sensors required). Roughly speaking,
the principle consists in modeling as precise as possible the
unwanted phenomenon (hysteresis, creep or badly damped
vibration) and then employing the inverse or the approximate
inverse of the model as compensator by cascading this latter
with the process.

There are abundant works in the literature regarding the
feedforward control of hysteresis nonlinearity in PEA. Among
them, the Prandtl-Ishlinskii [20]–[27], the Preisach [28]–
[32], and the Bouc-Wen [33] approaches have been developed
and implemented. Regarding the modeling and feedforward
control of creep nonlinearity, techniques based on logarithmic
equations [34] and based on linear time invariant (LTI) models

[35] have been used. Finally, regarding the feedforward
control of the vibration in PEA, principal approaches employ a
LTI model combined with input shaping techniques [36], [37],
or with open-loop H∞ technique [38]. All these feedforward
control works dealt however with the compensation of one
phenomenon only, i.e. either the hysteresis, the creep or the
vibration. In [39], [40], the feedforward control of both the
hysteresis and the creep has been carried out while in [41], the
vibration and the hysteresis have been treated. The modeling
and compensation of the three phenomena (hysteresis, creep
and vibration) simultaneously have first been suggested in [42]
where the application was the images scanning with an atomic
force microscopy. The principle consisted in considering them
as three phenomena in cascade. The global compensator was
also a cascade of the individual compensators. Later on [35],
[43], the same cascade architecture has been used but with
other techniques for the individual models and compensators.

Additionally to the hysteresis, to the creep and to the
vibration, cross-couplings are phenomena that cause loss of
accuracy in tasks performed by PEA. In fact cross-couplings
are found in muti-axes PEA and are observed as the apparition
of unwanted displacements in the other axes when one axis
is excited. Cross-couplings can be caused by a misalignment
of the electrodes in the PEA, by a mechanical design defect,
or by the misalignment of the sensors axes relative to the
PEA axes. The two former causes are the most delicate
because only control can reduce or minimize their conse-
quences if the initial design could not be anymore improved.
To this aim, feedback control of multi-axes PEA has been
studied and has resulted in very good performances [44]–
[47]. But, again the lack of convenient sensors makes this
architecture less used or even difficult to implement for small
scales applications. On the other hand, feedforward control
of multi-axes PEA has been studied in order to compensate
for the multivariable hysteresis and related cross-couplings

[48], [49], or to compensate for the multivariable creep
and related cross-couplings [50], or again to compensate
for the multivariable vibration and related cross-couplings
[51]–[53]. These techniques perform the compensation of the
phenomena in an individual manner and not simultaneously.
However, all the phenomena (hysteresis, creep, vibration and

cross-couplings) occur simultaneously when the multi-axes
PEA should work at static (low frequency) and at dynamic
(high frequency) conditions to effectuate high precision and
high bandwidth tasks. Compensating them within the same
controller is therefore vital.

Relative to the above mentionned works, this paper sug-
gests to simultaneously control the hysteresis, the creep, the
vibration and the cross-couplings in multi-axes piezoelectic ac-
tuators. Called complete compensation, the control of the four
phenomena is performed without using external sensors which
makes the approach very valuable for PEA based positioning
systems at small scales. To this aim, the approach consists in
cascading three multivariable compensators which are: a com-
pensator for the hysteresis, a compensator for the creep and a
compensator for the vibration. Since the three compensators
are designed to be multivariable, they automatically account
for the cross-couplings. Regarding the hysteresis, the model
and the compensator are based on the Bouc-Wen technique.
On the other hand, we suggest to tackle the creep and the
vibration with multivariable LTI (linear time invariant) models.
The different compensators are such that direct inversion of
models is avoided, and thus models invertibility condition
is not necessary. This makes the derivation and calculation
of the suggested compensators simple. The experiments are
carried out on a two degrees of freedom (2-DOF) piezotube
actuator classically used in atomic force microscopy and in
precise positioning. The results demonstrate the efficiency of
the complete compensator to compensate for all the unwanted
phenomena.

The paper is organized as follows. In section-II we first
present the experimental setup and the PEA. In section-III we
give the general principle and the procedure of the compensa-
tion approach. Section-IV is devoted to the compensation of
the multivariable hysteresis. In section-V the compensation of
the multivariable creep is detailed and added to the previous
hysteresis compensation. Section-VI is devoted to the complete
compensation by introducing the vibration compensator to
the previous hysteresis and creep compensators. The different
compensators are multivariable and thus can handle the cross-
couplings. Finally, we give some discussions in section-VII
and conclusions and perspectives in section-VIII.

II. PRESENTATION OF THE EXPERIMENTAL SETUP

In this scetion, we present the experimental setup. The
main core of the experimental setup is a piezoelectic actuator
(PEA). Both the models and the compensators (feedforward
controllers) will be studied from this PEA.

A. The piezotube actuator

The PEA used is a piezotube (PT 230.94 fabricated by
Physik Instrumente company). This actuator has a tubular
structure and is made of PZT (lead zirconate titanate) material
coated by four external electrodes +x, -x, +y and -y, and
one inner electrode that serves as ground (Fig. 1a). When
an electrical potential +u is applied to one electrode and
its opposite −u is applied to the antagonist electrode, we
obtain an expansion and a contraction respectively of the
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two antagonist sectors of the tube. This results in an overall
deflection, and thus a displacement, along x axis or along y
axis according to which pair of electrodes is supplied (Fig.
1b upper). When the four external electrodes are supplied by
the same electrical potential +u, all the four sectors expands
which results in a displacement of the actuator along the z axis
(Fig. 1b lower). In the sequel, the experiments will be carried
out for the x and for the y axes, the control of the z axis
being similar will not be tackled. Also, we will denote Ux the
voltage applied to the appropriate electrodes for the obtention
of an x displacement and Uy for the y displacement.
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Fig. 1: Description and working principle of the piezotube. (a):
perspective and top views of the PEA, (b:) working principle
in order to get displacements along x, y or z.

