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Abstract

System modeling is a classical approach to ensure their reliability since it is suitable both for a formal
verification and for software testing techniques. In the context of model-based testing an approach combining
random testing and coverage based testing has been recently introduced [9]. However, this approach is not
tractable on quite large models. In this paper we show how to use statistical approximations to make the
approach work on larger models. Experimental results, on models of communicating protocols, are provided;
they are very promising, both for the computation time and for the quality of the generated test suites.

1 Introduction
Many critical tasks are now assigned to automatic systems. In this context, producing trusted software is a
challenging problem and a central issue in software engineering. Recent decades have witnessed the strengthening
of many formal approaches to ensure software reliability, from verification (model-checking, automatic theorem
proving, static analysis) to testing, which remains an inescapable step to ensure software quality. A great effort
has been made by the scientific community in order to upgrade hand-made testing techniques to scalable and
proven framework.

Experience shows that random testing is a very efficient technique for detecting bugs, especially at the first
stages of testing activities. The strength of random testing consists of its independence on tester’s priority and
choices. However, the nature of random testing is to draw randomly a test rather than choosing it, and it is
therefore inefficient to detect behaviour of a program occurring with a very low probability. In [9], a random
testing approach consisting of the exploration of large graph based models has been proposed. In order to tackle
the problem of low probabilistic behaviour, the authors have also suggested to bias the random generation, by
combining it with a coverage criterion, in order to optimize the probability to meet system’ features described
by this criterion. It however requires the computation of large linear systems, which becomes rapidly intractable
in practice for large graphs.

In this paper we propose a sampling-based approach in order to compute approximated values of the system’
solutions, deeply improving the efficiency of the computation. Experimental results on various graphs provided
in the paper show a very significant time computation improvement while keeping similar covering statistical
properties.
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1.1 Related Work
A prevailing methods in model-based testing consists in designing the system under test by a graph-based
formal model [26, 18] on which different algorithms may be used to generate the test suites. This approach
has been used for a large class of applications from security of Android systems [23] to digital ecosystems [19].
A large variety of models can be used for model-based testing such as Petri nets [24], timed automata [27],
pushdown automata [11], process algebra [2], etc. Moreover, a strength of model-based testing is that it can
be combined with several verification approaches, such as model-checking [8] or those using SMT-solvers [1]. A
general taxonomy with many references on model-based testing approach can be found in [25].

Random testing approaches have been introduced in [12] and are widely used in the literature, either for
generating data [13, 16] or for generating test suites [21]. As far as we know, the first work combining random
testing and model-based testing has been proposed in [14] as a combination of model-checking and testing.
In [9] the authors have proposed an improved approach to explore the models at random. This technique has
been extended to pushdown models [15, 11] and to grammar-based systems [10].

1.2 Formal Background
For a general reference on probability theory, see [20].

Finite Automata. Models considered in this article are finite automata, that are labelled graphs. More
precisely, a finite automaton A is a tuple (Q,Σ, E, I, F ), where Q is a finite set of states, Σ is a finite alphabet,
E ⊆ Q× Σ×Q is the set of transitions, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states.
A path σ in a finite automaton is a sequence (p0, a0, p1) . . . (pN−1, aN−1, pN ) of transitions. The integer N is
the length of the path. If p0 ∈ I and pN in F , σ is said successful. The path σ visits a state q if there exists i
such that pi = q. An automaton is trim if every state is visited by at least one successful path. All automata
considered throughout this paper are trim. An example of an automaton is depicted in Fig. 1 : its set of states
is {1, 2, 3, 4}, the alphabet is {a, b, c, d}, its set of transitions is

{(1, a, 3), (3, a, 3), (3, b, 3), (3, c, 4), (4, a, 4), (4, b, 4), (1, b, 2), (2, a, 2), (4, d, 2)},

its set of initial states is reduced to {1} and all its states are final.
Let A = (Q,Σ, E, I, F ) be a n-state automaton and q ∈ Q. We denote by Aq the automaton on the alphabet

Σ whose set of states is (Q× {0, 1} (two copies of Q) and :

• Its set of initial states is I × {0},
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Figure 1: Illustrating example.

2



1, 0

3, 0 4, 0

2, 0

b

a

d

a

a, b

1, 1

3, 1 4, 1

2, 1

a, b

c

b

a

c

d

a

a, b a, b

Figure 2: Illustrating example for constrained paths.

• Its set of final states is F × {1} ∪ (F ∩ {q})× {0},

• Its set of transitions is E′ = {((p, 0), a, (p′, 0)) | (p, a, p′) ∈ E and p 6= q} ∪ {((p, 1), a, (p′, 1)) | (p, a, p′) ∈
E} ∪ {((q, 0), a, (p′, 1)) | (q, a, p′) ∈ E}.

