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Abstract 

This paper reports recent progress in modeling and 

simulation 01' a one-dimensional Micro-Mirror Array actu­

ated by an electrostatic force. We present results obtained 

through numerical simulations of a single ceIl: the analysis 

and the optimization 01' the pull-in voltage and the analysis 

01' the bounces 01' the mirror in contact with the base when 

it is subjected to a voltage exceeding the pull-in voltage. 

For the array, a model has been derived for the electrostatic 

field using a multi-scale modeling technique. The model is 

detailed together with simulation results. 

Keywords. Micro-Mirror Array, Periodic Homogeniza­

tion, Pull-In Voltage Analysis, Bouncing Effect, Robust Op­

timization 

1. Introduction 

The Micro-Mirror Array (MMA), MIRA, considered in 

this paper and shown in Figure 1 is dedicated to applications 

in astrophysics, and has been developed in a collaboration 

between the LAM and the CSEM (Switzerland), see [1, 2] 

and Figure 1. It is designed to play the role of a field se­

lector for multi-object spectroscopy (MOS) in that it allows 

for individual selection 01' objects by preventing overlapping 

of spectra, and that it removes spoiling sources and back­

ground emission. The actuation principle is based on the 

attraction 01' the suspended mirror towards the bottom elec­

trode by an electrostatic force generated by their difference 

of potential. The spring force of the suspending beams is a 

restoring force to get back the mirror in its rest position. 

In the first third of the gap between the mirror and the 

electrode, the position of the mirror can be controlled by 

the voltage. But for the lower position, the system becomes 

unstable and the mirror is completely attracted towards the 

electrode. The related voltage is called pult-in voltage. The 

pull-in analysis is carried out by using COMSOL Multi­

Physics, and latter compared with numerical results in [2] 

done by using CoventorWare. 

Once simulation is available, many optimization can 

be envisioned, some 01' them that are interesting from the 

designer point of view such as: to minimize the restor­

ing force 01' the beams, to minimize the pull-in voltage, to 

reach the correct tilt angle 01' the mirror or to minimize the 

speed of the mirror leaving the landing pad during the pull­

out process. Here, we report results on the minimization 

01' the pull-in voltage depending on the two most influen­

tial parameters, namely the suspending beam thickness and 

length. This work is done by using an in-house optimization 

software package SIMBAD. Due to the model simulation 

time, the optimization is conducted on a meta-model based 

on a sampie of 25 simulations. 

Then, the dynamical mirror stabilization process has 

been studied through the bouncing effect in vacuum that 

is the bounces of the landing beams that touch the landing 

pads. 

The full modeling of the MMA should cover mechani­

cal, electrical and thermal effects. However, a direct sim­

ulation 01' any 01' them in such MMA turns out to be im­

practical, since the MMA has a complex geometry and a 

large number of cells. In [3], we have already introduced 

a multi-scale model for heat transfer occurring in an one­

dimensional array of micro-mirrors. In this paper, we focus 

on the electrostatic field in the array. Due to the presence 

01' imposed voltages in each cell, the structure 01' the model 

ditlers from usual homogenized models in that there is no 

global variation of the electrical field. Precisely, the solu­

tion 01' this model is a sum 01' a periodic electric potential 

and boundary layer potentials occurring at the two ends as 

weIl as at the possible interfaces between regions of differ­

ent applied voltages. The multi-scale modeling method is 

based on the framework 01' periodic homogenization as in 

[ 4]. 

The resulting model is implemented in COMSOL thanks 

to the Partial Differential Equations (PDEs) interface. All 

parts of the model are computed using a very number of 

cells. Their solutions are combined in a single plot to repre­

sent the tüll solution 01' the electrostatic field in the MMA. 

Therefore, computing the solution for a large array has no 

limitation with this model. The assembly 01' the solutions 01' 

the model parts is achieved thanks to the LiveLink package 

linking MATLAB and COMSOL. 

2. Description of the Micro-Mirror Array 

The structure 01' this MMA is detailed in [2]. Figure 2 

shows the parts of its elementary cell which is divided into 

two elements: the mirror with voltage + V and the electrode 

with voltage - V. The mirror part is composed 01' the mirror, 

two stopper beams with two landing beams on their tips and 

a suspending beam. The electrode part is composed of an 

electrode, two landing pads and two pillars. 

Each cell can be addressable by applying ditferent volt­

ages on its line and column and then tilted due to the gen­

eration 01' electrostatic force on the mirror, [1, 2]. At rest, 

when no voltage is applied, the micro-mirror is held in a f1at 

position by the suspended beams. When a voltage differ­

ence 2V is applied between the micro-mirror and the elec­

trode, an electrostatic force is generated, resulting in the at-
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traction of the micro-mirror toward the fixed electrode, and 

leading to tilting. For voItages below the puH-in voltage, 

the micro-mirror is operated in an analogue mode, aHow­

ing the angle to be set to a few degrees as a function of 

the applied voItage. At the puH-in voltage, the force in­

creases and the micro-mirror snaps toward the electrode. 