B. The experimental setup
The experimental setup which is depicted in Fig. 2 is

composed of the following elements:
• the piezotube actuator which has 27mm of length, 5mm

of external diameter and 3mm of internal diameter. Its
voltage operating range is of ±250V for a displacement
range of ±35µm along the x axis and along the y axis.
We will limit the experiments to ±200V because of the
voltages amplifiers limited range.

• two optical displacement sensors which permit to mea-
sure the x and the y displacements. The sensors are
the LC-2420 from Keyence company and are tuned to
have a hundred nanometers precision and 10kHz of
bandwidth. This bandwidth is largely enough to track
certain dynamics of the actuator that permits to validate
the investigated control approach.

• a computer with Matlab/Simulink software in order to
generate the control and the reference signals, to im-
plement the feedforward controller and to acquire the
measurement.

• a dSPACE board (dS1103) that serves as DAC (digital
analogic converter) and ADC (analogic digital converter)
between the computer and the sensors measurement and
between the computer and the actuator. The sampling
frequency of the acquisition system (Matlab-Simulink +
dSPACE board) is set to 20kHz.

• and a voltages amplifier with two lines. It amplifies
the driving voltages from the dSPACE/computer up to
±200V .

piezotube
actuator

y-sensor

x-sensor

voltages
amplifier

DACADC

computer (Matlab-Simulink)

Fig. 2: Description of the experimental setup.

III. GENERAL PRINCIPLE OF THE OVERALL FEEDFORWARD
CONTROL

Similar to 1-DOF piezoactuators, the piezotube actuator in
this study is typified by hysteresis, creep and badly damped vi-
bration phenomena. However additionally to them, the piezo-
tube has strong cross-couplings. As we will observe during
the characterization in the next sections, the cross-couplings
are found in the hysteresis, in the creep and in the badly
damped vibration at once. This makes the control strategy very
challenging because we cannot anymore apply monovariable
compensators as classically employed in the literature. The
overall strategy is therefore as follows.

The piezotube can be considered as a system we will call
S0. Its input is the driving voltage U = (Ux, Uy)

T and its
output is the displacement Y = (x, y)

T . First, the multivari-
able hysteresis (i.e. hysteresis with cross-couplings) of S0 is
characterized, modeled and compensated. In order to avoid
the effects of the other phenomena (creep and badly damped
vibration), the hysteresis characterization and modeling are
carried out with a specific driving voltage U . Afterwards, the
compensator will be designed such that the hysteresis as well
as related cross-couplings are reduced.

When the multivariable hysteresis compensator is imple-
mented, a new system that we call SH is obtained, see Fig.
3. This new system has a new driving input YH and is



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

normally typified by creep and by badly damped vibration,
each one being with their own cross-couplings. The multi-
variable creep of this new system is therefore characterized,
modeled and compensated. Thus, the piezotube S0 augmented
by the hysteresis compensator and the creep compensator
yields a new system called SL with a new driving input
YL, see Fig. 3. Normally this new system SL is typified by
badly damped vibration only. It is also important to note that
because the creep is dominant at very low frequency, the creep
characterization and modeling should also be carried at very
low frequency or even with constant driving input YH .

Finally, the badly damped vibration and cross-couplings
of SL are characterized, modeled and compensated. The
presence of vibration in the actuator’s response is principally
due to its cantilever structure. In order to obtain a precise
model of this behavior, the following types of characterization
can be applied to the system SL: harmonic, PBRS (pseudo
binary random sequence), modal, or step/impulse responses
approaches. Having a model from the characterization, a vi-
bration compensation can be afterwards designed and applied.
This final compensation results in a system T with input YR
called reference or desired input. In this final system T , the
hysteresis, the creep and the badly damped vibration with the
cross-couplings of each are all compensated.

The complete compensator is efficient at different frequen-
cies because of the following reasons. It compensates for the
creep which is a phenomenon that occurs when the actuator
is excited at very low frequency. It also compensates for the
hysteresis which is a nonlinearity particularly dominant at
low frequency and medium. Finally, it compensates for badly
damped vibration which is a medium and high frequencies
characterstics of the actuator.

SL

T

R L

S0

hysteresis
compensator

creep
compensator

oscillations
compensator

SH

HY YY Y
multivariable

vibration
compensator

multivariable
creep

compensator

multivariable
hysteresis

compensator

(Cross-C.
and

Direct T.)

multi-axes
piezoelectric

actuator
(Cross-C.

and
Direct T.)

(Cross-C.
and

Direct T.)

Fig. 3: Complete compensation procedure, where Cross-C.
stands for cross-couplings and Direct T. stands for direct
transfers.

In the next sections, the successive compensation of the
different phenomena will be presented and detailed. For that,
the principle scheme in Fig. 3 will be followed.

IV. CHARACTERIZATION, MODELING AND COMPENSATION
OF THE MULTIVARIABLE HYSTERESIS

In this section, we consider the piezotube S0 alone. We
characterize its hysteresis and suggest a multivariable hystere-
sis model as well as a compensator. As we will see, a hysteresis
phenomenon appears not only in the direct axis Ux → x
and in the direct axis Uy → y but also in the cross-axes,
i.e. in Ux → y and in Uy → x. These cross-couplings also

cause loss of precision in the functioning of the piezotube and
are therefore unwanted. Because the cross-couplings are also
hysteresis, we will suggest a multivariable hysteresis model.
On the basis of this model, the compensator will be designed
to reduce the hysteresis in the direct axes and to attenuate the
cross-couplings amplitudes.