Intuitively, a successful path in Aq starts with an initial state of the form (q0, 0) and remains in a state of the
form (p, 0) until it visits q. Then, if q is final in A it may ends or continue with states of the form (p, 1). One
can easily show that there is a bijection between the set of successful paths of Aq of length N and the set of
successful paths of A of length N visiting q. denoted Let us consider for instance the automaton depicted in
Fig. 1 and state 3. The corresponding automaton is depicted in Fig. 2 (states (4,0), (1,1) and (2,0) have to be
removed to make the resulting automaton trim).

Automata used in many testing applications have a bounded outgoing degree. Throughout this paper, we
consider that |E| = O(|Q|). Note that it is not a theoretical requirement: it is only used for the complexity
issues. Indeed, all proposed algorithms work for any automata. Under this hypothesis, computing Aq can be
done in time O(n2) and the resulting automaton has at most twice the number of states (regarless of the fact
that |E| = O(|Q|)).

Counting Paths. We call NumPaths an algorithm that, given a finite automaton A and a positive integer
N , computes the number of successful paths of length N in A. We call RandomPath an algorithm that,
given a finite automaton A and positive integers N, k, randomly, uniformly and independently generates k
successful paths of length N in A. Several algorithms have been developed for processing NumPaths and
RandomPath [22], whose complexities depend on several parameters. Let us observe, without going into
details, using floating point arithmetics, that NumPaths can be performed in O(nN logN), where n is the
number of states of A. And RandomPath can be performed in time O(knN log2N). Note that the different
approaches may have different meanings of time/space complexities, both for the preprocessing step and the
generation step. The reader can see [22, Table 4] and [4, Table 1] for more details.
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length paths number of paths
1 a, b 2
2 aa, ab, ac, ba 4
3 aaa, aab, aba, abb, aac, abc, aca, acb, acd, baa 10

Table 1: Successful paths of length less than or equal to 3 for Example 1.

Random Biased Exploration of Finite Automata. The objective is here to biased the random generation
of paths (i.e. not use a uniform random generation) in order to improve the state coverage of the automata. It
is necessary to provide a quite detailed description of the algorithms in [22]. The first approach, denoted later
Uniform, consists in uniformly picking up a given number of paths from the set of successful paths of a given
length. The approach can be applied to very large graphs with hundreds of nodes (see [9, Section 6]). However,
rare events can be missed up, and in order to optimize1 the coverage criterion (let us present it here for nodes
coverage2) of the graph, the following approach, denoted later Exact, is proposed to produce k successful paths
of an automaton A whose set of states is {1, . . . , n}:

1. Choose a set S of successful paths (for instance those of length less than or equal to a constant N),

2. For each pair of nodes, compute the probability αi,j that a path of S visiting j also visits i,

3. Solve the linear programming system whose variables are pmin, π1, . . . , πn:

maximize pmin, under the constraints{
for all j, pmin ≤

∑n
i=1 αi,jπi

1 =
∑n

i=1 πi

(1)

Solution is a distribution π = (π1, . . . , πn) of probabilities over the states of the automaton,

4. Repeat k times: pick a node i up at random according to the distribution π. Pick up at random (uniformly)
a path visiting i.

The goal of the linear programming system is to optimize the minimal probability pmin of a state to be
visited by a random path.

Let us illustrate this approach on the example depicted in Fig. 1. Note that if the goal is to cover a given
proportion of the set of states (for instance) Step 4. can be replaced by: generate paths as soon as the wanted
proportion of states are visited by these paths. There are 16 successful paths of strictly positive length less than
or equal to 3 reported in Table 1. Since the automaton is deterministic, one can identify successful paths with
their labels. Let Sexa be this set of paths.

There are 4 out of 16 paths of Sexa visiting state 2. Therefore, the probability of visiting state 2 by
uniformly generated paths of Sexa is 1

4 . In order to generate a path visiting 2, one has to generate averagely 4

1Computing test suites of a reduced size is a major issue in the testing process, since executing test on the system is frequently
a complex issue (not adressed in this paper).

2The approach can easily be adapted for transitions coverage.
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tests. Moreover, for this example αi,j ’s matrix is
1 1 1 1

0.25 1 1
13

1
6

0.825 0.25 1 1
0.375 0.25 6

13 1

 .

For instance, α1,i = 1 for every i since all paths visit 1. Similarly, α3,4 = 1 since all paths visiting 4 also visits
3. There are four paths (b, ba, baa and acd) of needed length visiting 2 and, among these paths, only acd visits
4. Therefore α4,2 = 1

4 . The resolution
3 of linear programming systems (1) provides in this context the solution:

π1 = 0, π2 = 0.526315, π3 = 0, and π4 = 0.473685. In this context, the biased approach covers all states
averagely with less than 3 generated paths.

The bottleneck of this approach is Step 2. since computing the αi,js requires many manipulations on the
graphs (it requires to compute the (Ai)j): for each i 6= j, Algorithm NumPaths has to be applied to graphs
4 times larger than the initial ones. The complexity is in O(n3N logN) with quite large involved constants,
making the approach intractable for big n’s.