During this motion, the micro-mirror touches its stopper 

beam and its landing pads. After puH-in, the micro-mirror is 

fixed at a precise tilt angle, due to contact with three points, 

the stopper beam and two landing pads. When the voltage 

is reduced, the micro-mirror angle remains constant until 

the mirror detaches from its stopper beam and increased its 

tilt angle. Finally, when the spring force of the suspended 

beams overcomes the electrostatic force, the landing beams 

detach trom the landing pads and the mirror returns to its 

rest position. 

Fig. 1: Top view of MIRA a micro mirror array made with 

64 x 32 ceHs of size 100 x 200 ILm2 . 

Frame 

Micromirror 

Suspended Beam 
landing beam 

landing pad 

-----,---,r 
Stopper Beam 

Pillar 

Fig. 2: The parts of a ceH of MIRA. 

3. Pull-in analysis 

The computation of the puH-in voltage Vpi is done by 

solving an inverse problem. The pull-in voltage is found by 

imposing the mirror end at successive predefined positions 

starting trom the rest position and ending to a displacement 

equal to the third of the gap. For each position, the volt­

age is adjusted to cancel the applied force by imposing the 

displacement. The choice of an initial displacement cIose 

to zero and of a sufficiently small displacement step are to 

guaranty correct convergence of the nonlinear solver, pro­

vided that each new computation starts with an initial con­

dition built from the previous result. The higher position 

requires the largest voItage, but in turn, the lower position 

increases the electrostatic force and thereby requires a lower 

voltage. As a result, the plot of the voltages versus the posi­

tions is a parabola in which the maximum corresponds to the 

puH-in voltage. Figure 3 shows the voItage-displacement 

curves of the micro-mirror at equilibrium. Table 1 shows 

the variation of Vpi for different values of the thickness t 

and the length ji of the suspended beam. These results are in 

agreement to those of [1, 2]. We observe that the key param­

eter is the beam thickness and that the beam thickness must 

be lower than 500nm for a puH-in voltage below 100V. 

t and ji 4O,Lm 60 fLm 80 fLm 

400 nm 87 V 81 V 82 V 

500 nm 120 V 115 V 115 V 

600 nm 157 V 150 V 154 V 

Table 1: The puH-in voItage as a function of the length and 

thickness of the suspended beams. 
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Fig. 3: Curve of imposed voltage versus beam displacement 

at equilibrium for supporting beams with thickness 400nm 

and length 40Wn. 

4. Optimization of the pull-in voltage 

The optimization of the puH-in voltage Vpi is a single 

objective optimization problem with two design variables 

t and ji. The optimization procedure is speed up thanks 

to a meta model. The latter is built by sampling the two 

variables t and ji with 25 sampIes corresponding to 5 val­

ues of t = {0.4, 0.45, 0.5, 0.55, 0.6} fLm and 5 values of 

ji = {40, 50, 60, 70, 80} Wn. The meta-model is chosen as 

a fourth order polynomial interpolation. The graph of the 

meta-model is shown in Figure 4. The mean square error is 

1.8%. We observe that the main slope is in the direction of 

t while the surface is flat in the direction of ji meaning that 

the most sensitive variable is the beam thickness. 
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Fig. 4: The meta-model of the pull-in voltage as a function 

of the length (ji) and thickness Ct) of the suspended beams. 
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The minimization of the pull-in voltage performed with 

the meta-model is reached for t = 400 nm and R = 70.16 

JLm, see Table 2. 

Design Variable Initial Value Optimal value 

t 500 nm 400 nm 

R 60 JLm 70.16 JLm 

Feature 

VPI 115.2 V 74.4 V 

Table 2: The initial and optimal values of the design vari­

ables t, Rand of the optimization objective Vp I. 

5. Bumping effect 

The simulations of the mirror bounces are done using the 

electromechanical interface of COMSOL in the dynamic 

regime for a two-dimensional geometry. The contact be­

tween the landing beams and the landing pads together with 

the contact between the mirror and the stopper beam are 

handled by an approximate penalty or barrier method, as de­

scribed in [5]. Precisely, nonlinear spring forces F c are used 

for modeling the elastic contact between the landing pads 

and apart of the mirror surface and the stopper beam, see 

Figure 5. When these surfaces are moved away trom each 

other, the springs have a low stiffness and consequently a 

negligible influence on the deformation of the beam and the 

mirror. As the gap is reduced the springs become stiffer and 

resist to the gap c1osure, see Figure 6. 

