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ABSTRACT

This paper describes an Autoregressive Partially-hidden
Markov model (ARPHMM) for fault detection and prognos-
tics of equipments based on sensors’ data. It is a particular dy-
namic Bayesian network that allows to represent the dynam-
ics of a system by means of a Hidden Markov Model (HMM)
and an autoregressive (AR) process. The Markov chain as-
sumes that the system is switching back and forth between
internal states while the AR process ensures a temporal coher-
ence on sensor measurements. A sound learning procedure of
standard ARHMM based on maximum likelihood allows to
iteratively estimate all parameters simultaneously. This paper
suggests a modification of the learning procedure consider-
ing that one may have prior knowledge about the structure
which becomes partially hidden. The integration of the prior
is based on the Theory of Weighted Distributions which is
compatible with the Expectation-Maximization algorithm in
the sense that the convergence properties are still satisfied.
We show how to apply this model to estimate the remain-
ing useful life based on health indicators. The autoregressive
parameters can indeed be used for prediction while the latent
structure can be used to get information about the degradation
level. The interest of the proposed method for prognostics
and health assessment is demonstrated on CMAPSS datasets.

1. AR-MARKOV MODELLING FOR PROGNOSTICS

Autoregressive (AR) models have been shown to be appro-
priate for time-series modelling in various fields such as
econometric (Ng & Vogelsang, 2002) and climate forecasting
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(Storch & Zwiers, 1999). In condition monitoring, it is gen-
erally used for fault detection by establishing an AR model
using healthy conditions under various loads and using this
model on the observed data recorded in in-service conditions
in order to trend the residual signals. Such approaches does
not make use of analytical description of faults or collection
of typical fault patterns (Farrar & Worden, 2013; Serdio et
al., 2013). Such a method has been used for gear monitor-
ing by (W. Wang & Wong, 2002). (Yan, Ko, & Lee, 2004)
used a similar approach together with a logit model to de-
termine the probability of failure of an elevator door motion
system. (Thanagasundram, Spurgeon, & Schlindwein, 2008)
suggested to use a pole representation of an AR process to de-
tect bearings faults. (Saha, Goebel, & Christophersen, 2009)
compared ARIMA (AR with integrated moving average) with
two other models for battery prognostics.

In structural safety, AR models were used by (He &
De Roeck, 1997; Huang, 2001) to identify structural dy-
namic characteristics of system subjected to ambient excita-
tions. (Ling, Shantz, Mahadevan, & Sankararaman, 2011)
suggested to use an ARMA to characterize and reconstruct
fatigue loads for prognostics application on mechanical com-
ponents. The authors proposed to adapt the parameters of
this model by Bayesian updating to accommodate variability
in loading and data sparsity.

(Lehman, Nemati, & Mark, 2015) were interested in the mod-
elling of switching autoregressive dynamics from multivari-
ate vital sign time series in order to stratify mortality risks of
intensive care units patients receiving particular treatments.
In this biomedical application, the authors made use of a
combination of an AR process and a Hidden Markov Model
(HMM) called ARHMM. Such a model is able to cope with
multistate non-stationary systems which are generally en-
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countered in PHM applications.

ARHMM were also used for wind turbine monitoring by
(Ailliot & Monbet, 2012) where the authors were interested in
the statistical representation of wind time series. They made
use of a hidden Markov chain which represents the weather
types and allows to switch between several autoregressive
models that describe the time evolution of the wind speed.
Such switching models are particular well suited for PHM
applications to represent the dynamical behavior of complex
systems (Serir, Ramasso, Nectoux, & Zerhouni, 2013; Lim,
Goh, Tan, , & Dutta, 2016).

Initially proposed for speech recognition (Rabiner, 1989),
an ARHMM is a particular dynamic Bayesian network that
draws benefits of an AR model and HMM. A standard and
sound learning procedure of this model based on maximum
likelihood (ML) allows parameters to be estimated iteratively
and simultaneously. This paper suggests to use ARHMM for
fault detection and prognostics of equipments based on sen-
sors’ data. A modification of the learning procedure is also
proposed to enable one to add prior knowledge on the latent
structure. This modification allows, in some way, to decrease
the attachment of the model to the data that can be observed
in practice in various probabilistic models learned with the
ML approach.