A. Characterization

The hysteresis is characterized as follows. First, a sine
voltage Ux = Uasin(2πft) is applied to the piezotube in
order to have displacement along the x axis, the voltage Uy
being left equal to zero. An amplitude of Ua = 200V is used.
This has been chosen to correspond to the further maximal
range of use. Furthermore, the hysteresis is maximal with this
condition and consequently the further hysteresis model will
be obtained with the worst condition. The frequency f has
been chosen to be low enough in order to ensure that the
dynamics does not affect the hysteresis phenomena (phase-
lag effect). However, it should not be too low in order to
avoid the effect of the creep on the hysteresis curve [35].
Different characterizations demonstrated that a frequency of
0.1Hz is a good compromise for the piezotube. The resulting
displacement x is reported and the input-output map (Ux, x)
is plotted in Fig. 4-a (solid line). The curve clearly shows
that the x-axis of the piezotube exhibits a strong hysteresis,
its amplitude being h

H = 10µm
52µm ≈ 19.23%. In the meantime,

the effect of Ux on the y axis has been observed. Fig. 4-c
(solid line) depicts this effect which is also a hysteresis. The
amplitude of this cross-coupling hysteresis is of about 18.8%.
Much more than the cross-coupling hysteresis, the cross-
coupling range itself is unwanted. Its range is of ±0.55µm =
1.1µm.

Now, the voltage Ux is set equal to zero and a sine voltage
Uy is applied. Its amplitude and frequency are the same than
for the x characterization above. As results, the hysteresis in
the direct transfer map (Uy, y) is plotted in Fig. 4-d (solid line)
which shows a hysteresis amplitude of about 10µm

55µm ≈ 18.2%.
The cross-coupling Uy → x which is pictured in Fig. 4-b (solid
line) is also hysteretic and has a range of about ±1µm = 2µm.

B. Modeling and identification

The characterized multivariable hysteresis will be modeled
in this subsection. One of the interesting hysteresis modeling
approaches used in the literature is the Bouc-Wen approach.
Initially developed for vibrational mechanics [54], [55], it has
a very limited number of parameters making its identification
straightforward and making it well adapted for real-time
applications. Furthermore, its simple structure makes it very
interesting in structural analysis, for instance to study the
stability of a closed-loop. There are several techniques in the
Bouc-Wen approach. One of them is the classical Bouc-Wen
technique which can model symmetrical and rate-independent
hysteresis.

The classical Bouc-Wen technique for a rectangular mul-
tivariable hysteresis (k inputs and n outputs) [48] is given
by:
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Fig. 4: Characterization (blue-solid line) and model simulation
(red-dashed line) of the multivariable hysteresis.

{
Y = Dp U − h
ḣ = AU̇ −B

(
| ˙̂U | ◦ ĥ

)
− Γ

(
˙̂
U ◦ |ĥ|

)
,

(1)

where U ∈ Rk×1 represents the vector of the input voltages,
Y ∈ Rn×1 the vector of output displacements and h ∈ Rn×1

the vector of internal states of the hysteresis. Dp, A, B and Γ
are matrix parameters for the multivariable classical Bouc-Wen
model. In these matrices, the diagonal elements are related to
the direct transfers while the rest of the elements to the cross-
couplings. The operator ◦ denotes the Hadamard product of
matrices. Û and ĥ are signals defined from U and h and
depend on whether the modelled system is under or over
actuated. For systems with the same number of inputs and
outputs, i.e. square multivariable systems, we have Û = U
and ĥ = h.

From Eq.1 we derive the model of the 2-DOF piezoactuator
whose characterizations are pictured in Fig. 4 (solid line):



(
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y
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(
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︸ ︷︷ ︸
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Γ

[(
U̇x

U̇y

)
◦

(
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)]
.

(2)

where the elements inside Dp, A, B and Γ should be
identified. Their identification is carried out by applying a
nonlinear least-square optimization method that minimizes the
square of the error between the discrete version of Eq.2 and the
experimental data of Fig. 4 (solid line). From the identification,
we obtain:



(
x

y
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=

(
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(3)
The identified model in Eq. 3 has been simulated with

Matlab-Simulink by applying the same driving voltages than
during the characterization. The simulated results are also
plotted in Fig. 4 (dashed line) and conveniently fit with the
experimental results.

C. Compensation

In order to reduce the hysteresis in the direct axes in Fig.
4-a and d and to render the behavior linear, we suggest to
synthesize and to implement in cascade with the piezotube
a hysteresis compensator. To attenuate the cross-couplings
of Fig. 4-b and c at the same time, the compensator will
be designed to be multivariable. For this aim, we will use
the multivariable model presented in the previous subsection.
Referring to Fig. 3, the hysteresis compensator should be
designed in such a way that the output Y will track the
compensator input YH , that is the compensator should satisfy:

Y = YH . (4)

Applying this condition to the first equation of the multi-
variable model in Eq.1, we have:

YH = Dp U − h, (5)

From Eq.5, we can derive a sufficient condition on the
driving voltage U that satisfies Eq.4. We obtain:

U = D−1
p (YH + h). (6)

Eq.6 corresponds to the compensator itself which has U as
output and YH as input, with YH = (xh, yh)

T . Its implementa-
tion is represented in Fig. 5 where H (.) is a nonlinear operator
described by the second equation of Eq.1 and is such that
h(t) = H (U). We can observe from this figure and from the
compensator equation in Eq.6 that the direct inversion of the
nonlinear part H (.) is avoided, which is interesting because
nonlinear inversion requires conditions that are not always
possible to satisfy in the model [56], [57]. Furthermore, an
extra calculation of the compensator parameters is avoided
because these latters are the same than those of the initial
model. This is essential especially for multivariable case where
the number of parameters rapidly increases with the number
of axes. We can also remark from the compensator equation
and from the figure that the compensator is a rearrangement
of the model. The figure shows that this rearrangement has
an inverse multiplicative structure, which is similar to that
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previously used for monovariable hysteresis compensation
[21], [33].

