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Interval Modeling and Robust Control of
Piezoelectric Microactuators

Sofiane Khadraoui, Micky Rakotondrabe, Member, IEEE and Philippe Lutz, Member, IEEE

Abstract—Microsystems are very sensitive to environmental
disturbances (thermal variation, surrounding vibration, micro-
objects in contact with them, etc.) and they are often subjected to
small degradation or their behaviors are often affected during the
functioning. As a result, their parameters often change during the
micromanipulation, microassembly or measurement tasks and
the accuracy or even the stability may be lost. For that, robust
control laws should be introduced to control them and to ensure
the performance.
H∞ and µ-synthesis approaches were the classical robust

techniques used to control microsystems. They are undeniably ef-
ficient but they lead to high-order controllers that are sometimes
inconvenient for real-time embedded systems. In this paper, by
the means of interval numbers that are used to characterize the
uncertain parameters, we propose a method to synthesize simple
controllers ensuring robust performance for microsystems. The
controller synthesis is formulated as a set-inclusion problem. The
main advantages of the proposed method are the ease of modeling
the uncertain parameters thanks to intervals and the simplicity
and low-order of the derived controllers. The method is after-
wards applied to model and control piezoelectric microactuators
and the experimental results show its efficiency. Finally, using the
H∞ technique, we also demonstrate numerically the performance
robustness of the closed-loop with the designed controller.

Index Terms—Piezoelectric microactuators, Controller design,
Robust performance, Parametric uncertainty, Interval systems.

I. INTRODUCTION

Due to their small sizes, microsystems are very sensi-
tive to environmental disturbances (temperature, vibrations,
etc.) and to the interaction and contact with surrounding
systems (manipulated objects, other microsystems). Micro-
grippers - usually employed for micro/nanopositioning, mi-
cro/nanomanipulation and microassembly - are not exempt
to such characteristics. During the manipulation of a micro-
object for instance, the actuators behaviors are affected and
the parameters of their models are modified. It is therefore
necessary to use robust controllers to ensure their performance
during this functioning.

A microgripper is based on two cantilevers, called mi-
croactuators, taht are made of smart materials [1] [2].
Piezoelectric materials are the most used because of the high
resolution, high bandwidth and high force density that they
can offer [3]. While one of the two piezoelectric cantilevers
(piezocantilevers) is controlled on position, the second one
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is controlled on manipulation force. To reach the required
performance, the design of control laws for both actuators
needs adapted models. In order to have simpler models but
which account the characteristics of the piezocantilevers, linear
models with uncertainties were used. Classical robust control
laws such as H2, H∞ and µ-synthesis have been therefore
applied to control each microactuator [4] [5]. The efficiency
of these control methods is proved in several applications
(SISO and MIMO systems) while its major disadvantage is the
derivation of high-order controllers which are time consuming
and which limit their embedding possibilities, particularly for
embedded microsystems. A possible alternative to classical
robust control laws is the use of interval analysis where
the uncertain parameters of the transfer function or of the
state-space models to be controlled are bounded by intervals.
The principle is therefore based on the combination of the
interval arithmetic and a linear control theory. In addition to
its principle simplicity to model the uncertain parameters, the
main advantage is the derivation of low order controllers.

The first idea on interval arithmetic has been proposed in
1924 by Burkill and in 1931 by Young, then later in 1966
with R.E. Moore’s works [6]. Since, several applications on
interval analysis have been raising. In [7] [8], the authors
have proposed guaranteed parameters estimation based on the
SIVIA algorithm (Set Inversion Via Interval Analysis). In
[9] [10] [11], the stability analysis of a closed-loop scheme
with a given controller was proposed using the Routh’s criteria
and/or the Kharitonov’s theorem. Concerning the design of
controller, [12] proposed an approach of state feedback
control combined with intervals for the model parameters to
synthesize a controller that ensures the stability. In [13], a
PID controller that ensures robust performance was proposed
by using a set-inclusion problem. The method was limited
to interval second order system. Chen and Wang [14] also
proposed a robust method to control interval systems. In
their work, two controllers were necessary: a robust controller
stabilizing the feedback first, and then a pre-filter to ensure
the wanted performance. Li et al. [15] proposed a control
algorithm prediction-based interval model that was efficiently
applied to a welding process. In our previous work [17], a
robust controller for interval systems with zero-order numer-
ator was proposed. Its main advantage relative to the other
existing works is that the order of the system’s denominator
is not limited and the derived controller has a low-order. This
previous work also proved that interval analysis and related
controller design can be very promising for modeling and
control microsystems where the models parameters are subject
to change during functioning.
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In this paper, we propose to design robust control law for
piezoelectric microactuators modeled by parametric uncertain
systems, where interval modeling [16] is introduced to charac-
terize the uncertain parameters. Contrary to the previous work
[17], the approach in this paper is extended to general transfer
function, i.e. no limitation on the orders of both numerator
and denominator. Despite its limitation to SISO parametric
uncertain systems, the proposed approach derives a low order
controller that is necessary for real-time embedded systems. In
addition to the experimental results which prove the efficiency
of the designed controller, a performance analysis is also
performed using the classical H∞ tool.