1.3 Contributions
In this paper we propose to not exactly compute the αi,js but instead to approximate them by using statistical
sampling, as described in Section 2. Experimental results on several examples of communication protocols
models are provided in Section 3. The paper reports on very promising experimental results: the computation
time is significantly better for a similar quality of the large graphs coverage.

2 Approximating the Linear Programming Systems
In this section, we propose to approximate the coefficients αi,j by α

approx
i,j by using classical sampling techniques.

Using m times Algorithm RandomPath, one can count as mi the number of paths visiting i, and mi,j the number
of paths visiting both i and j. If mi 6= 0 then αapprox

i,j =
mi,j

mj
.

2.1 Approximation Algorithm
More precisely, let there be a trim finite automaton A = (Q,A,E, I, F ), a strictly positive integer m, a strictly
positive integer N and a strictly positive integer r (the parameter r is used to provide some bounds on the
precision of the approximation: each evaluation of a parameter is estimated using a sample of size at least r).

(Step 1): Generate m successful paths in A of length less than or equal to N uniformly. For each i ∈ Q,
let mapprox

i be the number of these paths visiting i, and mapprox
i,j be the number of these paths visiting

both i and j.

(Step 2): For each i, j ∈ Q, i 6= j

(a) If r = 0 and mapprox
j = 0, then let αapprox

i,j = 0,

(b) If mapprox
j > r, let αapprox

i,j = mapprox
i,j /mapprox

j ,

(c) If mapprox
j ≤ r, generate r paths visiting i and set αapprox

i,j as the proportion of these paths visiting j.
3Resolutions have been performed using the lp_solve solver.
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(Step 2): For each i ∈ Q, αapprox
i,i = 1.

Let us illustrate the approach on the example depicted in Fig. 1, with N = 4 and r = 0. Rather than
compute exactly the αi,j ’s, we randomly and uniformly generate 1000 paths of length less than or equal to 3.
We obtain the following matrix for the αapprox

i,j :
1 1 1 1

0.243 1 0.0835 0.1778
0.826 0.284 1 1
0.288 0.284 0.4697 1

 .

The resolution of systems provides the solution π1 = 0, π2 = 0.538019, π3 = 0 and π4 = 0.461981.
In this example, there are 243 paths visiting 2, 826 paths visiting 3 and 288 paths visiting 4. Therefore,

running the algorithm with r = 250 will change the second column of the matrix since mapprox
2 < 250. In this

case, the automaton for the paths visiting 2 is computed. Generating 250 paths visiting state 2 provides the
following matrix: 

1 1 1 1
0.243 1 0.0835 0.1778
0.826 0.256 1 1
0.288 0.256 0.4697 1

 .

The resolution of systems provides the solution π1 = 0, π2 = 0.524965, π3 = 0 and π4 = 0.475035.
Section 3 describes more experiments and provides details, both on the quality of the results and on the

time to compute the αi,j ’s.
Notice too that, as mentioned in [9], the optimal solution leads to a loss of randomness: many πi’s a null. It

is proposed in [9] to fix minimal probability to the πi’s. It can be directly adapted in our approach by adding,
in the programming linear system, some inequations of the form πi ≥ ε. This situation would not be considered
in the experiments developed in this paper.

2.2 Complexity
We investigate in this section the worst case complexity of the proposed algorithm. Step (1) can be performed
in time O(mnN log2N + mn2): first the m paths are generated in time O(mnN log2N). These paths are not
stored but a table t of size m × n is filled in the following way: t[i][j] = 1 if the i-th path visits state j, and
t[i][j] = 0 otherwise. It is done on the fly and in time O(nm). The mapprox

i are calculated by computing columns
sums in time O(nm) too. Similarly, each mapprox

i,j can be computed in time O(m). Therefore, computing all of
them is performed in time O(mn2).

Step 2-(a) is performed in time O(1) as well as Step 2-(b). Step 2-(c) is performed in time O(rnN log2N):
computing the specific automaton is done in time O(n) (under the hypothesis that the number of transitions is
in O(n)).

Step 3 is performed in time O(n).
In conclusion, if we denote by s the number of calls to Step 2-(c), the complexity is: O(((sr+m)nN log2N+

mn2).
A small r (for instance r = 0) will provide a small s (s = 0), but a coarser approximation, as exposed in the

next section.
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2.3 Precision of the αapprox
i,j ’s

Each αi,j is the parameter of Bernoulli’s Law (see [20, Section 2.2]). The precision of the estimation can
classically be obtained using either Bienaymé-Chebyshev’s Inequality [5, 7] or Hoeffding’s Inequality [17].

First, assuming that mapprox
j > r, then Bienaymé-Chebyshev’s Inequality provides for any ε > 0:

P(|αapprox
i,j − αi,j | ≥ ε) ≤

αi,j(1− αi,j)

ε2mapprox
j

≤ 1

4ε2r
,

and if mapprox
j ≤ r, it provides:

P(|αapprox
i,j − αi,j | ≥ ε) ≤

αi,j(1− αi,j)

ε2r2
≤ 1

4ε2r
.