H

-+ ++

h h

SH

hysteresis
compensator

S0
Y Y

p p

Fig. 5: Implementation of the multivariable hysteresis com-
pensator.

The compensator of Fig. 5 was implemented and the hys-
teresis of the compensated system has been experimentally
checked by applying sine inputs xh and yh with amplitude
of 20µm and frequency of 0.1Hz. The results are reported
in Fig. 6. By comparing Fig. 4 and Fig. 6 we notice that the
hysteresis is considerably reduced in the direct transfers (Fig.
6-a and d). The small error of compensation in these direct
transfers are principally due to the fact that the hysteresis of
the actuator (see Fig. 4-a and d) are non-symmetrical while
the model suggested in Eq.2, and thus its compensator, is
for symmetrical hysteresis only. Meanwhile, it is possible to
reduce this remaining error by using the generalized Bouc-Wen
model which considers non-symmetrical hysteresis [49]. On
the other hand, the amplitude of the cross-couplings along the
x axis has been reduced from about ±1µm to about ±0.55µm
(Fig. 4-b and Fig. 6-b), while the amplitude of the cross-
couplings along the y axis has been slightly reduced from
±0.52µm to ±0.47µm. The compensated cross-couplings still
remain nonlinear even if the hysteresis was removed. However,
the main gain is the fact that their amplitudes were reduced.

x
[µ
m
]

y
[µ
m
]

yh[µm]xh[µm]

(a) (b)

(c) (d)

Fig. 6: Experimental results of the hysteresis compensation.

V. CHARACTERIZATION, MODELING AND COMPENSATION
OF THE MULTIVARIABLE CREEP

The previous section permitted to reduce the hysteresis and
to obtain a new system SH . This new system is without
hysteresis in the direct transfers. The cross-couplings are also
reduced at certain condition of the input YH , especifically
when we have YH a sine signal of frequency 0.1Hz. However,
the system SH is still with creep and with badly damped
vibration. In this section, we characterize, model and com-
pensate for the creep. We will see that at the condition of
creep characterization, other cross-couplings appear. The creep
compensator will therefore be designed to account for these
cross-couplings additionally to the creep in the direct transfers.

A. Characterization

To characterize the multivariable creep, we follow the same
procedure as of the multivariable hysteresis, but we use step
inputs rather than sine inputs. The creep of the system SH
is consequently studied with step inputs xh and yh with an
amplitude of 20µm. This amplitude corresponds to about the
maximal range of use which is observed in Fig. 4 and Fig. 6.
Notice that, from the step responses, the creep phenomenon
is identified as the long duration drift that appears just after a
very quick transient part. For the piezotube, Fig. 7 depict the
creep of the four transfers of SH observed during 600s. In this,
Fig. 7-a (resp. d) is the creep in the direct transfer xh → x
(resp. yh → y). On the other hand, the cross-couplings are
observed in Fig. 7-b (response of x when applying a step yh)
and in Fig. 7-c (response of y when applying a step xh). In
the figures, Axxf , Axyf , Ayxf and Ayyf correspond to the final
values of the actuator displacement before the creep occurs.
They are used in the next subsection to identify the parameters
of the multivariable creep model.
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Fig. 7: Characterization of the multivariable creep.
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B. Modeling and identification

Consider the direct transfer creep of Fig. 7-a which is the
step response along x due to a step input xh. This step re-
sponse can be interpreted as a superposition of a constant Axxf
with the drift that evolves from Axxf to Axxm . An approximation
of this drift is a LTI model, as we discussed in section-I. The
output x can therefore be written as follows:

x = [kxx + Crxx(s)]xh (7)

where kxx =
Axx

f

xh
and where Crxx(s) is a transfer function

(LTI) that describes the evolution between Axxf to Axxm .
The creeps of Fig. 7-b, c and d can also be interpreted in a

similar way. This leads to the following matrix model:

Y = [K + Cr(s)]YH = KYH + Cr(s)YH (8)

where K is a matrix gain and Cr(s) is a matrix of transfer
functions. Remind that the input is YH = (xh, yh)T and the
output is Y = (x, y)T . The detailed model is thus:

(
x
y

)
︸︷︷︸
Y

=


(
kxx kxy
kyx kyy

)
︸ ︷︷ ︸

K

+

(
Crxx(s) Crxy(s)
Cryx(s) Cryy(s)

)
︸ ︷︷ ︸

Cr(s)


(
xh
yh

)
︸ ︷︷ ︸
YH

(9)

We observe that the model Eq.8 comes back to the multi-
input-multi-output creep model in [50].

The parameters of the model of Eq. 9 are identified from
the experimental data of Fig. 7. The elements of the matrix
parameter K are straightforward:

kxx =
Axx

f

xh
= 18.91

20 = 0.9455

kxy =
Axy

f

yh
= −0.42

20 = −0.0210

kyx =
Ayx

f

xh
= 0.58

20 = 0.0290

kyy =
Ayy

f

yh
= 18.90

20 = 0.9450.

(10)

The procedure to identify the transfer functions of the matrix
Cr(s) is as follows. The experimental data related to the drift
evolution from Axxf to Axxm of Fig. 7-a is separated from the
whole step response curve. This drift evolution data and the
step input data xh = 20µm are afterwards used to identify
Crxx(s) by using the system identification Toolbox of Matlab.
Here, a Box-Jenkins method was used [58]. It permits to
impose the model order, to identify the parameters in an
automatic manner, to verify a posteriori the matching level of
the identified model relative to the experiment and to modify
quickly the order if required. The same procedure is applied
for Axyf to Axym of Fig. 7-b, Ayxf to Ayxm of Fig. 7-c and for
Ayyf to Ayym of Fig. 7-d. We obtain the following elements of
Cr(s).