The paper is organized as follows. In section-II, we present
the preliminaries related to interval analysis and systems.
Section-III is dedicated to the controller design. The exper-
imental results on piezoelectric microactuators are detailed in
section-IV. Finally, in section-V we present the performance
analysis based on the H∞ approach.

II. MATHEMATICAL PRELIMINARIES

A. Basic Terms and Concepts on intervals

More details on the preliminaries given here can be found in
[6] or [9]. A closed interval [x] is such that [x] = [x−, x+] =
{x ∈ R/x− ≤ x ≤ x+}, where x− and x+ are the endpoints.
We say that [x] is degenerate if x− = x+. By convention, a
degenerate interval [a, a] can be denoted by a. The width of an
interval [x] is w([x]) = x+ − x−, the midpoint is mid([x]) =
x++x−

2 and the radius is rad([x]) = x+−x−
2 .

The operation between two intervals gives an interval con-
taining all the operation results between all pairs of numbers
in the two intervals. If we have two intervals [x] = [x−, x+]
and [y] = [y−, y+] and a law ◦ ∈ {+,−, ., /} , we can write
[x]◦[y] = {x ◦ y |x ∈ [x], y ∈ [y]}. The quotient is particularly
defined by [x]/[y] = [x].[1/y+, 1/y−], 0 /∈ [y].

The intersection of two intervals [x] ∩ [y] is the interval
defined by [x]∩[y] = ∅ if y+ < x− or x+ < y− . Otherwise,
the result is [x]∩ [y] = [max {x−, y−} ,min {x+, y+}]. In the
latter case, the union of [x] and [y] is also an interval
[x] ∪ [y] = [min {x−, y−} ,max {x+, y+}].

When [x] ∩ [y] = ∅, the union of the two intervals is not
an interval. For that, the interval hull is defined: [x]∪[y] =
[min {x−, y−} ,max {x+, y+}].

It is verified that: [x]∪ [y] ⊆ [x]∪[y] for any two intervals
[x] and [y] .

B. Interval system

Definition 1: Parametric uncertain systems can be modeled
by interval systems. An interval system denoted [G](s, [a], [b])
is a family of systems:

[G] (s) =

m∑
j=0

[bj ]s
j

n∑
i=0

[ai]si
=



m∑
j=0

bjs
j

n∑
i=0

aisi
|bj ∈ [b−j , b

+
j ]

aj ∈ [a−j , a
+
j ]


(1)

such as: [b] = [[b0], ..., [bm]] and [a] = [[a0], ..., [an]] are
two boxes of interval parameters and s the Laplace variable.

The following lemma which is a result for interval functions
inclusion is due to [6].

Lemma 1: (Containment Theorem) Given [F ]([x]) a ra-
tional expression in the interval variables [x] = [[x1], ..., [xn]].
Let [y] = [[y1], ..., [yn]] be a box of interval variables. If [y] ⊆
[x], i.e. [y1] ⊆ [x1], ..., [yn] ⊆ [xn], then [F ]([y]) ⊆ [F ]([x]).

Proof: see [6]
The following theorem is a straightforward consequence of

Lemma 1.
Theorem 1: Given two stable interval transfers

[G1](s, [α], [β]) and [G2](s, [γ], [λ]) defined as in Definition 1
and having the same structure (same degree for their
numerators, idem for their denominators). If [α] ⊆ [γ] and
[β] ⊆ [λ], then [G1](s, [α], [β]) ⊆ [G2](s, [γ], [λ]).

Proof: Noting that s = [s, s] = [s] and [s] ⊆ [s],
and applying Lemma 1 with [F ]([x]) = [G2](s, [γ], [λ]) and
[F ]([y]) = [G1](s, [α], [β]), where [x] = [[s], [γ], [λ]] and
[y] = [[s], [α], [β]], we have:

[y] ⊆ [x]⇒ [F ]([y]) ⊆ [F ]([x])

which leads for any s to:{
[α] ⊆ [γ]
[β] ⊆ [λ]

⇒ [G1](s, [α], [β]) ⊆ [G2](s, [γ], [λ])

C. Performance of interval systems

The following theorem is considered to define the time and
frequency domains performance inclusion for interval systems.

Theorem 2: Given two stable interval transfers
[G1](s, [α], [β]) and [G2](s, [γ], [λ]) with the same structure.
If [α] ⊆ [γ] and [β] ⊆ [λ], then the time and the frequency
domains responses of [G1](s, [α], [β]) are bounded by those
of [G2](s, [γ], [λ]). These responses define the time and
frequency performance respectively.