Following previous work on the integration of prior on latent
variables for fault detection (Côme, Oukhellou, Denoeux, &
Aknin, 2009; Ramasso, 2009; Cherfi, Oukhellou, Côme, De-
noeux, & Aknin, 2012; Ramasso & Denoeux, 2014), the ob-
jective is to enable the users of probabilistic models to repre-
sent two kinds of knowledge (Dubois, 2007; Denoeux, 2013):

• Generic knowledge about the data generating process
and corresponding to random uncertainty. It pertains to
a population of observables such as historical facts, laws
of physics, statistical and common sense knowledge.

• Specific knowledge, also called relative knowledge or
factual evidence, is about a given realization of the data.
It pertains to a particular situation and is related to a do-
main or a discipline.

Specific knowledge is of key importance for PHM applica-
tions. It is not necessarily related to statistics and is generally
partial because the observation process is imperfect due to
lack of knowledge. It generally aims at improving skills of a
method trained by generic knowledge.

The integration of the prior suggested in this paper for
ARHMM is based on the Theory of Weighted Distribu-
tions (TWD) (Patil, 2002) which is compatible with the
Expectation-Maximization (EM) algorithm in the sense that
the convergence properties are still satisfied. It makes use of
concepts initially developed by (Côme et al., 2009; Denoeux,
2013) based on Dempster-Shafer’s theory of belief functions
and of (Juesas & Ramasso, 2016) using the TWD to include

prior in EM-based learning procedures.

The resulting model is called Autoregressive Partially-
Hidden Markov Model (ARPHMM) and is described in the
next section. It is then shown to be well suited for remaining
useful life (RUL) based on health indicators with an illlus-
tration on CMAPSS datasets (Frederick, DeCastro, & Litt,
2007; Saxena, Goebel, Simon, & Eklund, 2008).

2. MARKOV SWITCHING MODEL WITH SOFT PRIOR:
GENERAL FORMULATION

A measurement at time t, xt is mathematically represented
as a weighted sum of the previous measurements plus an er-
ror term, where the weights are defined conditionally to each
state:

xt = −
∆∑
δ=1

rδ(yt)xt−δ + εεεt(yt), 1 ≤ t ≤ T (1)

The noise term
εεεt(yt) ∼ N(0,ΣΣΣyt)

is assumed to be a Gaussian with zero mean and a covariance
matrix ΣΣΣyt automatically adjusted for each hidden state given
the data in the learning phase. The AR coefficients for the i-
th state are denoted as rδ(yt = i) where δ = 1 . . .∆ is the
time lag. The set of AR coefficients is given by:

Bi =
(
r1(i), . . . , rδ(i), . . . , r∆(i)

)
(2)

The switching between internal states is governed by a
stochastic process taking the form of a Markov chain and de-
picted in Figure 1. It is represented by a transition matrix A
with elements aij = p(yt = j|yt−1 = i) (probability of go-
ing into state j at time t given the state was i at t − 1). The
prior probability of the chain is denoted as ΠΠΠ = [π1 . . . πK ],
where πi is the probability to be in state i at time t = 1.

Figure 1. Graphical model of an ARHMM: Rounded boxes
Xt represent continuous observed variables (measurements
such as AE signals at time t), rectangular-shaped boxes Y t
represent hidden discrete variables. The AR process is repre-
sented by the links between measurements.
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2.1. Incorporating prior knowledge on latent variables

The problem is to estimate the parameters

λ = (A,π,Bi,ΣΣΣi), 1 ≤ i ≤ K (3)

in presence of uncertain and imprecise prior information
about the hidden variables.