Crxx(s) = 0.003299(s+0.01926)

(s+0.1156)(s+0.01249)

Crxy(s) = −0.000484(s2+0.004223s+6.025×10−6)
(s+0.03461)(s2+3.9980×10−7s+1.849×10−6)

Cryx(s) = −8.992×10−5

s+0.0003682

Cryy(s) = 0.00340(s+0.01996)
(s+0.1123)(s+0.01094)

(11)
As we can see, the orders are relatively small: 1 for Cryx(s),

2 for Crxx(s) and for Cryy(s) and 3 for Crxy(s). They
correspond to a minimum matching percent of 92%. In fact
other tests show that when increasing the model orders, the
matching percent does not anymore increase substantially.
Hence the orders in Eq. 11 are a good compromise between
model precision and model complexity.

The obtained LTI model Cr(s) was then implemented in
Matlab/Simulink, simulated and compared to the experimental
data. The comparison is established in Fig. 8 where we notice
that the identified model well approximates the experimental
data. In this figure, only the drifts evolution is plotted and the
quick jump from 0 to Aijf (i = x, y and j = x, y) of Fig. 7
has been removed.
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Fig. 8: Experimental data (blue-solid line) and model simula-
tion (red-dashed line) of the multivariable creep.

C. Compensation

The compensator derivation for the creep will be similar
to that for the hysteresis, which is based on the inverse
multiplicative scheme. This is possible because the structure
of the creep model in Eq. 8 is similar to that of the hysteresis
model in the first equation of Eq. 1: the output is affine relative
to the input of the system to be controlled. Let us denote
YL = (xl, yl)

T the creep compensator input. The output of
this compensator is YH and this latter is the input of the
system SH to be controlled. If we desire that the output Y
of SH tracks the input YL, we can set Y = YL in Eq. 8 and
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derive the following sufficient condition such that this tracking
condition is satisfied:

YH = K−1[YL − Cr(s)YH ]. (12)

This compensator equation has again an inverse multi-
plicative structure. Hence extra-calculation of the compensator
parameters is avoided as they are the same than those of the
model. Furthermore, dynamics direct inversion is avoided here
because there is no need to invert the transfer function Cr(s)
which would require conditions (bistability and bicausality)
that are not always satisfied during the modeling. Notice that
in Eq. 12, the signal YH simultaneously appears in the left
side and in the right side. In fact, this equation should be:
YH(t) = K−1[YL(t) − Cr(s)YH(t − Ts)] where Ts is the
sampling period. This means that the compensator output
YH(t) at time t is calculated on the basis of its previous value
YH(t− Ts).

L

- +++

SL

creep
compensator SH

YYH
Y

K

Cr(s)Cr(s)

K

Fig. 9: Implementation of the multivariable creep compensator.

The compensator of Eq. 12 has been implemented in
Matlab/Simulink following the scheme in Fig. 9 where SH is
the piezotube S0 augmented by the hysteresis compensator as
described in Fig. 5. The experimental tests consist in applying
a step input xl = 20µm with yl = 0, and then a step
input yl = 20µm with xl = 0. The responses are reported
in Fig. 10 where we can see that the step responses in the
direct transfers (a and d of the figure) do not anymore contain
creep and where the reference value of 20µm is maintained.
Furthermore, Fig. 10-b and c show that the initial cross-
couplings whose evolution was given in Fig. 7-b and d have
now been reduced.

VI. CHARACTERIZATION, MODELING AND COMPENSATION
OF THE MULTIVARIABLE BADLY DAMPED VIBRATION

The compensation for the multivariable hysteresis and for
the multivariable creep of the piezotube S0 in the two previous
sections permits to have the new system SL with an output Y
and a new input YL. This new system exhibits badly damped
vibration when a step or an impulse input is applied. This
section is dedicated to the suppression of that vibration in an
open-loop fashion.

A. Characterization

To characterize the dynamics of the system SL, an input
signal YL that considers high frequencies should be used. This
can be done with harmonic analysis which should include
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Fig. 10: Experimental results of the creep compensation.

at least the first resonant frequency, or with a pseudorandom
binary sequence (PRBS) signal, or again with impulse or step
signal. In this test, we will use a step input signal YL because
of its straightforward approach: the step response is injected
to a system identification technique and a model whose the
order can be imposed is generated. Notice that step response
approach was already used during the creep characterization,
modeling and identification. Instead of using a long period
of measurement (600s for the creep), here, only the transient
part at the begining of the step response is of interest. This
transient part lasts in general less than 200ms for piezotube
actuators due to their high bandwidth.

The experimental characterizion of the step response of SL
is represented in Fig. 11 (blue-solid line). In this, Fig. 11-
a and d (blue-solid line) correspond to the response of the
direct transfer xl → x and yl → y respectively which clearly
show the vibration when applying a step input of 20µm of
amplitude. On the other hand the effect of the step xl = 20µm
to y is depicted in Fig. 11-c (blue-solid line) while the effect
of the step yl = 20µm to x is depicted in Fig. 11-b (blue-solid
line). These latter figures reveal that the cross-couplings are
also typified by strong vibration.

B. Modeling

For a further compensation of the badly damped vibration,
we first suggest a model for the step responses in Fig. 11 (blue-
solid line). As we have removed the hysteresis and the creep,
the system S0 can be assumed to be linear. A LTI model can
therefore be identified from the step reponses. We will denote
GL(s) = Y Y −1

L the (matrix) transfer function of the system
SL. It is composed of four transfer functions that link the
individual inputs xl and yl with the individual outputs x and
y.