Proof: 1) Temporal performance inclusion proof.
Consider the two interval transfers [G1](s, [α], [β]) and
[G2](s, [γ], [λ]) which have the same structure. If [α] ⊆ [γ]
and [β] ⊆ [λ], then by applying Theorem 1 we have:

[G1](s, [α], [β]) ⊆ [G2](s, [γ], [λ]) (2)

As est is a degenerate interval for any s (Laplace variable)
and any t (time variable), the inclusion (2) is equivalent to:

[G1](s, [α], [β])est ⊆ [G2](s, [γ], [λ])est (3)

According to the interval properties (see [6]), applying the
integration to (3) will not modify the inclusion:

+∞∫
−∞

[G1](s, [α], [β])estds ⊆
+∞∫
−∞

[G2](s, [γ], [λ])estds (4)

(4) can be rewritten as follows:

1

2πj

+∞∫
−∞

[G1](s, [α], [β])estds ⊆ 1

2πj

+∞∫
−∞

[G2](s, [γ], [λ])estds

(5)The two terms in (5) represent the inverse Laplace trans-
forms of [G1](s, [α], [β]) and [G2](s, [γ], [λ]) that describe the
time responses [g1](t) and [g2](t) respectively, so:
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[g1](t) ⊆ [g2](t) (6)

2) Frequential performance inclusion proof. This demon-
stration is obvious when using the Theorem 1. Indeed, the
inclusion (2) holds for any s, in the case where s = jw, we
obtain:

[G1](jw, [α], [β]) ⊆ [G2](jw, [γ], [λ]) (7)

which states the inclusion of the frequency responses of the
two terms.

III. COMPUTATION OF THE CONTROLLER

In this section, we design a robust controller by using the
interval analysis.

A. Problem statement

Given an uncertain system [G](s, [a], [b]) to be controlled
by a controller [C](s) (Fig. 1). This controller must ensure
some given performance for the closed-loop whatever the
parameters a and b ranging in [a] and [b] respectively are. Let
[Hcl](s, [p], [q]) denote the closed-loop transfer. On the other
hand, in the sequel, let the system [G](s, [a], [b]) be denoted
by:

[G](s, [a], [b]) =

1 +
m∑
j=1

[bj ]s
j

n∑
i=0

[ai]si
(8)

Such as [a] = [[a0], ..., [an]] and [b] = [[b0], ..., [bm]], m ≤ n
and [b0] = 1.

Fig. 1. Closed-loop transfer Hcl.

B. Computation of the closed-loop model

Let us define the controller [C](s, [θ]) with a prior knowl-
edge on its structure as follows:

[C](s, [θ]) =

l∑
j=0

[dj ]s
j

k∑
i=0

[ci]si
(9)

where θ = [[c], [d]] represents the interval parameters vector
of the controller. We have l ≤ k.

The closed-loop model can be computed using the interval
model (8) and the controller (9) as follows:

[Hcl](s, [a], [b], [θ]) =
1

1

[C](s, [θ])[G](s, [a], [b])
+ 1

(10)

After replacing [G](s, [a], [b]) and [C](s, [θ]), we get:

[Hcl](s) =

(1 +
m∑
j=1

[bj ]s
j).

l∑
j=0

[dj ]s
j

n∑
i=0

[ai]si.
k∑
j=0

[ci]si + (1 +
m∑
j=1

[bj ]sj).
l∑

j=0

[dj ]sj

(11)
After developing (11) and factorizing the last coefficient of

the numerator, we obtain:

[Hcl](s, [p], [q]) =

1 +
e∑
j=1

[qj ]s
j

r∑
i=0

[pi]si
(12)

Where e = m + l and r = n + k and where the boxes [q]
and [p] are function of the boxes [a], [b], [c] and [d].

C. Controller derivation

The aim consists to compute the set parameters of the
controller (9) that will ensure given specifications described
by an interval reference model. The reference model, denoted
by [H], defines a family of wanted closed-loop behaviors. In
other words, the main objective consists to find the set Θ
of controller parameter vector for which robust performance
holds:

Θ := {θ ∈ [θ]|[Hcl](s, [p], [q]) ⊆ [H](s)} (13)

In order to check the inclusion [Hcl](s, [p], [q]) ⊆ [H](s)
by applying the parameter by parameter inclusion as given in
Theorem 1, the interval reference model [H] must have the
same structure than [Hcl] described in (12). Let us consider
the following interval reference model:

[H](s, [w], [x]) =

1 +
e∑
j=1

[xj ]s
j

r∑
i=0

[wi]si
(14)

Remark 1: The boxes of interval parameters [w] and [x] are
known because they are computed from the specifications.

According to Theorem 2, if we have:
[qj ] ⊆ [xj ], for j = 1, ..., e
[pi] ⊆ [wi], for i = 0, ..., r

(15)

then we obtain [Hcl] ⊆ [H] and therefore the performance
of [Hcl] is included in those of [H]. As a result, the computed
controller [C] will effectively ensure the performance for any
system G in the interval model [G].

