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Analytical Expressions of the Dark Resonance
Parameters in a Vacuum Vapor Cell
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Abstract— This article reports a dedicated theoretical and ex-
perimental study on the properties (signal amplitude, linewidth)
of coherent population trapping (CPT) resonances detectedin
vacuum vapor cells. Results are presented for conventionalsingle-
lambda schemes of atomic energy levels but also for double-
lambda schemes, now widely used in various applications inclu-
ding atomic clocks and magnetometers. Approximate compact
analytical expressions, valid for a wide range of light wave
intensities, i.e. beyond the low intensities or pump-proberegime,
have been obtained. Analytical results are found to be in excellent
agreement with exact numerical solutions based on the optical
Bloch equations. Experimental results, obtained in a Cs vapor
microfabricated cell, are reported and found to be in correct
agreement with theoretical expressions.

I. I NTRODUCTION

In Coherent Population Trapping (CPT) physics [1], [2],
[3], atoms can be prepared in a non-interacting quantum
superposition of two hyperfine ground states by coherent
interaction with two resonant optical fields coupling a common
excited-state in aΛ-configuration, the main condition being
that the two-photon (Raman) frequency detuning must be
close to zero [3], [4], [5]. In this so-called dark state,
atoms are no longer coupled to light, resulting in enhanced
transmission of laser power through the atomic vapor or
reduction of the fluorescence emitted by the atoms. The dark
resonance line-width is ultimately determined by the lifetime
of the hyperfine coherence rather than by the excited state
lifetime and can be much smaller than the natural line-width
of the optical transition. Consequently, CPT spectroscopyhas
been widely investigated for precision sensing in view of
applications in high-resolution spectroscopy [6], non linear
optics, quantum frequency standards [7], magnetometers [8],
[9], laser cooling [10], slow light [11] or quantum optics [12].
In most CPT-based atomic devices, light-atom interaction
takes place in a vapor cell. In such setups, two main
techniques are usually employed to increase the wall-collision
induced CPT coherence relaxation time and allow the
detection of narrow resonances. The first method consists to
dilute the alkali vapor with a pressure of buffer gas [13],
that also reduces the Doppler broadening via the Dicke effect
[14]. Nevertheless, the presence of buffer gas homogeneously
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broadens and shifts [15], [16], [17] the optical transitionlines,
allowing excitation of the dark state towards other excited
states and resulting in a decrease of its lifetime. Moreover,
the buffer gas induces a temperature-dependent frequency
shift of the clock transition that needs to be minimized
using a finely-tuned buffer gas mixture [18], [19], [20] or a
specific single buffer gas configuration [19], [21]. The second
method consists to deposit anti-relaxation coatings such as
saturated paraffins [22], [23], octadecyltrichlorosilanes (OTS)
coatings [24], [25], [26], or alkene-based materials [27]
on the cell inner walls. With such coatings, alkali atoms
experience a significant number of atomic-state preserving
bounces on the cell walls before destruction of the atom
spin orientation (up to 104 with paraffins, 106 with alkenes
and 102 to 103 with OTS). However, finding a reproducible
process to fabricate coated-cells is a challenging task andcell
performances developed with an analog process often suffer
from a non-negligible dispersion.