First a transfer function GLxx(s) is identified for the direct
transfer xl → x. For this aim, the Box-Jenkins method of
the system identification Toolbox of Matlab is again used
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and applied to the experimental data of Fig. 11-a (blue-solid
line). The same procedure is applied successively for the
experimental data in Fig. 11-b (blue-solid line), Fig. 11-c
(blue-solid line) and Fig. 11-d (blue-solid line) to yield the
transfer GLxy(s) = x

yl
, GLyx(s) = y

xl
and GLyy(s) = y

yl
respectively. We obtain the identified model:

GL(s) =

(
GLxx(s) GLxy(s)
GLyx(s) GLyy(s)

)
. (13)

where



GLxx(s) = −432.16(s−3.72e04)(s+2.707e04)(s+7853)(s+309.3)
(s+298.2)(s2+1.1e04s+4.449e07)(s2+567.3s+3.783e07)

× (s2+948.1s+5.201e07)(s2+692.9s+1.014e08)
(s2+962.2s+9.867e07)(s2+599.7s+1.051e08) ;

GLxy(s) = −253.1(s−4879)(s−46.75)(s2+1568s+8.376e06)
(s+290.8)(s2+1417s+8.968e06)(s2+525.8s+3.779e07)

× (s2+4221s+6.019e07)(s2−1454s+7.185e07)
(s2+678.4s+5.928e07)(s2+898.7s+1.039e08) ;

GLyx(s) = −60.375(s2+156.4s+2.038e06)(s2+994.3s+3.495e07)
(s+4621)(s2+164.1s+2.03e06)(s2+1110s+3.893e07)

× (s2+679.5s+9.584e07)(s2−2.06e04s+2.312e08)
(s2+5683s+5.045e07)(s2+294.7s+6.392e07) ;

GLyy(s) = 4.5368e06(s+303.8)(s2+256.5s+6.072e07)
(s+2.726e04)(s+5066)(s+297.3)(s2+8639s+5.804e07)

× (s2+83.09s+9.684e07)(s2−4.85e04s+1.123e09)
(s2+468.6s+5.824e07)(s2+167.3s+6.032e07) .

(14)
The multivariable model in Eq. 14 has been simulated by

using the step inputs xl and yl with amplitude 20µm. The
simulation results are compared with the characterization as
depicted in Fig. 11 (red dashed line), where we remark a good
adequacy between them.
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Fig. 11: Experimental characterization and model simulation
of the step responses where the badly damped vibrations are
illustrated.

C. Compensation

A badly damped vibration property is in general unwanted
because it causes a delay in the system’s response and it
could also compromise the stability of the final task to be
carried out. We suggest here a compensator for the badly
damped vibration. Because the model Eq.14 is multivariable,

the compensator should also be multivariable in order to
consider both the direct transfers and the cross-couplings.

Let Fig. 12 be the block-scheme of the system SL with the
multivariable vibration compensator C(s). A new system T of
output Y and input (reference) YR is obtained. We suggest to
synthesize C(s) on the basis of the standard H∞ technique.
This technique is classically employed to design feedback
controller capable of accounting for the uncertainties of the
model and of considering some predefined performances.
Additionally to that, standard H∞ technique can account for
multivariable systems. Here, we use the technique to design
the feedforward controller C(s) with the possibility to consider
some specified performances.

R

T

oscillation
compensator

SL

YYL
Y

C(s) G (s)L

Fig. 12: Implementation of the multivariable compensator to
attenuate the badly damped vibration.

In order to ease the explanation, let us first consider as if
C(s) and SL were monovariable. Because the compensator
C(s) is designed to have an overall system T (s) without
vibration, let us denote Wr(s) the desired behavior for this
latter. The simplest behavior without vibration is a first order
model. Thus let us take Wr(s) as follows:

Wr(s) =
1

τs+ 1
(15)

where τ is the time constant defined by τ = tr/3, with
tr being the desired settling time for T (s). Notice that the
static gain of Wr(s) is set equal to one in order to ensure
steady-state of Y to be equal to a constant reference Yr.

Unfortunately the real system T (s) is not in practical equal
to the previous desired model Wr(s). There is a dynamical
model error Wr(s) − T (s). A very interesting advantage of
H∞ technique is that it is also possible to give boundary
for dynamical errors. For this aim, let us introduce another
gain W1(s) to weight the model error Wr(s) − T (s), as
depicted in Fig.13. As we will see latter, the magnitude of the
inverse 1

W1(s) is a bound for the magnitude of Wr(s)− T (s).
Consequenly, the choice of 1

W1(s) , and thus of W1(s), can be
made on the basis of specified reference tracking performances
that bound the error. A possible structure for W1(s) [59] is:

W1(s) =
s+ 3/tr

kos+ 3εs/tr
(16)

where the parameter ko is used to define the maximal
allowed overshoot. For a zero vibration specification, it is set
to ko = 1. The parameter εs defines the tolerated static error
for the compensated system. We choose 1% (εs = 0.01) of
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maximal static error for Wr(s)− T (s), which corresponds to
a specified maximal error of 1% between Y and Yr. Finally,
the specified settling time tr is chosen to be 25ms.

In order to moderate the driving input YL, we also add a
weighting W2(s) as depicted in Fig.13. We will further see
that the magnitude of the inverse 1

W2(s) is a bound of the
transfer C(s) = YL

YR
. Thus, 1

W2(s) can be chosen to bound
the maximal driving YL for given YR. Let us take Y max

R the
maximal range of the reference YR and let us denote Y max

L

the maximal driving YL that is allowed in order to avoid the
over-supply of the actuator and thus to avoid its destruction.
Thus, W2(s) is chosen to be:

W2(s) =
Y max
R

Y max
L

(17)

In the previous sections, we saw that the maximal range of
voltage was 200V during the usage and the related displace-
ment was of 20µm. This led to a range of YL of 20µm and
consequently a range of YR of the same value. Hence, the
chosen weighting is.

W2(s) = 1. (18)

The bounds and the weightings described above are for
monovariable case. The piezotube in this study has two inputs
and two outputs, and thus multivariable. Additionally to the
desired model behavior, to the tracking performances and to
the command moderation all defined by Wr(s), W1(s) and
W2(s) respectively, cross-couplings should also be accounted
for. Consequenly, these weightings should be matrices.