The computation problem (13) of the set parameters Θ is
reduced to the following problem:

Θ :=

{
θ ∈ [θ]

∣∣∣∣ [qj ]([θ]) ⊆ [xj ],∀j = 1, ...,m+ 1
[pi]([θ]) ⊆ [wi],∀i = 0, ..., n+ 1

}
(16)

The problem of finding the set parameters of the controller
ensuring (16) is known as a set-inclusion problem which can
be solved using set inversion algorithms. The set inversion
operation consists to compute the reciprocal image of a com-
pact set called subpaving. The set-inversion algorithm SIVIA
(more details are given in [7], [9]) allows to approximate
with subpavings the set solution Θ described in (16). This
approximation is realized with an inner and outer subpavings,
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respectively Θ and Θ, such that Θ ⊂ Θ ⊂ Θ. The subpaving
Θ corresponds to the controller parameter vector for which
the problem (16) holds. If Θ = ∅, then it is guaranteed that
no solution exists for (16).

We give in Table I the recursive SIVIA algorithm allowing
to solve the control problem (16) with guaranteed solutions.
SIVIA algorithm requires a search box [θ](0) (possibly very
large) also called initial box within which Θ is guaranteed to
belong. The inner and outer subpavings (Θ and Θ) are initially
empty. ε represents the wanted accuracy of computation.

TABLE I
ALGORITHM SIVIA FOR SOLVING A SET-INVERSION PROBLEM [7], [9].

SIVIA(in: [p], [q], [w], [x], [θ], ε; inout: Θ, Θ )
1 if [[p]([θ]), [q]([θ])]

⋂
[[w], [x]] = ∅ return;

2 if [[p]([θ]), [q]([θ])] ⊂ [[w], [x]] then
{Θ := Θ

⋃
[θ]; Θ := Θ

⋃
[θ]} return;

4 if width([θ]) < ε then {Θ := Θ
⋃

[θ]}; return;
5 bisect [θ] into L([θ]) and R([θ]);
6 SIVIA([p], [q], [w], [x], L([θ]), ε; Θ, Θ);

SIVIA([p], [q], [w], [x], R([θ]), ε; Θ, Θ).

In most cases, it is more interesting to compute an inner
subpaving Θ for which one is sure that Θ is included in the
set solution Θ, i.e. Θ ⊂ Θ. However, when no inner subpaving
exists i.e. Θ = ∅, it is possible to choose parameters inside
the outer subpaving, i.e. choose θ ∈ Θ.

Remark 2: The number of unknown parameters (see (9))
are l+k+2 while the number of inclusions is r+e+1. Since
e = m+ l and r = n+ k, we can write r+ e+ 1 ≥ l+ k+ 2.
Therefore, there are more inclusions than unknown variables.
So, the set solution Θ is given by the intersection of the set
solution of each inclusion in (16) as follows:

Θ =
r+e+1⋂
i=1

(set_sol)i

such as: (set_sol)i is the set solution of the ith inclusion.
Remark 3: The controller is said to be low-order since its

order is independent from the complexity of the specifications,
which is the case for H∞ based approach.

IV. CONTROL OF PIEZOCANTILEVERS

The aim of this section is to apply the proposed method
to control piezoelectric microactuators used in microgrippers.
The actuators have a cantilever structure and are also called
piezocantilevers. A piezocantilever is a cantilever based on one
or more piezoelectric layers. In this paper, we especially use
a unimorph piezocantilever with a rectangular cross-section.
A unimorph piezocantilever is made up of one piezoelectric
layer and one passive layer. We use a ceramic Lead-Zirconate-
Titanate (PZT) as piezoelectric material while Copper as
passive one. When a voltage U is applied to the piezolayer it
contracts or expands and a deflection δ of the whole cantilever
is obtained (Fig. 2).

Modeling and identification of microsystems are very del-
icate because of their small sizes, their fragility and the
lack of convenient (accurate and high bandwidth) sensors to
report precise measurements. These systems are also very
sensitive to environmental disturbances (temperature, vibra-
tions, manipulated objects, etc.). As a result, their behavior

[P](s)

Fig. 2. Piezocantilever principle.

parameters may change during their functioning or during the
tasks and the performance or even the stability may be lost. To
account these characteristics, linear models with uncertainties
and classical robust conrtol laws (H∞) were applied and have
proven their efficiency [18]. However, the derived controllers
have high-order and are not often appropriate for embedding
systems, which is often the case in several microsystems. In
this paper, the uncertain parameters of piezocantilevers models
are bounded by intervals. Afterwards, we apply the controller
design previously presented to enhance their performance.

To derive [G](s, [a], [b]), we use two piezocantilevers with
the same dimensions. Despite their similarity in dimensions,
small differences of somes microns (due to the imprecision
of the microfabrication process) generate non-negligible dif-
ference on their model parameters. So, instead of having a
model with time-varying parameters during the experiment,
we define from the two models of piezocantilevers one interval
model. This interval model is further used to design a robust
controller for both piezocantilevers.

A. Presentation of the setup

Fig. 3 shows the experimental setup which is composed of
two unimorph piezocantilevers having nearly the same dimen-
sions: L×b×h = 15mm×2mm×0.3mm, a Keyence optical
sensor with 10nm of resolution and used to measure the
deflections of the two piezocantilevers, a computer-dSPACE
hardware combined with the Matlab-Simulink software for the
implementation of the controller (the refresh time is 0.2ms),
and a high-voltage (HV) amplifier used to amplify the input
voltage from the computer-dSPACE material.