In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to be fixed to 500 (this is an upper
bound).

Secondly, one can have another evaluation using Hoeffding’s Inequality (better in most of cases): for any
0 < ρ < 1,

P
(
|αapprox

p,q − αp,q| ≥ ε
)
≤ 2e−2rε

2

.

In order to have an ε = 0.1 precision with a 0.95 confidence level, r has to be fixed to 185 (this is also an
upper bound).

Let us note that the two above inequalities provide upper bounds that are not very tight: for states j
frequently visited by random paths, mj will be significantly greater than r, and the estimation of the algorithm
will be very precise. As it is shown in the next section, running the algorithm with r = 0 frequently provides
very acceptable solutions and very good solutions with r = 10. For r = 10 the two bounds above do not ensure
precise estimations: Hoeffding’s Inequality states that with a 0.8 confidence level we have an estimation of αi,j

with ε = 0.34. An hypothesis explaining why r = 10 works is that it is important to detect whether while
visiting j the probability to also visit i is significant. But it’s not critical to know how significtant it is, for
instance if αi,j = 0.1 or 0.4; it is important to know that generating a path visiting j will quite frequently
provide a path visiting i.

Finally, other statistical tools can be used to obtain bounds on r, for instance the well-known central limit
theorem.

3 Experiments
This section is dedicated to an experimental evaluation of the proposed approximation-based approach. In
Section 3.1 the set of used automata is described. Section 3.2 explains the experimental protocol. Finally,
the obtained experimental results are provided in Section 3.3, both for the quality of the approach and for
computation time.

3.1 Benchmark
Experiments have been done on several automata modeling communication protocols designed for the FAST
tool [3] available4 online as a library of parametric counter automata (the parameter can be, for instance, the

4http://www.lsv.fr/Software/fast/examples/examples.tgz
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r=0 90% 95% 99% 100%

RW 4.38 2–10 4.38 2–10 4.38 2–10 4.38 2–10
Uniform 4.22 2–11 4.22 2–11 4.22 2–11 4.22 2–11
Approx 10 4.65 2–13 4.65 2–13 4.65 2–13 4.65 2–13
Approx 1000 4.18 2–12 4.18 2–12 4.18 2–12 4.18 2–12
Exact 4.42 2–12 4.42 2–12 4.42 2–12 4.42 2–12

Barber1
15 states
18 transitions

r=0 90% 95% 99% 100%

RW 428 18–1724 790 159 – 2062 2451.4 599–7727 2451.4 599–727
Uniform 22.58 9–45 35.45 14–79 92.36 32–216 92.36 32–216
Approx 10 11.7 7–21 17.2 10–52 39.3 16-181 39.35 16 – 181
Approx 1000 10.46 7–20 14.9 8.31 30.9 11–73 30.9 11–73
Exact 11.23 7–24 15.5 8–30 29.8 13–71 29.8 13–71

Dekker1, 86 states, 178 transitions

r=0 90% 95% 99% 100%

RW 15 9-27 21.5 13–37 37.8 18–70 50.5 19–130
Uniform 31.2 16–51 47.7 22–88 87.6 40–166 115.5 45–278
Approx 10 19.5 13–34 28.1 17-51 48.6 27–146 67.9 30–146
Approx 1000 18 10–29 24.5 13-38 40.3 20–74 50.0 26-86
Exact 18.4 12–30 24.8 18–38 39.5 23–63 49.6 26–102

Fsm1, 120 states, 582 transitions

r=0 90% 95% 99% 100%

RW 102.1 8-430 178.3 16–735 330.6 16–1125 330.6 16–1125
Uniform 9.7 2–35 13.1 2–39 21.9 2–90 21.9 2–90
Approx 10 2.9 2–11 3.5 2–11 5.1 2–23 5.1 2–23
Approx 1000 3.0 2–8 3.0 2–8 3.5 2–8 3.5 2–8
Exact 3.3 2–9 3.3 2–9 3.7 2–9 3.7 2–9

Moesi2, 22 states, 43 transitions

r=0 50% 90% 95% 99% 100%

RW 11.5 6–18 80.6 45–153 122.8 73–247 260.8 120–514 342.4 156–649
Uniform 8.78 7–13 54.4 36–82 80.9 51–12 180.972–333 277.3 105–776
Approx 10 7.49 5–10 37.6 27–56 53.3 38-91 102.6 56–205 140.6 59–347
Approx 1000 7.6 6 – 11 35.8 24–51 50.9 32–80 88.11 58-147 106.8 62–179
Exact 7.6 5–10 34.9 24–46 47.6 33–63 82.3 55–121 101.5 56–165

Kanban1, 160 states, 1151

transitions

Figure 3: Comparative results (1) for number of generated tests
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r=0 90% 95%