Cross-couplings are unwanted phenomena that should be
reduced or removed by any synthesized controller. For this
aim let us choose the matricial weightings Wr(s), W1(s) and
W2(s) to be diagonal. By doing this structure (off-diagonal
equal zero), we expect to have a controller that permits zero
cross-couplings for T . Hence, from Eq.15, Eq.16 and Eq.18,
and from the above discussion, we suggest:

Wr(s) =

(
1

1+ 0.025
3 s

0

0 1
1+ 0.025

3 s

)
;

W1(s) =

(
s+120
s+1.2 0

0 s+120
s+1.2

)
;

W2(s) =

(
1 0

0 1

)
.

(19)

C(s)

+-Wr W1

W2 z1

z2

YL Y
YR GL(s)

Fig. 13: The augmented controlled system.

Fig.13 is called ’augmented controlled system’, as it is
composed of the system GL(s) to be controlled and of
the controller C(s), all augmented by the weightings. It is
noteworthy that the implementation and experiments will not
require the weightings. These latters are only used to calculate
the controller. Also the augmented controlled system has as
outputs the weighted outputs z1 and z2 and as inputs all
exogenous signal (in this case: YR). Referring to Fig. 13, the
relation between the exogenous input YR and the weighted
output z = (z1 z2)T is:(

z1

z2

)
=

(
W2C

W1Wr −W1T

)
YR, (20)

where T (s) = GL(s)C(s) the transfer function of the
compensated system.

Applying the standard H∞ problem [60], the problem here
consists therefore in finding the compensator C(s) such that:∥∥∥∥ W2C

W1Wr −W1T

∥∥∥∥
∞
< γ (21)

By applying properties of norms, Eq. 21 is equivalent to:{
‖C‖∞ < ‖W−1

2 ‖∞γ
‖Wr − T‖∞ < ‖W−1

1 ‖∞γ
(22)

where γ represents the performances evaluation parameter.
It is often more interesting in term of computation to rewrite

the problem in Eq. 22 into magnitudes inequations. Hence the
problem becomes in seeking the compensator C(s) such that
the following conditions are satisfied (which also permit to
satisfy Eq. 22): {

|C| < |W−1
2 |γ

|Wr − T | < |W−1
1 |γ

(23)

from which we can observe that the magnitude of the inverse
W1(s)−1 is a bound for the magnitude of Wr(s) − T (s)
(tracking performances and model reference) and the mag-
nitude of the inverse W2(s)−1 is a bound for C(s) = YLY

−1
R

(command moderation), as we discussed above. If we cannot
find a controller that satisfies the prescribed performances, γ
will be strictly superior to one.

To solve the problem in Eq. 23, we have used the DGKF
algorithm [61] and the Matlab Robust Control Toolbox.
The algorithm seeks for the optimal controller and for the
minimum of γ (via dichotomy iteration) that satisfy Eq. 23.
After calculation, we obtain an optimal compensator C(s) with
an order of 34 and γ = 0.9351. We can predict that, because
γ < 1, the prescribed performances will be ensured by the
calculated compensator C(s). In order to have a lower order
compensator, we have applied a balanced realization based
order reduction method to C(s). The technique permitted
to obtain a 12th order controller without compromising the
performances.

The reduced compensator C(s) has been implemented ac-
cording to the scheme of Fig. 12 and reference step inputs
xr and yr with amplitude of 20µm have been applied suc-
cessively. The obtained step responses are presented in Fig.
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14 where we notice the suppression of the vibration in the
direct transfers and the reduction of amplitudes in the cross-
couplings axes.
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Fig. 14: Experimental results for the badly damped vibration
compensation.

VII. DISCUSSIONS

A. Numerical evaluation of the compensation of hysteresis,
creep, oscillations and cross-couplings

In this subsection, we discuss on the performances obtained
from the designed compensator by evaluating numerically the
amount of the hysteresis, of the creep, of the vibration and of
the cross-couplings for each compensation procedure.

The hysteresis evaluation is made by calculating the am-
plitude h

H for the non-compensated hysteresis in Fig. 4 and
for the compensated hysteresis in Fig. 6. To evaluate the
creep and its compensation, we refer to Fig. 7 and Fig. 10.
Finally the vibration is quantified by calculating the step
responses overshoots in Fig. 11 and Fig. 14. More precisely,
the creep and the vibration are quantified by using the ratio
[(Am−Af )/Af ]×100%. For the creep, Am and Af refer to the
displacement before the creep appears and the displacement
after the time for the creep evaluation, as depicted in Fig.
7. For the vibration, Am and Af stand for the maximal
displacement observed on the step response, i.e. the overshoot,
and the displacement after the settling time, i.e. the final value
(see Fig. 11a). The quantitative evaluation is made for the
direct transfers. Tab. I rassembles the data. It clearly shows
that the maximal hysteresis of 19.23% amplitude was reduced
to about 0.01%, the maximal creep was reduced from 5.5%
to about 0.04% and the maximal overshoots for the two axes
were removed completely.

To evaluate the efficiency of the complete compensator
(the three individual compensators in cascade) to reduce the
cross-couplings, we now calculate the cross-couplings without

TABLE I: Numerical evaluation of the hysteresis, of the creep
and of the vibration (for direct transfers).

Before compensation After compensation
Hyst. Creep Oscil. Hyst. Creep Oscil.