B. Modeling and identification

The relation between the input voltage U and the output
deflection at the tip of a piezocantilever is [18]:

δ = G(s)U (17)

where, for us, the transfer functions G1(s) and G2(s) that
model the two piezocantilevers must be identified.

A frequentiel identification is performed by applying a sine
sweep signal to each piezocantilever [19]. We are interested to
the first mode (resonance). For that, a second order model was
chosen. After identification under matlab software, we obtain:

G1(s) = 8.0313×10−8s2+1.808×10−4s+1
9.794×10−8s2+5.24×10−6s+1.44

G2(s) = 7.042×10−8s2+1.809×10−4s+1
8.802×10−8s2+5.364×10−6s+1.291

(18)
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Fig. 3. The experimental setup.

C. Derivation of the interval model
Let us rewrite each model Gi(s) (i = 1, 2) as follows:

Gi(s) =
b2is

2 + b1is+ b0i
a2is2 + a1is+ a0i

(19)

The interval model [G](s, [a], [b]) which represents a family
of piezocantilever models is derived using the two point
models Gi(s). Considering each parameter of G1(s) and
the corresponding parameter in G2(s) as an endpoint of the
interval parameter in [G](s, [a], [b]), we have:

[G](s, [a], [b]) =
[b2]s2 + [b1]s+ [b0]

[a2]s2 + [a1]s+ [a0]
(20)

such as:
[b2] = [min(b21, b22),max(b21, b22)]
[b1] = [min(b11, b12),max(b11, b12)]
[b0] = [min(b01, b02),max(b01, b02)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]
[a0] = [min(a01, a02),max(a01, a02)]

After the numerical application, we obtain:
[b2] = [7.042, 8.0313]× 10−8

[b1] = [1.808, 1.809]× 10−4

[b0] = 1
[a2] = [8.802, 9.794]× 10−8

[a1] = [5.24, 5.364]× 10−6

[a0] = [1.291, 1.44]

In order to increase the stability margin and to ensure
that the interval model really contains the models of the two
piezocantilevers, we propose to expand the interval width of
each parameter of (20) by 10%. Finally, the interval model
that will be used is:

[G](s, [a], [b]) =
[b2]s2 + [b1]s+ 1

[a2]s2 + [a1]s+ [a0]
(21)

Such as:
[b2] = [6.992, 8.08]× 10−8

[b1] = [1.807, 1.809]× 10−4

[a2] = [8.753, 9.844]× 10−8

[a1] = [5.234, 5.37]× 10−6

[a0] = [1.283, 1.448]

D. Definition of the specifications

The following specifications are provided for the closed-
loop. These specifications often correspond to the requirement
in precise positioning tasks of microassembly or micromanip-
ulation applications that use piezoelectric microgrippers.
• no overshoot,
• settling time 1ms ≤ tr5% ≤ 30ms,
• static error |ε| ≤ 1%.

E. Definition of the controller structure

Any structure of the controller [C](s) is possible with the
proposed approach as long as Remark 2 is satisfied. In this
example, we consider a PI (proportional Integral) structure
because of its low-order (two parameters) and its wide use in
industry:

[C](s, [Kp], [Ki]) =
[Kp]s+ [Ki]

s
(22)

where Kp and Ki are the proportional and the integral gains
respectively.

F. Computation of the closed-loop and of the reference model

The general model of the closed-loop is given by (10). In
our case, using the model in (21) and the interval controller
in (22), the closed-loop has the following form:

[Hcl](s, [p], [q]) =
[q3]s3 + [q2]s2 + [q1]s+ 1

[p3]s3 + [p2]s2 + [p1]s+ [p0]
(23)

such as:
[q3] =

[Kp][b2]
[Ki]

[q2] =
[Kp][b1]
[Ki]

+ [b2]

[q1] =
[Kp]
[Ki]

+ [b1]

[p3] =
[a2]+[Kp][b2]

[Ki]

[p2] =
[a1]+[Kp][b1]

[Ki]
+ [b2]

[p1] =
[a0]+[Kp]

[Ki]
+ [b1]

[p0] = 1

Concerning the reference model, its computation is carried
out accordingly to the required specifications. Since there is
no evershoot in the specifications (see Section IV-D), a first
order model can be used for the reference model:

[H](s, [K], [τ ]) =
[K]

[τ ]s+ 1
(24)

where the parameters [K] and [τ ] define the static error and
settling time respectively such that:

• [K] = 1 + ε = [0.99, 1.01],
• [τ ] = [tr5%]

3 = [0.33ms, 10ms].