The results of Figure 7 show that there is almost no 

bounce when the beam thickness is lower than I/Lm, while 

the results of Figure 8 show a few bounces when the beam 

thickness is greater than IJLm. This difference of behavior 

is due to a weaker spring force, indeed the restoring force of 

a thin (0.7 JLm) beam is weak, leading to a fast tilt actuation 

and fast stabilization. In the opposite, when the beam thick­

ness is larger (IJLm), the time scale of the restoring force is 

longer, and the tilting time is also longer with many bounces 

before stabilization. 

., 

I I ~ m, ! 
~ 

b, 

Contact pressure Fe 

Fig. 5: Contact forces are imposed at some points of the 

head of the beam and of the mirror that can be in contact 

with the base and the stopper beam. The points b1 and m1 

are used to plot displacement versus time in the following 

figures. 

6. Homogenized model of the electrostatic equation in 

theMMA 

The model derivation is based on the asymptotic method 

[4]. We start trom the mathematical statement of the elec­

trostatic equation in the MMA, we describe the assumptions 

regarding the geometry, the key operators for the asymptotic 
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Fig. 6: Position of the mirror in its maximal displacement 

for a voltage exceeding the pull-in voltage. 
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Fig. 7: Bounces of the mirror materialized by the trajectory 

of b1 in the case of a 0.7 JLm-thick suspended beam. 

model derivation, the asymptotic model itself, and its imple­

mentation in COMSOL Multi-physics. 

6.1 Electrostatic equation 

We consider a one-dimensional array of n cells with to­

tal length L as shown in Figure 9. Denoting by R the length 

of a cell, we express that the number of cells is large by con­

sidering that the length ratio c = R / L is a small parameter. 

The asymptotic method yielding our model consists in es­

tablishing an approximation of the electrostatic equation in 

the sense of small values of c. To underline the importance 

of this parameter in the problem, the fields and the domains 

are indexed by c . 

We assurne that the array is subdivided into two parts 

where different voltages ± V E ,l and ± V E ,2 are imposed, and 

we adopt the global notation ± V E for the whole array. The 

governing equations of the electric potential q/ in the vac­

uum domain is given as 

-div (E\l(I/) = 0 

in both subdomains with the imposed value (1/ = ±VE 

on the mirrors and on the electrodes. Here E represents the 

electrical permittivity in vacuum. The extern al boundary 

condition on the other boundaries is the null-flux condition 

\l (1/ .nE = 0 where n E is the outward unit normal to the 

boundary. On the interface both the electrical potential and 

its normal flux are continuous. 

6.2 Two-scale and zoom operators 

To construct the model, we use the two-scale approxi­

mation technique presented in [4] which is generalized to 

account for boundary layer phenomena. We start by trans­

forming the solution of the electrical potential (1/ defined on 

the physical domain into a function T(I/ defined on a two­

scale domain n~ x n1, see Figure 10, in which : n1 is the 

microscopic cell deduced trom any cell centered at the po­

sition XC by a translation by the vector -xc and a dilation 

by the factor l/c, and n~ is the macroscopic domain that 
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Fig. 8: Bounces of the mirror materialized by the trajectory 

of b1 in the case of a 1l1m-thick suspended beam. 

Interface 

Fig. 9: Characteristics of the array regarding the asymptotic 

analysis: the ratio R/ L of the cell length versus the array 

length and the voltage sources V E ,l and VE,2 in the two 
subdomains OE,l and OE,2. 

is a segment, in the direction Xl, used for referencing the 

position of each cell of the array. 

As will be seen in the following section, the approxima­

tion of T(1l has a discontinuity at the interface between the 

two subdomains and does not satisfy the zero f1ux bound­

ary conditions at the two ends of the array. For this pur­

pose, correctors are introduced at the points presenting the 

approximation defects. Precisely, we use three operators 

Tbnt and Tb"" for ~ E {O, L }, of shift and zoom at the in­

terface between the two subdomains and at both ends of the 

array. The shifts and zooms are chosen so that the transfor­

mations map any function defined on the nominal domain 

OE into a function defined on the domains with first co­

ordinate xi E (_Lint /e, (L - Lint)/e), [0, Lint /e) and 

(-(L - Lint)/e, 0] respectively yielding xi E (-00, +(0), 
[0, +(0) and ( -00,0] respectively when e tends to zero. 

6.3 The Homogenized model 

Assuming that the two-scale transformations T(1l ;:::::: cpo 
and TV E ;:::::: VO when e decreases, ie for a large number 

of cells, we can prove that cpo (x~, xl) is solution of the fol-

xl 

I Physical domain I xi I Macroscopic domain I I Microscopic domain I 

Fig. 10: Graphical view of the two-scale transform T map­

ping fY into O~ x 0 1 . 

xi 

X' 
1 

Fig. 11: Graphical view of the zoom operator Tb
1 at the end 

Xl = O. 