The prior is supposed to take the form of distributions over
possible internal states given AE signals and represent users’
beliefs before some evidence is taken into account. For
practical use, we assume the prior to be uncertain and im-
precise so that we can cover different learning paradigms:
Unsupervised learning (health states Y are supposed hid-
den), supervised learning (states corresponds to class fully
known), semi-supervised learning (combination of both pre-
vious cases) and partially-supervised learning were some
health states can be known and accompanied by a confi-
dence degree W = [w1; . . . ;wt; . . . ;wT ], with wt =
[wt(1), . . . , wt(i), . . . , wt(K)] and wt(i) ≥ 0. This is the
most general case:

• When wt(i) = 1 for a given state i and wt(j) = 0, j 6= i
then the supervised case is recovered;

• When ∀t, ∀i, wt(i) = 0, then the unsupervised case is
recovered.

In order to estimate the parameters of an ARPHMM in a
sound manner when some prior knowledge W about the hid-
den states is available, we suggest an approach using the
TWD described by Patil (Patil, 2002) and we derive the op-
timal solution in terms of maximum likelihood. It follows
a similar reasoning to (Juesas & Ramasso, 2016; Ramasso,
2014) and has connections with (Denoeux, 2013).

2.2. Inference and learning in ARPHMM

The parameters (Eq. 3) are optimized by an Expectation-
Maximization (EM) learning procedure (Dempster, Laird, &
Rubin, 1977). In the E-step, we evaluate the expectation of
the hidden variables given the data; In the M-step, the auxil-
iary function Q has to be maximized in order to ensure that
the likelihood will increase at each iteration, where Q (at it-
eration q) given by:

Q(λ, λ(q)) = Eλ(q) [log(L(λ;Z)|X]

=
∑
Y

p(Y |X, λ(q)) logL(λ;Z) (4)

with Z = (X,Y ). This expression requires to express the
complete-data likelihood function which, for an ARPHMM,

is given by:

L(λ;Z) = p(y1;ΠΠΠ)

( T∏
t=2

p(yt|yt−1;A)

)
×

T∏
t=1

p(xt|yt; r∆(yt),ΣΣΣ(yt))

(5)

Using the Theory of Weighted Distributions (WDT) and for
any positive weights W, Eq. 4 can be modified as follows:

Q(λ, λ(q)) = Eλ(q) [logL(λ; z)|x,w]

=

∑
y w(y)p(y|x, λ(q)) logL(λ; z)

Eλ[w(y)]

(6)

This adaptation of EM for the ARHMM allows one to easily
incorporate prior beliefs about the hidden states in a sound
manner since EM still converges thanks to the normalisation.

We can expand the expression of Q, derive the expression
with respect to the parameters to get the parameters at iter-
ation q + 1 of the modified EM. For the Markov chain, we
have:

π
(q+1)
i = γ

(q)
1i (7a)

a
(q+1)
ij =

∑T
t=2 ξ

(q)
t−1,t,i,j∑T

t=2

∑K
l=1 ξ

(q)
t−1,t,i,l

, (7b)

We can show that the expression of the posterior probabilities
γ and ξ can be obtained similarly to (Ramasso & Denoeux,
2014), using a modified forward-backward algorithm.

For the observation model, the noise covariance is given by:

ΣΣΣ
(q+1)
i =

1∑T
t=1 γ

(q)
ti

T∑
t=1

γ
(q)
ti

[
xt +

∆∑
δ=1

r
(q)
δ (i)

xt−δ

][
xt +

∆∑
δ=1

r
(q)
δ (i)xt−δ

]T
,

(8)

and the expression of the AR coefficients defined as:

B
(q+1)
i =

(
r

(q+1)
1 (i), . . . , r

(q+1)
δ (i), . . . , r

(q+1)
∆ (i)

)
= −

[ T∑
t=1

γ
(q)
ti xtu

T
t−1

][ T∑
t=1

γ
(q)
ti ut−1u

T
t−1

]
(9)

with
ut−1 =

(
xt−1,xt−2, ...,xt−∆

)T
, (10)

where the likelihood bi(xt) given the hidden state i is given
by:

bi(xt) = N (xt +

∆∑
δ=1

rδ(i)xt−δ | 0,ΣΣΣi) (11)