RW 54991.6 39414–69917 155803 117044-214680
Uniform 937.1 827–1044 1493 1240–176
Approx 10 789..9 718–884 1129.7 980–1292
Approx 1000 704.7 651–759 974.1 892–1066
Exact 708 655–769 698.8 867–1101

99% 100%

RW 106 105 −−107 107 106 −−107

Uniform 3405.7 2760–4186 11049 6563–22480
Approx 10 1998.8 1707–2282 11962 3336–62763
Approx 1000 1625.3 1441–1841 3410.8 2265–7144
Exact 1610.5 1402–1843 3268.8 2369–4738

Ttp8, 3201 states,
6765 transitions

r=0 90% 95% 99%

RW 505 248–850 1073 460 – 1777 5702.6 1395–16035
Uniform 67.6 47–92 106.6 73–160 226.6 115-471
Approx 10 53.05 40–73 73.3 55–106 134.1 90–226
Approx 1000 49.1 39–64 67.6 51.95 115.1 79–199
Exact 49.7 39–72 66.8 51–95 114.4 76–168

100%

RW 21750 2579 – 119811
Uniform 372.3 165–809
Approx 10 193.3 97–439
Approx 1000 158.1 85–300
Exact 157.4 91–270

Prod-

cons10, 286 states, 600 transitions

Figure 4: Comparative results (2) for number of generated tests

number of communicating processes). For several examples and parameters, the counter automaton has been
faltered into a classical finite automaton. The list is given in Table 2: first column contains the name of the
protocol with the value of the parameter. The second and the third columns respectively report on the number

Name States Transitions Eccentricity Nb. of paths
Barber1 15 18 5 74
Berkeley3 1376 3974 51 1, 33 1039

Consistency3 806 1206 600 5, 63 10153

Csm1 24 57 8 934000
Dekker1 86 178 17 8, 80 1011

Dragon3 103 696 50 2, 34 1093

Fms1 120 582 14 1, 41 1020

Illinois3 103 307 100 2, 23 1090

Kanban1 160 1151 14 3, 31 1020

Lift3 499 587 302 7, 24 1059

Moesi2 22 43 11 3, 84 108

Prodcons10 286 660 20 3, 51 107

Ttp8 3201 6765 32 4, 30 107

Table 2: Graphs used for benchmarking.
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Figure 5: Illustrating example with different optimal solutions.

of states of the automaton and the number of transitions. The fourth column provides the eccentricity5 of the
automaton, that is the maximal distance of an edge to the initial states. Finally, the last column gives the
approximate number of successful paths in the automaton of length less than or equal to twice the eccentricity.
Note that in these graphs all states are final.

3.2 Experimental Protocol
For each protocol, we have measured the number of tests/generated paths required to cover either 50%, or
90%, or 95%, or 99%, or 100% of the states. Several values close to 100% have been chosen since many biased
approaches have been introduced to handle rare events, and many methods will efficiently cover 50% or 70%
of the graph. It is harder to cover the remaining last states. We have compared 5 different approaches. First,
the RW Approach consists in performing isotropic random walks in the automaton: once in a state, the next
one is picked up uniformly among its neighbours. The path ends either when it reaches a dead-end state, or
when its length is twice the eccentricity. The second approach, denoted Uniform, is the one introduced in [9]:
paths of length bounded by twice the eccentricity are uniformly generated. The approach denoted Exact is the
biased approach proposed in [9], where the linear system is exactly computed. The Approx 10 and Approx 1000
approaches are the ones proposed in this article: for 10 [resp. 1000] the αi,j ’s are approximated using 10n [res.
1000n] randomly generated paths, where n is the number of states.

Note that comparing the distribution π given by the exact approach and the approximation-based approaches
is not easy. Indeed, a linear programming system may have different optimal solutions. Let us consider for
instance the example depicted in Fig. 5. The set of successful paths visiting 3 is the same as the set of successfully
paths visiting 4. Therefore, in any optimal solutions of the linear programming system given π3 = x and π4 = y,
one can do the following changes: π3 = z and π4 = t with z+ t = x+ y, and we also obtain an optimal solution.

3.3 Qualitative Experimental Results
Since the test generation procedures are randomized, performance is stochastic. For each example and each
coverage proportion, each approach has been experimented 100 times. For each case, we report on the average
number of tests obtained in order to cover the wanted proportion, but also the minimum number of tests (the
best case), and the maximum number of tests (the worst case).