However, it is necessary that the reference model has the
same structure than the closed-loop in (23) in order to apply
the parameter by parameter inclusion as required in (16). Thus
we add some poles and zeros far from the imaginary axis to
(24):

[H](s, [K], [τ ]) =
[K]( [τ ]

10 s+ 1)3

([τ ]s+ 1).( [τ ]
10 s+ 1)2

(25)

which can also be rewritten as follows:
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[H](s, [w], [x]) =
[x3]s3 + [x2]s2 + [x1]s+ 1

[w3]s3 + [w2]s2 + [w1]s+ [w0]
(26)

such as:
[x3] = 0.001[τ ]3

[x2] = 0.03[τ ]2

[x1] = 0.3[τ ]

[w3] = 0.01[τ ]3

[K]

[w2] = 0.21[τ ]2

[K]

[w1] = 1.2[τ ]
[K]

[w0] = 1
[K]

G. Condition to have the robust performance

The controller defined in (22) ensures the required speci-
fications in Section IV-D for the interval model (21) if the
parameters [Kp] and [Ki] meet the following inclusions:

[Kp][b2]
[Ki]

⊆ 0.001[τ ]3

[Kp][b1]
[Ki]

+ [b2] ⊆ 0.03[τ ]2

[Kp]
[Ki]

+ [b1] ⊆ 0.3[τ ]
[a2]+[Kp][b2]

[Ki]
⊆ 0.01[τ ]3

[K]
[a1]+[Kp][b1]

[Ki]
+ [b2] ⊆ 0.21[τ ]2

[K]
[a0]+[Kp]

[Ki]
+ [b1] ⊆ 1.2[τ ]

[K]

1 ⊆ 1
[K]

(27)

H. Numerical derivation of the controller

Let us now compute the controller parameters that ensure
the performance. The problem of finding the controller pa-
rameters that satisfy the inclusions given by (27) is a set-
inclusion problem. If we denote Sc the set parameters of the
controller that satisfies these conditions, Sc can be solved
using the SIVIA algorithm [7] if an initial box is provided.
After the application of the SIVIA algorithm implemented in
the Matlab-Software, with an initial box [Kp0] × [Ki0] =
[0.1, 0.6] × [0.001, 500], we obtain the subpaving given in
Fig. 4. The dark colored subpaving (Sc) corresponds to the set
parameters [Kp] and [Ki] of the controller (22) that ensures
the performance for the interval model.

Fig. 4. Set solution of the parameters [Kp] and [Ki] ensuring the wanted
performance.

Remark 4: We notice that any choice of the parameters
[Kp] and [Ki] in the dark colored subpaving Sc (see Fig. 4)
satisfies the inclusion defined in (27) and consequently ensures
specifications.

Remark 5: If the set-inclusion problem is not feasible, i.e.
Sc = ∅, the initial box of the parameters must be changed
and/or one must modify the controller structure and/or the
specifications.

I. Experimental results

The controller [C](s, [Kp], [Ki]) is interval and is not di-
rectly implementable. Point parameters Kp and Ki within the
set solution Sc must be chosen and the corresponding point
controller C(s,Kp,Ki) = C(s) has to be implemented. In
this example, we test two point controllers. We choose:

C1(s) = 0.1s+200
s

C2(s) = 0.2s+400
s

(28)

These two controllers are applied to the two piezocan-
tilevers. First, a step response analysis is performed. Fig. 5
shows the experimental results when a step reference of 20µm
is applied. To check that the experimental results with the two
controllers C1(s) and C2(s) satisfy the specifications, the tem-
poral envelope of the interval reference model [H](s, [K], [τ ])
is also plotted in the same figure. The envelope of the desired
behaviour is defined by the responses of two tranfer functions
H1(s) and H2(s) such as: 1) H1(s) has the minimal time
constant τ = 0.33ms and the maximal static gain K = 1.01,
2) and H2(s) has the maximal time constant τ = 10ms and
the minimal static gain K = 0.99.

As shown in Fig. 5, the controllers have played their roles
because the closed-loop piezocantilevers satisfy the speci-
fications. Indeed, the experimental settling times are about
tr1 = 17.7ms and tr2 = 7ms with C1(s) and C2(s)
respectively, and the experimental static errors are neglected
and belong to the required interval |ε| ≤ 1%. The oscillatory
motions of the experimental behaviors (see Fig. 5) are due
to the absence of the derivative action in the implemented
controller (22). These oscillatory motions have no effect in
our application.

Fig. 5. Step response of the (envelope of the) reference interval model and
experimental results on the two piezocantilevers using C1(s) and C2(s).

Next, a harmonic analysis is performed. For that, a sine
reference input of 10µm amplitude and with different fre-
quencies is applied. The two controllers C1(s) and C2(s) are
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still used to control both piezocantilevers. The magnitudes
from the experimental results of the closed-loop piezocan-
tilevers are plotted in (Fig. 6). The envelope magnitude of the
reference [H](s, [K], [τ ]) is also plotted in the same graph.
The different plots show that the initial resonance frequency
was clearly damped and the new (experimental) magnitudes
become bounded by the reference envelope, except in high
frequencies because of the neglected high frequency dynamics
in the model. If the specifications require the consideration of
these high frequencies, the model [G] of the actuators should
have a higher order.

Fig. 6. Magnitudes of the wanted interval model compared with the
experimental results using C1(s) and C2(s).