The forward pass is useful to evaluate the likelihood of the
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model. It is also of particular interest since it may be defined
with respect to the prior on the latent structure:

α
(q)
1i = π

(q)
i w1i bi(x1), (12a)

α
(q)
t,j = bj(xt) wtj︸︷︷︸

prior

∑
i

α
(q)
t−1,i a

(q)
ij (12b)

and the likelihood of the observed data given the model is
computed as:

L(λ(q);X,W) =

K∑
i=1

αTi (13)

2.3. ARPHMM for health assessment and prognostics

Health assessment can be performed by inferring the hidden
state at the current time t. As in standard HMM, it is made
possible by either a forward or a forward-backward passes or
applying the Viterbi algorithm. The specificity of the pro-
posed approach is to be able to exploit prior on the latent
structure.

The remaining useful life can be estimated by a direct prop-
agation computed, for instance, by a similarity-based ap-
proach. The principle is to look for a training instance in the
historical data that is similar to the currently observed data
and to consider that the latter would evolve in the same way
(T. Wang, Yu, Siegel, & Lee, 2008). The computation of the
similarity is however of key importance (T. Wang et al., 2008;
Ramasso, 2014).

Likelihood-based approaches does not always generalize well
to unobserved (quite different) cases. This could be a limita-
tion for health assessment and prognostics on real systems.
Bayesian approaches have been used for tackling such prob-
lems in PHM, mostly during the prediction phase or for RUL
estimation (for instance to update noise characteristics) and
specifically to integrate prior on models’ parameters (Saha &
Goebel, 2008; Sankararaman & Goebel, 2015).

The Theory of Weighted Distributions used in this paper plays
a similar role to the Bayesian approach but specifically on the
latent variables. Its interest holds particularly in the possi-
bility to be used in MLE-based learning which represents a
learning paradigm that is widely used in PHM-related pub-
lications. The use of prior on latent variables’ configuration
allows to condition some areas of the feature space which is
expected to make those ML-based models more specific.

Practically, the ARPHMM can be used for health assessment
and prognostics as follows:

• Learning for prognostics: Build an ARPHMM by con-
sidering the RUL as output in the AR process. Consider
various parameterizations of the prior (w) if the internal
states have no meaning. The learning procedure thus es-

timates the mapping between the RUL and the data con-
ditioned on the prior.

• Health assessment on testing data: Apply the forward-
backward propagations and find the most probable state,
or the Viterbi algorithm. If no prior is available dur-
ing inference, then wt,i = 1. If some prior informa-
tion are available, then it can be used in the propagations
(Eq. 12b).

• RUL estimation: For the testing phase, find the likeli-
est model by applying the forward pass together with
either the prior used for training (by assuming that the
initial wear of both training and testing data are similar)
or an external prior if available. Then deduce the RUL
by merging the closest instances.

Note that RUL estimation could also be performed by sam-
pling the underlying state-space model (Eq. 1) which is not
studied in this paper and let for future work.

3. ILLUSTRATION ON TURBOFAN DATASETS

3.1. Datasets description

The turbofan datasets were generated using the CMAPSS
simulation environment that represents an engine model of
the 90,000 lb thrust class (Frederick et al., 2007; Saxena et al.,
2008). The authors used a number of editable input param-
eters to specify operational profile, closed-loop controllers,
environmental conditions. Some efficiency parameters were
modified to simulate various degradations in different sec-
tions of the engine system. Selected fault injection param-
eters were varied to simulate continuous degradation trends.

The datasets generated possess unique characteristics that
make them very useful and suitable for developing classifica-
tion and prognostics algorithms: Multi-dimensional response
from a complex non-linear system, high levels of noise, ef-
fects of faults and operational conditions, and plenty of units
simulated with high variability. Benchmarking of prognostics
algorithms on those datasets has been proposed and discussed
in (Ramasso & Saxena, 2014).