The theoretical and experimental study of CPT resonance
properties in Doppler broadened media such as evacuated
cells has also motivated a significant interest, for fundamental
physics but also for potential applications. Line narrowing
mechanisms in CPT or electromagnetic induced transparency
(EIT) have been reported in Doppler-broadened media. The
effect of velocity selective coherent population trapping
(VSCPT) or EIT in a Doppler broadened medium has been
addressed by Taïchenachevet al. [28], Ye and Zibrov [29],
and Javanet al. [30], using only monochromatic laser fields.
Failacheet al. [31] has investigated theoretically in thin cells
(one-dimensional model) the lineshape of CPT resonance
with VSCPT in an open atomic system, with Doppler effect
on the optical transitions but not on the CPT transition.
Some papers have also reported the dependence of the CPT
resonance lineshape on the laser linewidth. In [32], it has been
reported in a Doppler-freeΛ-system that the CPT resonance
is unaffected by the laser linewidth when the driving fields
are critically phase correlated. In case of EIT and the use
of two independent lasers without phase coherence, Guoet
al. [33] showed that the effect of the laser spectral linewidth
is equivalent to a relaxation rate between the two ground
states. Also, the influence of laser sources with different
spectral properties on CPT resonances for atomic clocks
applications has been investigated in buffer-gas cells [34].
In 2007, a laser induced line narrowing (LILN) effect of
the CPT resonance expected to occur in coated or uncoated
alkali vapor cells, especially in small size cells, was reported



[35]. In this paper, a numerical computation of the CPT
resonance was performed in a closed three level atom, in a
Doppler broadened vapour in a one-dimensional cell model,
taking into account the laser linewidth. From this study, the
LILN effect is expected to occur in pure alkali-vapor cells
when CPT resonance is excited using a narrow-band laser
exhibiting a spectral linewidth narrower than the atom natural
linewidth. While no experimental proof of this phenomenon
has been reported yet, this effect could be interesting for
the development of ultra-compact or even miniature atomic
vapor cell clocks [36], [37] based on pure evacuated cells,
without buffer gas neither wall-coatings. More recently, the
excitation of dark states in evacuated vapor cells has been
exploited for the stabilization of laser frequency using original
dual-frequency sub-Doppler spectroscopy setups [38], [39].

The CPT phenomenon is in general correctly described
by a single Λ-scheme of atomic energy levels in various
regimes of atom-light interaction and resonance observation :
stationary (continuous-wave) mode, Ramsey-like technique
or active maser approach [2], [4], [5], [40], [41], [7], [42].
The regularΛ-scheme is presented in Fig. 1a. A significant
number of papers has been reported with this approach. Some
works have reported analytical expressions for the width and
amplitude of the dark resonance in the case of a vacuum
vapor cell but for the EIT regime (or pump-probe regime)
where one of the laser waves is much weaker than the other
one, i.e.I1 << I2 where I1 and I2 stand for the intensity of
each light wave respectively [28], [30], [29], [43]. Analytical
results have been also reported for the atom at rest [2], [4],
[5], [40], [41], [42] or in the case of buffer-gas-filled vapor
cells [44], [45], even taking into account the full atomic-level
structure [46]. The study of the dark resonance parameters
under the CPT regime (I1 ∼ I2) in vacuum vapor cells has
been investigated in various articles [47], [48].
Despite this well-furnished literature, we have noted that
any analytical expressions for the dark resonance parameters
(amplitude, linewidth) valid beyond the pump-probe and
low saturation limits have been derived and presented yet.
Another important point is to note the lack of theoretical
expressions describing the parameters of the CPT dark
resonance detected in vacuum vapor cells with optimized
double-Λ CPT pumping schemes (see Fig. 1b), such as
lin ⊥ lin [49], lin ‖ lin [50], push-pull optical pumping
(PPOP) [51], [52] or double-modulation CPT [53]. Such
schemes are now widely used with buffer-gas filled cells in
concrete applications such as atomic clocks [54], [55] or
magnetometers [56].

From this context, the original contribution of this paper
is to report a theoretical study on the properties (amplitude,
linewidth) of CPT resonances detected in vacuum vapor cells,
yielding approximate compact analytical expressions, valid
for a wide range of light wave intensities, i.e. beyond the low
intensities or pump-probe regime. These clear and compact
analytical expressions are found to be in good agreement with
exact numerical solutions based on optical Bloch equations.
The specific case of a closed doubleΛ-scheme, modeling the

lin ⊥ lin pumping configuration when the openness can be
neglected, is also considered. Some preliminary experimental
tests have been performed in a Cs vapor microfabricated
cell in order to evaluate the validity of theoretical calculations.
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Fig. 1. Single (a) and double (b)Λ-schemes of atomic energy levels.
Wavy arrows denote spontaneous relaxation channels, whileγ is the total
spontaneous relaxation rate from the state|3〉. In the case of the double
Λ-scheme, each upper-state level relaxes with the rateγ. Γ stands for the
relaxation rate of the ground-state anisotropy, which can be caused by the
finite time of flight of an atom through the beam.