Results presented in Figs. 3 and 4 are obtained with r = 0 : there is no a priori guarantee on the precision
of the approximations. Results presented in Fig. 6 are obtained with r = 0 and with r = 10 (and in one case
with r = 50). For instance, the second table in Fig. 3 reports on the result for Dekker1: in order to cover 95%

5Eccentricity is an important parameter since it is the minimal length required for paths to have a chance to visit each state.
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(seconds) Berkeley3 Consistency3 Dragon3 Lift3 Illinois3
Exact 26401 40964 29 4337 18

Approx 10 (r = 0) 1 58 1 8 0.4
Approx 1000 (r = 0) 186 5794 21 813 39
Approx 10 (r = 10) 16 110 1 12 1

Approx 1000 (r = 10) 208 5890 25 862 41
Approx 10 (r = 50) – 124 – – -

Table 3: Time to compute the linear programming system.

of the set of the states, the RW approach requires on average 790 paths. In the best case (of the experiments),
it only requires 159 paths, and in the worst case 2062 paths have been generated. For the same coverage, the
Uniform approach requires 35.45 paths in average. The Exact approach only requires 15.5 paths in average.

Relatively to the other approaches, the performance of RW deeply depends on the topology of the automaton.
For instance, for Prodcons10 or Ttp8 or Moesi2, RW is ugly, and requires much more tests to (partially) cover
the set of states. For Fms1, RW is as efficient as Exact. For some automata, there is no result for RW: after hours
of computation, the approach was not able to cover 90% of the set of states. In these cases, some states occur
with a so low probability on random walks, that in practice it is not possible to generate a path visiting them.

One can see that for Barber1, Dekker1, Fms1, Moesi2, Kanban1, Ttp8 and Prodcons10, all biased approaches
are better (cover the set of states with less paths) than the uniform one. Moreover, the Exact approach is
better than the approximate ones, but not significantly with the Approx 1000. Consider for instance Fms1: the
Uniform approach requires on average 87.6 paths to cover 99% of the states. With Approx 10 this number falls
to 48.1, and it falls to 40.3 with Approx 1000. The Exact approach requires 29.8 paths on average.

The results for Lift3 are similar but the Approx 1000 is not so close to the Exact approach. For Berkeley3,
Illinois3 and Dragon3, the Exact approach is clearly more efficient to cover the set of states. It is similar for
Consistency3, but only for the 100% coverage criterion. A significant case is Illinois3: the Exact approach requires
on average a unique path to cover all states, while the Approx 1000 approach requires 47 paths. For all these
examples there is a huge number of paths, and many states j are visited with a very low probability by a path:
the corresponding αi,j ’s are set to zero since r = 0, thus providing a very bad approximation. For instance, for
Illinois3, 84 states over the 103 states are not visited by any random paths. We run the experiment with Approx
1000 and r = 10. The obtained results are presented in Fig. 6: these results are much better and close to the
ones of the Exact approach.

In conclusion, for the quality of the coverage, running Approx 10 with r = 10 seems to be an efficient
solution.

3.4 Computation Time
Let us note first that for all approaches, generating paths is done practically in a very efficient way. As mentioned
before, the bottleneck step is the computation of the linear programming system. In Table 3, the time (in
seconds) used to compute the linear programming system is given for the protocols Berkeley3, Consistency3,
Dragon3, Lift3 and Illinois3. The results are similar for the other protocols. For Illinois3, using Approx 1000 is
less efficient than using the Exact approach. The reason is that the automaton is quite small. However, for other
cases, using the approximation-based approaches is faster. And it is significantly faster for large automata. For
instance, for Consistency3, while the Exact approach requires more than 11 hours, and only about 90 minutes
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r=0 90% 95% 99% 100%

Uniform 176 153–240 315 258–375 630 486–834 1203 837–2376
Approx 10 166 142–212 301 253–377 648 431–884 2127 797–5611
Approx 1000 171 259–381 307 259–381 673 485–1070 1973 807 – 4485
Exact 166 143 – 203 294 256–346 589 440–816 1084 689–1783
Approx 10 (r = 10) 168 140–231 297 256–376 626 479–780 1474.9 730 – 4749
Approx 1000 (r = 10) 168 133–211 300 258–359 624 489–828 1390 765 – 4042
Approx 10 (r = 50) 168 141–208 300 250–373 610 480–848 1292 710 – 2715

Consistency3, 806 states,

1206 transitions

r=0 90% 95% 99% 100%

Uniform 10.56 4–30 23 6–100 64.7 10–400 85.3 10–400
Approx 10 5.4 3–14 9 4–46 24.7 8–107 34.9 9–137
Approx 1000 4.4 3–7 6.6 4–23 13.9 6-37 18.9 7-51
Exact 3.9 3–6 5.5 4-9 9.5 6–20 13.1 6-24
Approx 10 (r = 10) 3.8 3–4 5.4 4–7 8.9 6–15 12.9 8–23
Approx 1000 (r = 10) 3.7 3–5 5.3 4–7 9.0 7–14 12.4 7-20

Lift3, 499 states, 587 transitions

r=0 90% 95% 99% 100%

Uniform 22.5 7–101 35.8 12–135 69.6 24–267 112.1 34–317
Approx 10 18.3 9–47 29.1 12–76 63.2 15–231 98.5 34–267
Approx 1000 14.7 6–29 25.2 11–55 56.7 13–184 87.2 13–319
Exact 10.8 6–17 15 7–25 22.8 10–41 29.9 10–57
Approx 10 (r = 10) 10.6 5–17 14.6 6–29 23.5 12–47 30.7 16–79
Approx 1000 (r = 10) 10.1 6–18 14.3 8–26 22.6 14–42 29.5 14–79