Figure 2 (taken from (Ramasso, 2014)) depicts one of the sen-
sor measurements from a healthy situation to failure, as well
as the evolution of those values in each of the six operating
conditions (for instance landing, take-off, cruse and so on).

Figure 3 illustrates the health indicators (computed as sug-
gested (Ramasso, 2014) and inspired from (T. Wang, 2010))
for all training data in each dataset. Dataset #1 is made
of 100 training instances with an unique operating condition
(OC) and unique fault mode, dataset #2 with 260 training
instances, six OCs and one fault mode, dataset #3 with 100
training instances, one OC and two fault modes, and dataset
#4 with 248 training instances made of six OCs and two fault
modes.
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Figure 2. Operating conditions in each regime: Sensor mea-
surements are locally linear .

In the present paper, the 100 training instances of the turbo-
fan dataset #1 were used for learning and the first 15 test-
ing for testing and comparison is made with RULCLIPPER
algorithm (Ramasso, 2014) (available at the following web
page: https://fr.mathworks.com/matlabcentral/

profile/authors/7468430, with the ensemble-approach
described in Table 7 of the latter publication). It is also com-
pared to the Summation Wavelet Extreme Learning Machine
(SWELM) algorithm proposed in (Javed, Gouriveau, & Zer-
houni, 2013).

3.2. Prior information on the latent variables of the
ARPHMM

The ARPHMMs were trained using the health indicators
shown in Figure 3a (and available at the aforementionned
web page) as inputs and using the associated RUL as out-
put. The real internal states of the turbofan are unknown but
we insert some prior about some macroscopic latent variables
by considering artificial finite degradation levels described in
(Ramasso, 2016) (also available on the web page). Those lev-
els, estimated by this method, are illustrated in Figure 4 for
the 100 training data.

The number of states for each training instance was thus equal
to the number of states provided by the artificial degradation
levels (3), and the number of regressors was equal to 7 for
all instances (about a quarter of the shorter testing instance).
Note that the optimization of those parameters requires to de-
velop some objective criteria with respect to the prior on la-
tent variables which will be performed in future work.

The comparison between the estimated RUL and the ground
truth provided at NASA PCOE was made using the timeli-
ness function as described in (Saxena et al., 2008) and with
the mean average percentage error (MAPE) which is possible
since the RULs are available for dataset #1.

Results are gathered in Table 1. Compared to RULCLIPPER,
which provided the best results on dataset #1 with few pa-
rameters (Ramasso & Saxena, 2014), the ARPHMM provides
quite similar results in term of MAPE but less in term of time-

liness. This result is encouraging since no optimization was
performed for the number of states nor the number of regres-
sors. The accuracy is around 80% when considering the in-
terval [−13, 10] around the ground truth with a false positive
rate around 67% corresponding to early predictions.

ARPHMM provides better results on average compared to
SWELM on those samples. However, one can observe that
the fusion of elements using a simple average of RUL es-
timates allows to get better results than RULCLIPPER for
those particular 15 instances.

The comparison can not be generalized when compared to
RULCLIPPER since it has demonstrated robustness with few
parameters on all turbofan datasets (with OC and two fault
modes) using full testing datasets as well as on the PHM data
challenge. However, the results go in favor of developing
ensemble approaches made of complementary and advanced
prognostics algorithms. This is all the more true than algo-
rithms’ parameterizations play an important role on the ro-
bustness which may be criticial for in-service use.

3.3. Behavior of the proposed model

Figure 5 illustrates the use of different hidden structure for
learning the evolution of the first training instance in the
dataset: K=3 states without (Fig. 5a) and with prior (Fig.
5b), and K=10 states (Fig. 5c). The training instance and the
states are then used to learn one model, which is applied on
the fourth training instance of the dataset (used as a testing
instance).

Figure 6 is the application of this model for direct RUL esti-
mation at each time step and for the testing instance. It can
be observed that the model seems to provide better results on
this new instance when more states are added.