II. T HEORETICAL INVESTIGATIONS

Let us briefly describe the mathematical formalism used in
our theory. We consider resonant interaction of atoms with
a light field composed of two monochromatic plane waves
propagating along thez-axis :

E(z, t) = E1e−i(ω1t−k1z)+E2e−i(ω2t−k2z)+ c.c. (1)

The constant phases can be neglected, so that the waves’
amplitudes are real numbers. As in [28], we also neglect the
residual Doppler broadening of the dark resonance due to
the difference of absolute values of the wave vectors, i.e. we
take k1≈k2=k. The wave with frequencyω1 induces optical
transitions shown as blue arrows in Fig.1, while red arrows
correspond toω2.

In the case of a dilute gas, collisions between atoms can be
neglected. Moreover, we do not take into account linear mo-
mentum exchange between an atom and a photon, leading to
the recoil effect. Thus, the problem can be considered with the
help of a one-atom density matrix in the Wigner representation
ρ̂(z,v, t) according to the Lindblad-type equation [57] :

dρ̂
dt

=− i
~

[(
Ĥ0+ V̂

)
, ρ̂
]
+ R̂

{
ρ̂
}
. (2)

Here d/dt = ∂/∂t + v∂/∂z with v the projection of atom’s
velocity on thez axis. The hamiltonian̂H0 describes a free
atom, whileV̂ is for the atom-field interaction in the dipole
approximation. The relaxation operator̂R accounts for the
spontaneous relaxation with rateγ and the corresponding
branching ratiosβ1,2 (see Fig.1). For the case of an open
scheme of levels, we will consider a finite diameter of the
light beam. Strictly speaking it means that we should take into
account transverse intensity distribution for the waves’ ampli-
tudesE1,2(x,y) and include corresponding derivatives tod/dt.
Instead, the widely used approximation allows to introducean
additional relaxation rateΓ responsible for the finite time of



flight of an atom through the laser beam. Besides, this constant
is responsible for the ground-state decoherence rate. Indeed,
we consider the case of a regular vacuum vapour cell without
any antirelaxation coating of walls. Therefore, there are no
ground-state-anisotropy preserving collisions between atoms
and the cell walls. This means that we can consider atoms
to be distributed isotropically over the ground-state sub-levels
when they are out of the light beam. As described further
in the text, all three dimensions of the cell are larger than a
beam diameter. Moreover, the cell length is large enough not
to demonstrate any "thin-cell" physics [31]. To summarize,
we can state in our case that atom-wall collisions manifest
themselves only via the ground-state thermalization process,
which is described by theΓ constant.
Before presenting the results of calculations, we note other key
assumptions of our theory. Namely, we seek for the steady-
state solution of Eq. (2) in the rotating-wave approximation
(RWA). Thus, diagonal density matrix elements, responsible
for populations of atomic energy levels, can be treated as in-
dependent of time. Besides, the power broadening is assumed
to be the main process of the dark resonance broadening for
the open and closed schemes of energy levels. The time-of-
flight relaxation process is taken into account in the case ofthe
openΛ-scheme but is not considered for the closed schemes.
We do not use any perturbation theory over the light intensity
and the general analytical expressions obtained in the next
section are valid for a wide range of wave intensities, as long
as the power broadening is smaller than the Doppler width
∆D=2kv0 (with v0 the most probable atom thermal velocity in
a gas). The latter condition is regularly satisfied in experiments
with CPT in a thermal gas. The last key assumption consists in
considering the medium optically thin in order to prevent the
solving of a bulky system of Maxwell-Bloch equations [58].
Last words should be said about the light wave frequencies.
Usually, due to experimental simplicity reasons, a single laser
in combination with a fast electro-optical modulator (EOM)
or just a vertical-cavity surface-emitting laser (VCSEL) are
used in CPT studies to generate two resonant light waves
of frequenciesω1 and ω2. We assume that these frequencies
are two ±1 sidebands of the frequency spectrum, which
are equally distant from the carrier optical frequencyω0.
In our calculations, this frequency is taken to be fixed and
equal to the averaged frequency of twoΛ-scheme transi-
tions : ω0=(ω31+ω32)/2. The two-photon (Raman) detuning
is defined inγ units as∆R=(ω1 −ω2 −∆g)/γ, with ∆g the
frequency difference between the ground-state sublevels (Fig.
1). In such real experiments, two frequenciesω1 and ω2 are
changed simultaneously but in opposite directions to increase
or decrease the two-photon detuning∆R and scan the dark
resonance.