Dragon3, 103 states, 696 transitions

r=0 90% 95% 99% 100%

Uniform 337 235–448 594 400-863 1551 993–2262 4470 2316–9974
Approx 10 222 167–286 384.8 258-536 1014.6 655-1382 2886.6 1504–5251
Approx 1000 189 134–247 323 232–498 854 467–1302 2116 1108–2886
Exact 103 60–185 137.0 84–210 199.6 109–364 224.1 128–510
Approx 10 (r=10) 102 66-149 138 80-280 207.0 107–399 233.6 140–412
Approx 1000 (r=10) 102 67–202 137 86-256 206 112–423 231 122–508

Berkley3, 1376 states, 3974 transitions

r=0 90% 95% 99% 100%

Uniform 8.8 1–46 16 1-73 40.1 1–209 68.43 1–338
Approx 10 7.5 1-27 12.1 1–46 30.1 1–150 56.9 1–314
Approx 1000 6.2 1–38 11.25 1-61 29.1 1-210 48.3 1–234
Exact 1.0 1-2 1.0 1-2 1.0 1-2 1.1 1-2
Approx 10 (r = 10) 1.0 1–2 1.0 1–2 1.1 1–2 1.2 1–3
Approx 1000 (r = 10) 1.0 1–2 1.0 1–2 1.1 1–2 1.2 1–2

Illinois3, 1524 states, 307 transitions

Figure 6: Comparative results (3)
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90% 95% 99% 100%

Uniform 680 573–786 1198 947–1492 2942 2358–3612 9413 5487–19533
Approx 10 (r = 10) 316 287–349 476 437–529 878 775–1037 2065 1223–4337
Approx 1000 (r = 10) 313 281–345 467 415–515 864 729–1037 1926 1252–3514

Table 4: Results for Centralserver2.

are needed for Approx 1000 (with r = 0).
In all cases, the best compromise seems to use Approx 10 with r = 10: the computation time is strongly

better, and the quality of the biased approach is similar to the Exact approach, except for Consistency. For this
protocol, we run the Approx 10 with r = 50 and we obtain better results, closer to the Exact approach, with
a very short computation time (about 2 minutes, in comparison to 11 hours for the Exact approach).

3.5 Experiments on Large Graphs
We have experimented the approaches on a model of the Centralserver2 protocol, which has 2523 states and
18350 transitions, an eccentricity of 63, and about 8, 04 10113 successful paths of length less or equal to 126.
By computing the first αi,j ’s, we estimate that the computation time of the linear programming system with
Exact will require about 200 days. The linear programming system with Approx 10 and Approx 1000 (r = 10)
has been computed respectively in 81 seconds and in 24 minutes. The obtained qualitative results compared to
Uniform are given in Table 4.

We also used the algorithm proposed in [6] to randomly generate two trim automata with respectively
5659 states (with 17007 transitions) and 11251 states (with 33753 transitions). The approximated linear pro-
gramming system obtained by the �Approx 10 and Approx 1000 approaches (with r = 10) has been computed
in respectively 5.5s and 613s for the first graph, and in respectively 26.3s and 1162s for the second graph.

4 Conclusion
In this paper we proposed an approximation-based approach for the random biased exploration of large models.
It has been experimented on several examples: in practice the approximation is not too coarse, and the quality
of the generated test suites to cover the states of the model is excellent compared to the exact approach and
to the other random approaches. For computation time, using approximation is significantly better since the
approach can be used on graphs with more than 10000 states. In the future we plan to investigate recent
advances in optimization in order to improve the computation time.

References
[1] Bernhard K. Aichernig, Elisabeth Jöbstl, and Matthias Kegele. Incremental refinement checking for test

case generation. In Tests and Proofs - 7th International Conference, TAP 2013, Budapest, Hungary, June
16-20, 2013. Proceedings, Lecture Notes in Computer Science, pages 1–19. Springer, 2013.

[2] Alex D. B. Alberto, Ana Cavalcanti, Marie-Claude Gaudel, and Adenilso Simão. Formal mutation testing
for circus. Information & Software Technology, 81:131–153, 2017.

13



[3] Sébastien Bardin, Jérôme Leroux, and Gérald Point. FAST extended release. In Computer Aided Veri-
fication, 18th International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings,
Lecture Notes in Computer Science, pages 63–66, 2006.

[4] Olivier Bernardi and Omer Giménez. A linear algorithm for the random sampling from regular languages.
Algorithmica, 62(1-2):130–145, 2012.

[5] I.-J. Bienaymé. Considérations à l’appui de la découverte de Laplace. Comptes Rendus de l’Académie des
Sciences, 37:309–324, 1853.