X' 
1 

Fig. 12: Graphical view of the zoom operator Tbnt at the 

interface. 

lowing equation posed in the microscopic domain for all 
x~ E O~, 

(1) 

with cpo = ± V O on the mirrors and the electrodes, cpo and 

\7 x' cpo satisfying periodic conditions in the lateral bound­

aries which normal vector is in the direction of the array 

and with zero f1ux condition on the other boundaries. The 

periodic boundary conditions are the origin of the approxi­

mation defects mentioned in the previous section. In order 

to construct the boundary layer corrections, we introduce 

the difference cpf, (x) = cpE (x) - cpo (p~ (x), (x - XC) /e) 

for each x belonging to the cell centered at XC where p~ is 

the projection operator from the domain OE into O~. This 

ditlerence is zoomed at each point of approximation defect 

in order to determine the corrections by the asymptotic be-
h · T",~E ~'" d Tint~E ~ ~int h d aVlOrs b 'Pb ;:::::: 'Pb an b 'Pb ~ 'Pb ' W en e ecays, as 

weIl as the equations satisfied by limits cp'b and cpi,nt, 

(2) 

in the three asymptotic regions as described in the 

previous section. In the three cases, the origin 

xi 0 corresponds to the location of the ap­

proximation defect. The boundary condition are that 

the jumps at the interface [cpi,nt + cpo (Lint ,x1 )] and 

[axl (cp1nt + cpO(L i nt,x1))] are vanishing at xi = 0, 

as weil as the normal f1ux axl (cpg(x 1 ) + cpo (0,x 1 )) and 

axl (cpf (Xl) + cpo (L, Xl)) at the two ends of the array. 

Moreover, the three corrections (cp'b) ",=O,L and cp1nt van-

-4/5-

2017 18th International Conference on Thermal, Mechanica1 and Mu1ti-Physics Simulation and Experiments in Microe1ectronics and Microsystems 



ish on the mirrors and the electrodes, and satisfy zero fiux 

boundary conditions on the other boundaries. 

6.4 Model implementation 

In this subsection, the potentials cjJ0, (cjJb)K=O,L and cjJtnt 

are computed by solving the four equations (I) and (2). The 

main solution cjJ0 is caIculated on the microscopic domain 

0 1 for the two voltages VO = 20V and 30V, see Figure 

13 for a solution with VO = 20V. The computation of the 

boundary layer corrector cjJb is perforrned on domains start­

ing from xl = 0 and being two cell long only instead of 

infinite domains. It is possible to restrict simulation to one 

or two cells because the boundary layer correctors are ex­

ponentially vanishing and their value in the second cell is 

already negligible, see Figure 14. The same principle holds 

for the computation of the boundary layer corrector cjJtnt at 

the interface which is computed on four cells, see Figure 15. 

The tüll solution is built by superimposing the periodic so­

lution cjJ0 and the three boundary layer correctors, see Figure 

16. 

V 10 
1~ ~==== ~ ====== ~ 1 ~ 0 ~ ==== ~ ~ ==== ~ 00 

o 
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o 
o 

-5 

Fig. 13: Front view of a plot of cjJ0 in the microscopic do­

main. The mirror and the pillars are in red while the bottom 

electrode is in blue. The imposed voltages are 20V and 

-20V. The vector of electric field is materialized by red ar­

rows. The electric field lines are vertical almost everywhere, 

with few tilted arrows visible on the edges; this means that 

the electric field is mainly localized in each cell, reducing 

to a very low value the crosstalk with neighboring cells. 

V 
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-0.2 

-0.4 
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Fig. 14: One of the two boundary layer corrections cjJg sim­

ulated in two cells at one end of the array. 

Conclusion This paper presents advances in the mod­

eling and simulation of the micro-mirror array MIRA. The 

principal contributions are, on the one hand, a model of the 

electrostatic field in one-dimensional arrays and on the other 

hand an analysis of the bounces of the mirror when a volt­

age exceeding the pull-in voItage is applied. We observe 

that the simulation time for a large array is related to the 

number of ditlerent voltages that are applied but not to its 

number of cells. 
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Fig. 15: Boundary layer correction cjJinter! at the interface. 

It is computed in four cells centered to the interface. 

Volts 20 

<pO 
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Fig. 16: Simulation resuIt for a twelve-cell array. The im­

posed voItages are ±20V in the lett part and ±30V in the 

right part. The figure shows the zones of superimposition of 

the solutions cjJ0, cjJb and cjJtnt . 
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