A. Single-closed Λ-scheme

We focus here on a closed scheme of levels, such that
the branching ratios (see Fig. 1a) satisfy the condition :
β1+β2= 1. Also, we assume the branching ratio to be equal to
each other. This assumption was also considered in [28], [29],
[30] to obtain the expressions of the EIT resonance linewidth.

Assuming this, we considerβ1,2 = 1/2. Note that the equal
branching ratio can be easily realized in real experiments with
D1 lines of Rb or Cs atoms by using theσ+σ+ (or σ−σ−)
light field configuration. In this paragraph, we also assume that
there is no relaxation process for the ground-state anisotropy,
i.e. the corresponding relaxation rateΓ = 0. Thus, based on
the aforesaid density matrix formalism (see also [2], [4], [5],
[41], [42] especially for the CPT studies), the excited state
population, i.e. the diagonal density matrix elementρ33, is
calculated to be expressed as :

WΛ(x,∆R)≡ ρ33=
8I1I2∆2

R

a2x2+ a1x+ a0
(3)

Here, x = kv/γ is the Doppler frequency shift (also inγ
units) for a moving atom in a gas. The coefficientsa j are
given by :

a0 = 4I3
t −4∆2

RI2
t +∆2

R(1+∆2
R)It +24∆2

RI1I2, (4)

a1 = 4∆R(I1− I2)[∆2
R −2It ], (5)

a2 = 4∆2
RIt , (6)

where the total intensityIt = I1+ I2, with saturation parameters
I j = (R j/γ)2. R j = E jd/~ are the Rabi frequencies,d is the
dipole momentum equal to both transitions of theΛ-scheme.
E j are real values of the light wave amplitudes.
Assuming v = 0 in Eq. (3), we obtain a relatively simple
solution for the atom at rest even if the function FWHM
(I1,I2) does not have a compact form. Under the low light-
wave intensities limit, we obtain the well-known solution for
the linewidth caused by the power broadening mechanism [3],
[4], [5] :

FWHM|I1,I2≪1 ∼ 4γ(I1+ I2) (7)

This expression is useful to describe the dark resonance
in the case where the motion of atoms can be neglected.
Besides, the similar linear dependence shown in (7) is also
valid for a thermal gas of atoms under the low intensity
regime. Also, expression (7) can be obtained from a more
general one derived in [42] for atoms at rest. Relatively simple
analytical expressions can be obtained in the case of buffer-
gas-filled vapor cells [44], [7], [46]. However, it is important
for fundamental laser spectroscopy and many applications
of the dark resonances to figure out any explicit analytical
expressions in the case of evacuated cells. To achieve this
goal, expression (3) is averaged over the Maxwellian velocity
distribution :

〈WΛ〉v =
1√
πv0

∫ ∞

−∞
WΛe−v2/v2

0dv (8)