X 19.23% 4.6% 45.1% 0.01% 0.31% 0.00%
Y 18.2% 5.5% 15.6% 0.01% 0.04% 0.00%

compensation from Fig. 4 and those after the whole com-
pensation from Fig. 14. For example, to quantify the cross-
coupling along x axis, we consider the residual displacement
denoted Hxy in x when an input along y is applied. From
this, the cross-coupling amplitude is the ratio between this
residual displacement Hxy face to Hxx, this latter being the
displacement when an input is applied in the same x axis.
This definition indicates the relative affordability of the x axis
to be affected by the y axis, as is used in [62]. The same
definition is applicable for the cross-coupling in the y axis.
Tab. II rassembles the results and shows that the complete
compensator has lowered the cross-couplings amplitudes from
a maximal value of 3.1% to about 0.5%.

TABLE II: Cross-couplings amplitudes before and after the
complete compensation.

Initial system (S0) Completely compensated
system (T )

X Hxy

Hxx = 1.8
56.5

= 3.1%
A

xy
f

Axx
f

= 0.11
19

= 0.5%

Y Hyx

Hyy = 1.1
55.2

= 1.9%
A

yx
f

A
yy
f

= 0.1
19

= 0.5%

B. Complex trajectory tracking

In order to test the capability of the controlled actuator to
track complex trajectory, we use a spatial circular reference
input obtained by applying two shifted sine references xr and
yr. First we choose a radius of 20µm for the circle. Fig.15a
depicts the results. The figure also depicts the (scaled) output
trajectory when there is no compensation. From them, we
can see that the output trajectory obtained when using the
complete compensation tracks the reference trajectory much
better than when there is no compensation. Fig.15b depicts
the results when using a radius of 30µm, additionally to those
with a radius of 20µm. These results show that the complete
compensation technique permits to have more regular output
trajectory and allows a much better tracking of the reference.
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Fig. 15: Circular trajectory tracking.

C. Commutativity of the compensators

In this paper, the principle of the complete compensation
of the hysteresis, creep, badly damped vibration and cross-
couplings is schemated in Fig. 3. First the hysteresis and
related cross-couplings were compensated for; then the creep
and related cross-couplings, and finally the vibration and
related cross-couplings. In fact each step corresponds to a
range of frequency: low frequency for the hysteresis, very low
frequency for the creep, and medium and high frequency for
the vibration. Consequently, each individual compensator is
valuable for the reduction or cancelling of each phenomenon
in the related range of frequency. Since each compensator
is multivariable, the cross-couplings found in each range of
frequency are also removed. As a result, the cascade of the
three individual compensators permits to cover the different
phenomena in a wide range of frequency.

It is also possible to commute the individual compensators,
rather than following the scheme in Fig. 3. By doing so, the
identification steps should also be adapted accordingly. Let
us consider for example the complete compensation in Fig.
16. To apply this scheme, the creep is first characterized and
identified from the piezotube S0. After implementation of the
creep compensator, a new system Sa of input Ya is obtained.
Then, to compensate for the badly damped vibration of Sa, the
dynamics should be characterized and modeled from this latter
system. The implementation of the vibration compensator
results in a new system Sb with a new input Yb. Finally, the

hysteresis is characterized, modeled and compensated for from
Sb. The complete compensation in this case gives a system
T that is similar to that of Fig. 3. Furthermore, the cross-
couplings are also accounted for in this case as long as each
individual compensator is multivariable.

SL

T

R L
multi-axis

piezoelectric
actuator

S0

hysteresis
compensator

creep
compensator

oscillations
compensator

SH

HY YY Y

Sa

Sb

YaYb creep
compensator

oscillations
compensator

hysteresis
compensator

multivariable
vibration

compensator

multivariable
creep

compensator

multivariable
hysteresis

compensator

(Cross-C.
and

Direct T.)

(Cross-C.
and

Direct T.)

(Cross-C.
and

Direct T.)

Fig. 16: Complete compensation with a different scheme than
that of Fig. 3 and where Cross-T. stands for cross-couplings
and Direct-T. stands for direct transfers.

D. Other remarks

A main limitation of feedforward control is the lack of
robustness against external disturbances and against model
uncertainties. The complete compensation technique devel-
oped in this paper does not avoid this rule. For instance,
a temperature variation in the ambiant environment could
reduce the efficiency of the complete compensation. One
interesting approach to tackle this example consists in plac-
ing a temperature sensor (which is embeddable) onto the
actuator or in its vicinity. The information from this sensor
can then be used to automatically sequence the parameters
of the three compensators (of hysteresis, of creep and of
vibration) such that they become adaptive. This adaptive and
temperature-dependent compensation is possible at the cost
of a thorough and precise analysis and modeling of the
phenomena to be compensated for. Indeed the derivation of
the temperature-dependent compensators requires a precise
temperature-dependent model.

Applications such as SPM and AFM based images scanning
might require to drive the piezoactuator at high frequency.
At such frequency, the creep and the hysteresis effects are
less dominant than the dynamics of the actuator and than the
vibration phenomenon. The weightings in Eq.19 are therefore
the principal parameters to be tuned in order to increase the
bandwidths of the final compensated system. Different tests
shown however that there is a limitation in this tuning. In
fact, increasing the bandwidths decreases the damping per-
formances. A compromise should be found. In the numerical
example given in Eq.19, the specified bandwidth was equal
to 120Hz (corresponding to the specified settling time of
tr = 25ms) which provided a completely damped vibration.

VIII. CONCLUSIONS

This paper suggested the complete control of the hysteresis,
of the creep and of the badly damped vibration in a 2-
DOF piezotube actuator without using feedback sensors. The
principle consisted in cascading the individual compensators
of each phenomenon and in using them as feedforward con-
trollers. First, the hysteresis was characterized, modeled and
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compensated for; then the creep and finally the badly damped
vibration. Each step was based on a multivariable modeling
and compensation permitting to consider and then to attenuate
the cross-couplings. Experimental tests were carried out to
validate each step and demonstrated the efficiency of the
approach. The hysteresis which could initially exceed 19%
was reduced to about 0.01% while the creep was reduced from
5.5% to 0.04%. Regarding the vibration, related overshoots
that could exceed 45% were completely removed.
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