The last experiment consists in performing a tracking test
for the two piezocantilevers using one of the controllers C1(s)
and C2(s). Fig. 7 shows the experimental results when an
aleatory and more smooth reference trajectory is applied. As
shown in the figure, the two piezocantilevers controlled by
C1(s) well track the reference input.

Fig. 7. Tracking performance for the two piezocantilevers when using C1(s).

V. PERFORMANCE ANALYSIS OF THE CLOSED-LOOP

In this part, we demonstrate by means of H∞ approach that
the synthesized controllers (28) ensure the performance for the
interval model defined in (21).

The H∞ synthesis consists to compute a robust controller
that ensures given specifications by using the small-gain
theorem. These specifications are transcribed into weighting
functions during the synthesis. The standard H∞ problem
consists therefore to compute a controller C(s) such that [20]:

‖Fl(P (s), C(s))‖∞ ≤ γ (29)

where Fl(P (s), C(s)) is the transfer of the interconnection
between C(s) and an augmented plant P (s). The augmented
plant P (s) contains the system to be controlled G(s) and the
weightings that transcribe the required specifications. If there
exists a controller C(s) for which (29) holds, such that γ ≤ 1,
the specifications will be ensured.

In our case, the controller is known: C(s) = C1(s) first, and
then C(s) = C2(s). The system to be controlled is interval:
[G](s). Finally, the specifications are given in Section IV-D
and thus weighting functions can be derived. Since the system
is interval, the augmented plant will also be interval: [P ](s).
Let us consider γ = 1, so if

‖Fl([P ](s), C(s))‖∞ ≤ 1 (30)

then the controller C(s) (C1(s) and C2(s)) ensures the
performance for any G(s) inside [G](s).

Fig. 8-a presents the closed-loop scheme where one weight-
ing function W1(s) is sufficient to define the specifications
given in Section IV-D. Fig. 8-b presents the corresponding
standard scheme.

Fig. 8. Closed-loop scheme.

From Fig. 8, we have:

Fl ([P ](s), C(s)) = W1(s)[S](s) (31)

where [S](s) = (1 + C(s)[G](s, [a], [b]))−1 represents the
interval sensitivity function.

Applying the H∞ standard problem in (30) to (31), we
obtain the following condition to be satisfied:

‖W1(s) [S] (s)‖∞ < 1 (32)
If we have:

|[S] (s)| <
∣∣∣∣ 1

W1(s)

∣∣∣∣ (33)

the condition (32) is verified.
From condition (33), we derive:

‖[S] (s)‖∞ <

∥∥∥∥ 1

W1(s)

∥∥∥∥
∞

(34)

Let us now give the weighting W1(s). For that, based on
the specifications we propose:
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W1(s) =

1
wp
s+ 1

|ε|+
wz

s+ |ε|+
(35)

where

wz = 3

tr+
√(

1

|ε|+

)2
−1

and wp = wz

√(
1+D%
|ε|+

)2
− 1

where D% represents the allowed overshoot.
Using the numerical values, W−11 (s) can be written as

follows:
1

W1(s)
=

s+ 1

s+ 100
(36)

whose the norm is
∥∥∥ 1
W1(s)

∥∥∥
∞

= 1.

Next step consists to compute the H∞ norm of the sensi-
tivity function [S](s) = (1 + C(s)[G](s, [a], [b]))−1 which is
an interval transfer function. This step is performed for both
C(s) = C1(s) and C(s) = C2(s). For an interval system
the maximal H∞ norm of its sensitivity function is achieved
at twelve Kharitonov vertices [21]. Based on this result, we
obtain: ‖[S1] (s)‖∞ = 0.9856 and ‖[S2] (s)‖∞ = 0.9693, for
C(s) = C1(s) and C(s) = C2(s) respectively.

From these results, we obtain ‖[S1] (s)‖∞ <
∥∥∥ 1
W1(s)

∥∥∥
∞

and

‖[S2] (s)‖∞ <
∥∥∥ 1
W1(s)

∥∥∥
∞

which mean that the specifications
were effectively ensured by the controllers C1(s) and C2(s).

In order to show graphically the satisfaction of the condition
(33), we plot the envelope magnitudes of [S](s) = (1 +
C(s)[G](s, [a], [b]))−1 (for C(s) = C1(s) and C(s) = C2(s))
and the singular value of 1

W1(s)
. Fig. 9 presents the results and

confirms the expected results.

Fig. 9. Magnitudes of the envelope of [S1] = (1+C1(s)[G](s, [a], [b]))−1,
[S2] = (1 + C2(s)[G](s, [a], [b]))−1 and singular value of γ

W1(s)
.

VI. CONCLUSION

The modeling and control of piezoelectric microactuators
(piezocantilevers) were addressed in this paper. These mi-
crosystems are characterized by uncertain parameters models
and need convenient modeling and robust control laws to
ensure the required performance in micromanipulation, mi-
croassembly and micropositioning tasks.