We consider (8) to be the expression of a spectroscopic
signal. The transmission of the light beam through an optically
thin medium can be easily expressed via〈WΛ〉v.
This spectroscopic signal can be obtained by using Eq. (8)
and integrating analytically the expression (3). This procedure
was applied by other authors and the result is well-known
(see for instance [28]). Nevertheless, with this approach,the
precise analytical result is expressed via the special error



function Erf(x), which cannot be expressed via elementary
functions. Moreover, such precise solutions are quite bulky
[28]. All these factors make difficult to obtain explicit and
compact analytical expressions for the dark resonance para-
meters (amplitude and linewidth). For this purpose, several
approximations are regularly applied. In general, authorstry
to use an approximate expression for the error function or try
to find the most appropriate fitting function for the Gaussian
profile in the integral of exp. (8) (for instance, see [30]).
Further simplification assumptions are even often considered.
A relevant example is to study the problem under the pump-
probe regime, assuming that one of the waves (probe) is much
weaker than the other one. This regime is often treated in
the case of electromagnetically induced transparency (EIT)
where only a probe-wave first-order analysis is valid [28],
[29], [30]. In the case where both light field components are
weak enough, the optical Bloch equations can be expanded in
a series over the small parameterξ0, treated as the "time-of-
flight" saturation parameter :

ξ0 = γτI ≪ 1 (9)

with τ = Γ−1 the average time of flight of an atom through
the beam. This method has appeared to be powerful enough
to obtain the analytical expression for the spectroscopic
signal, even in the general case of an optical dipole transition
Fg → Fe with degenerate energy levels [59]. However, in
this case, the results are valid for quite narrow light beams
and weak light fields. Moreover, the signal is also expressed
here via the error function, not convenient to obtain compact
formula for the resonance parameters. Following all aforesaid,
we can state that no compact and clear solutions describing
the dark resonance parameters in a thermal vapor cell valid
beyond the perturbation theory approach have been obtained
yet.

To solve this issue, we do not seek for some approximate
formula of the final spectroscopic signal〈WΛ〉v. Instead,
we try to use the most appropriate approximation for the
Gaussian profile standing in Eq. (8). This approach is similar
to the one used in [30] for the pump-probe regime and it
implies using a Lorentzian profile instead of a Gaussian
profile. This approximation (the Lorentzian function exhibits
longer "tails" than the Gaussian profile) can help to obtain
explicit and compact analytical expressions for the dark
resonance parameters. Two options are possible to check
the validity of the approximation. The first one consists in
providing different results on the same plot, demonstrating
the results of approximate analytical expressions together
with results of exact numerical calculations with the Gaussian
profile fully taken into account. The second way consists in
conducting an experiment. In this paper, both options are
explored and discussed.

Let us omit routine calculations just for shortness. Only the
situation whereI1 = I2 = I is considered. This regime is of
relevant practical interest and can be easily realized withthe
help of D1 lines in Rb or Cs atoms irradiated by theσ+σ+ (or

σ−σ−) light field configuration. The final approximate formula
for the dark resonance linewidth in a thermal gas is given to
be :

FWHM ≈ 8γ
x0 f1

I (10)

with x0 = kv0/γ the Doppler halfwidth inγ units. The dimen-
sionless functions ofI have been introduced such as :

f1(I) =

√
2
π
[1+ f0(I)−

√
1+2 f0(I)] (11)

with :

f0(I) = 4η(1+η) (12)

η =

√
π

2x0

√
1+12I (13)

The approximation (10) with functions (11-13) is not so
bulky and can be used to estimate the linewidth. By conti-
nuously simplifying Eq. (10), we obtain the pretty simple
approximation :

FWHM ≈ 4γI√
1+12I

(14)

For moderate and relatively high intensities (12I ≫ 1), a simple
square-root dependence is obtained :

FWHM ≈ 2γ
√

I/3 (15)