[6] Arnaud Carayol and Cyril Nicaud. Distribution of the number of accessible states in a random deterministic
automaton. In 29th International Symposium on Theoretical Aspects of Computer Science, STACS 2012,
February 29th - March 3rd, 2012, Paris, France, LIPIcs, pages 194–205, 2012.

[7] P. Chebishev. Des valeurs moyennes. Journal de mathématiques pures et appliquées, 12:177–184, 1867.

[8] Frédéric Dadeau, Pierre-Cyrille Héam, Rafik Kheddam, Ghazi Maatoug, and Michaël Rusinowitch. Model-
based mutation testing from security protocols in HLPSL. Softw. Test., Verif. Reliab., 25(5-7):684–711,
2015.

[9] Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Lassaigne, Johan Oudinet,
and Sylvain Peyronnet. Coverage-biased random exploration of large models and application to testing.
STTT, 14(1):73–93, 2012.

[10] Aloïs Dreyfus, Pierre-Cyrille Héam, and Olga Kouchnarenko. Random grammar-based testing for covering
all non-terminals. In Sixth IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March 18-22, 2013, pages 210–215. IEEE
Computer Society, 2013.

[11] Aloïs Dreyfus, Pierre-Cyrille Héam, Olga Kouchnarenko, and Catherine Masson. A random testing ap-
proach using pushdown automata. Softw. Test., Verif. Reliab., 24(8):656–683, 2014.

[12] Joe W. Duran and Simeon C. Ntafos. A report on random testing. In Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA, March 9-12, 1981., pages 179–183. IEEE
Computer Society, 1981.

[13] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In Pro-
ceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 213–223. ACM, 2005.

[14] Alex Groce and Rajeev Joshi. Random testing and model checking: building a common framework for
nondeterministic exploration. In Proceedings of the 2008 International Workshop on Dynamic Analysis:
held in conjunction with the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2008), WODA 2008, Seattle, Washington, USA, July 21, 2008, pages 22–28. ACM, 2008.

[15] Pierre-Cyrille Héam and Catherine Masson. A random testing approach using pushdown automata. In
Tests and Proofs - 5th International Conference, TAP 2011, Zurich, Switzerland, June 30 - July 1, 2011.
Proceedings, Lecture Notes in Computer Science, pages 119–133. Springer, 2011.

14



[16] Pierre-Cyrille Héam and Cyril Nicaud. Seed: An easy-to-use random generator of recursive data structures
for testing. In Fourth IEEE International Conference on Software Testing, Verification and Validation,
ICST 2011, Berlin, Germany, March 21-25, 2011, pages 60–69. IEEE Computer Society, 2011.

[17] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963.

[18] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-A survey. Proceedings
of the IEEE, 1996.

[19] Bruno Lima and João Pascoal Faria. A model-based approach for product testing and certification in digital
ecosystems. In Ninth IEEE International Conference on Software Testing, Verification and Validation
Workshops, ICST Workshops 2016, Chicago, IL, USA, April 11-15, 2016, pages 199–208. IEEE Computer
Society, 2016.

[20] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[21] Catherine Oriat. Jartege: A tool for random generation of unit tests for java classes. In Quality of
Software Architectures and Software Quality, First International Conference on the Quality of Software
Architectures, QoSA 2005 and Second International Workshop on Software Quality, SOQUA 2005, Erfurt,
Germany, September 20-22, 2005, Proceedings, volume 3712 of Lecture Notes in Computer Science, pages
242–256, 2005.

[22] Johan Oudinet, Alain Denise, and Marie-Claude Gaudel. A new dichotomic algorithm for the uniform
random generation of words in regular languages. Theor. Comput. Sci., 502:165–176, 2013.

[23] Junjie Tang, Xingmin Cui, Ziming Zhao, Shanqing Guo, Xin-Shun Xu, Chengyu Hu, Tao Ban, and Bing
Mao. Nivanalyzer: A tool for automatically detecting and verifying next-intent vulnerabilities in android
apps. In 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017,
Tokyo, Japan, March 13-17, 2017, pages 492–499. IEEE Computer Society, 2017.

[24] Sunitha Thummala and Jeff Offutt. Using petri nets to test concurrent behavior of web applications. In
Ninth IEEE International Conference on Software Testing, Verification and Validation Workshops, ICST
Workshops 2016, Chicago, IL, USA, April 11-15, 2016, pages 189–198. IEEE Computer Society, 2016.

[25] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing approaches.
Softw. Test., Verif. Reliab., 22(5):297–312, 2012.

[26] K. S. How Tai Wah. Black-box testing: Techniques for functional testing of software and systems, by boris
beizer, wiley, 1995 (book review). Softw. Test., Verif. Reliab., 6(1):49–50, 1996.

[27] Chunhui Wang, Fabrizio Pastore, and Lionel C. Briand. System testing of timing requirements based on
use cases and timed automata. In 2017 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 299–309. IEEE Computer Society,
2017.

15