Finally, Figure 7 illustrates the impact of the quality of the
prior. This case may correspond to a situation where new but
partial knowledge is available and has to be integrated during
prognostics (for instance information on the operating con-
ditions). The quality is varied using a random sampling of
the uncertainty on states as proposed in (Côme et al., 2009)
(code available at the aforementionned web page). The sam-
pling process is governed by a parameter ρ ∈ [0, 1] such that
ρ = 0 corresponds to the supervised (full quality) case, ρ = 1
to the unsupervised case (no prior), and intermediary values
correspond to noisy prior, all the more noisy than ρ increases.

It can be observed that for K = 3, the RUL estimation is
highly dependent on the prior. Besides, the uncertainty can
be quantified with different values of ρ. Uncertainty is much
higher is the elbow part of the degradation, while it is quite
low for the beginning (since all data have similar evolution)
and for the end (when converging to the solution). For K =
10, the RUL estimation is more accurate and does not depend
on the prior.
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Figure 3. Evolution of the health indices for all engines in the four datasets.

Table 1. Results of ARPHMM and comparison. The timeliness S and the MAPE should be minimized.

Testing Critical True ARPHMM SWELM RULCLIPPER
instance time RUL proposed (Javed et al., 2013) (Ramasso, 2014)

ˆRUL S MAE ˆRUL S MAE ˆRUL S MAE
1 31 112 115.61 0.435 3.222 112 0 0 121.95 1.705 8.884
2 49 98 107.00 1.460 9.184 54 28.507 44.898 108.03 1.727 10.236
3 126 69 78.09 1.481 13.170 68 0.08 1.449 57.960 1.338 15.998
4 106 82 79.85 0.180 2.619 80 0.166 2.439 76.832 0.488 6.302
5 98 91 87.85 0.274 3.459 100 1.459 9.890 78.119 1.693 14.155
6 105 93 80.85 1.546 13.062 108 3.482 16.129 102.173 1.502 9.863
7 160 91 78.17 1.682 14.095 114 8.974 25.274 97.015 0.824 6.605
8 166 95 75.226 3.577 20.815 102 1.014 7.368 95.886 0.093 0.933
9 55 111 108.58 0.205 2.180 105 0.587 5.405 117.586 0.932 5.933
10 192 96 73.80 4.514 23.121 68 7.618 29.167 87.219 0.965 9.146
11 83 97 95.11 0.156 1.945 67 9.051 30.928 104.005 1.015 7.222
12 217 124 85.93 17.692 30.700 131 1.014 5.645 100.939 4.894 18.598
13 195 95 83.42 1.438 12.192 92 0.259 3.158 84.444 1.252 11.112
14 46 107 112.62 0.755 5.255 81 6.389 24.299 119.931 2.644 12.085
15 76 83 89.56 0.928 7.910 106 8.974 27.711 94.711 2.225 14.109
Overall performance - 36.32 10.86% - 77.57 15.58% - 23.30 10.08%

FUSION

S=21.8 MAPE=9.26%
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Figure 4. Evolution of the finite levels of degradation.

Those figures also remind prognostics approaches based on
multi-modelling such as (Serir, Ramasso, & Zerhouni, 2011)
and (Serir, Ramasso, & Zerhouni, 2012). As for multimodels,
the hidden structure in an ARPHMM allows to evaluate the
active feature space, while, for each state, the evolution of the
time-series is approximated. However, in addition to quan-
tifying the uncertainty on states for each new measurement,
the ARPHMM additionally quantifies the likelihood associ-
ated to a model which makes model selection possible.

4. CONCLUSION AND PERSPECTIVES

In this paper, we investigate the use of uncertain prior on the
latent structure of dynamic Bayesian network for prognostics,
and in particular an autoregressive partially hidden Markov
model. More experiments are needed to validate the approach
but results obtained on some instances of CMAPSS datasets
are encouraging when compared to other approaches from the
literature. This model is being improved to include uncertain
future operating conditions on the latent structure.
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Figure 5. Training instance 1, and different qualitative degradation levels used for training.
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(b) RUL estimation using 3 states.
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(d) RUL estimation using 10 states.

Figure 6. RUL estimation with different configurations on the hidden structure.
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