In order to consider the uncertain parameters on the models
of the microactuators, interval numbers are used. The main

advantage is the ease and natural way to bound these uncer-
tainties. Afterwards, we proposed a new approach to design
robust controllers that can ensure the performance for the
interval model. The approach provides low-order controllers
that are convenient for real-time embedded systems. While the
experimental results confirmed the efficiency of the proposed
approach, we also used the H∞ technique to prove numerically
the robustness of the designed controllers. The proposed
design method can also be applied to other SISO systems that
are characterized by parametric uncertainties.

REFERENCES

[1] Y. Haddab, N. Chaillet and A. Bourjault, ’A microgripper using smart
piezoelectric actuators’, IEEE/RSJ International Conference on Intelligent
Robot and Systems (IROS), Takamatsu - Japan, 2000.

[2] J. Agnus, J. M. Breguet, N. Chaillet, O. Cois, P. de Lit, A. Ferreira, P.
Melchior, C. Pellet and J. Sabatier, ‘A smart microrobot on chip: design,
identification and modelingŠ, IEEE/ASME AIM, Kobe Japan, pp.685-
690, 2003.

[3] S. Devasia, E. E. Eleftheriou, R. Moheimani, ’A survey of control issues
in nanopositioning’, IEEE Transactions on Control System Technology
(T-CST), Vol.15, No15, pp.802-823, 2007.

[4] A. Sebastian, A. Pantazi, S. O. R. Moheimani, H. Pozidis, E. Eleftheriou,
’Achieving Subnanometer Precision in a MEMS-Based Storage Device
During Self-Servo Write Process’, IEEE Transactions on Nanotechnology,
Volume 7, Number 5, 586-595, 2008

[5] M. Rakotondrabe, Y. Haddab and P. Lutz, ’Modelling and Robust Posi-
tion/Force Control of a Piezoelectric Microgripper’, IEEE - International
Conference on Automation Science and Engineering (CASE), 39-44,
Scottsdale AZ USA, 2007.

[6] R. E. Moore, ’Interval Analysis’, Prentice-Hall, Englewood Cliffs N. J.,
1966.

[7] L. Jaulin and E. Walter, ’Set inversion via interval analysis for nonlinear
bounded-error estimation’, Automatica, 29(4), 1053-1064, 1993.

[8] L. Jaulin, ’Interval constraint propagation with application to bounded-
error estimation’, Automatica, 36, 1547-1552, 2000.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, ’Applied Interval Analy-
sis’. Springer, 2001.

[10] E. Walter, L. Jaulin, ’Guaranteed characterization of stability domains
via set inversion’, IEEE Trans. on Autom. Control, 39(4), 886-889, 1994.

[11] V.L. Kharitonov, ’Asymptotic stability of an equilibrium position of
a family of systems of linear differential equations’. Differential’nye
Uravnenya, 14, 2086-2088.

[12] Ye. Smaginaa, Irina Brewerb, ’Using interval arithmetic for robust state
feedback design’, Systems and Control Letters 46, 187-194, 2002.

[13] J. Bondia, M. Kieffer, E. Walter, J. Monreal and J. Pict’o, ’Guaran-
teed tuning of PID controllers for parametric uncertain systems’, IEEE
Conference on Decision and Control, 2948-2953, 2004

[14] C.-T. Chen, M.-D. Wang, ’A two-degrees-of-freedom design methodol-
ogy for interval process systems’, Computers and Chimical Engineering,
23,1745-1751, 2000.

[15] K. Li, Y. Zhang, ’Interval Model Control of Consumable Double-
Electrode Gas Metal Arc Welding Process’, IEEE - Transactions on
Automation Science and Engineering (T-ASE), 10.1109/TASE, 2009.

[16] Keel, L. H., Bhattacharyya, S. P., “Control system design for parametric
uncertainty”, International Journal of Robust and Nonlinear Control,
Vol.4, 87-100, 1994.

[17] S. Khadraoui, M. Rakotondrabe and P. Lutz, "Robust control for a class
of interval model: application to the force control of piezoelectric can-
tilevers", IEEE - CDC, (Conference on Decision and Control), accepted,
Atlanta Georgia USA, December 2010.

[18] Micky Rakotondrabe, Yassine Haddab and Philippe Lutz, ’Quadrilateral
modelling and robust control of a nonlinear piezoelectric cantilever’, IEEE
- Transactions on Control Systems Technology (T-CST), Vol.17, Issue 3,
pp:528-539, May 2009.

[19] Ljung, L. “System identification: Theory for the user”, 2nd ed, PTR
Prentice Hall, Upper Saddle River, N.J., 1999.

[20] Balas, G. J., Doyle, J. C., Glover, K., Packard, A. and Smith, R., “µ
-synthesis and synthesis toolbox”, The Mathworks User’s Guide-3, 2001.

[21] Wang, L. “H∞ Performance of Interval Systems”, eprint
arXiv:math/0211013, Vol.1, 1-8, 2002.

ha
l-0

07
99

34
5,

 v
er

si
on

 1
 - 

18
 M

ar
 2

01
3