Approximate FWHM expressions described in (10) and (14)
are plotted on Fig. 2. Expression (10) is found to be a quite
good approximation for FWHM in a wide range of light wave
intensities (compare solid black and dashed red curves). The
simple formula given in (14) yields also a quite acceptable
result (dash-dotted blue curve). On Fig. 2, the linear law from
Expr. (7) is reported (almost vertical short-dotted black line).
It is well seen that the linewidth starts to deviate from the
linear dependence even at low intensities, i.e.I ≪ 1. In our
case, expression (7) works correctly only forI . 10−3. This
behavior was discussed in details in [28], [29], [30] for the
EIT regime and can be considered as a "Doppler narrowing"
effect. The strength of this effect demonstrates one more time
how considerable the influence of atomic motion is.

In this paragraph, the decoherence effects in the ground state
have been neglected. Thus, the fluorescence signal described
in (8) is null under the two-photon resonance condition∆R =
0. Therefore, the amplitude of the dark resonance coincides
with the maximum value of the fluorescence signal. At equal
Rabi frequenciesR1 = R2 = R, this maximum is reached at
∆R =±2R and brings the resonance amplitude to be :

A ≈ π
x2

0η(1+η)
I (16)

with η described in (13).
In the linear case of very weak intensities (12I ≪ 1), we
obtain :
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Fig. 2. FWHM of the dark resonance in a vacuum vapor cell for a single
closed Λ-scheme versus the light-wave intensity. The Doppler widthkv0
equals 50γ (typical for the experiments with thermal alkali-metal atoms).
The solid line corresponds to the numerical calculation based on accurate
expressions (3) and (8). The dash-dotted blue line corresponds to the simplest
approximate expression given in (14). The dashed red line stands for the
formula (10). The black short-dashed line describes the case of atoms at rest.
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Fig. 3. Amplitude of the dark resonance in a vacuum vapor cellfor a single
closedΛ-scheme versus the light-wave intensity. As for Fig. 2,kv0 = 50γ.
The solid line corresponds to the numerical calculation based on accurate
expressions (3) and (8). The dash-dotted blue line corresponds to the simplest
approximate expression (18). The dashed red curve is obtained through the
formula (16).

A ≈ 2
√

π
x0

I (17)

where the standard assumptionx0 ≫ 1 is taken into account.
For the moderate intensities regime (12I ∼ 1), we should
slightly correct Eq. (17), coming to the formula :

A ≈ 2
√

π
x0

I√
1+12I

(18)

In the last case of relatively high intensities (fromI ≈ 1 up
to several tens), we obtain a clear square-root dependence :

A ≈
√

πI/3
x0

(19)

The approximate solutions (16) and (18) are compared with
the exact numerical calculation on Fig. 3. It is shown that

both approximate analytical formula (16) and (18) lead to
acceptable results for very small (I ∼ 10−4 and lower) and
relatively high (I ∼ 10) intensities.

B. Closed double Λ-scheme

The closed doubleΛ-scheme can be thought analog to the
closed singleΛ-scheme in the case where the coherenceρ34

(and ρ43 = ρ34⋆) between the 3 and 4 upper-state levels, not
induced in the singleΛ-scheme (see Fig. 1a), is neglected (see
Fig. 1b). Taking this coherence into account, we come for the
closed double-Λ-scheme to the formula :

WΛ−Λ(x,∆R) =
16I1I2∆2

R

b2x2+ b1x+ b0
(20)

with the coefficients :

b0 = 16I3
t −8∆2

RI2
t +∆2

R(1+∆2
R)It +48∆2

RI1I2 (21)

b1 = 4∆R(I1− I2)[∆2
R −4It ] (22)

b2 = 4∆2
RIt (23)

We consider hereR1 to be the Rabi frequency for both
|1〉 → |3〉 and |1〉 → |4〉 transitions, whileR2 is for |2〉 → |3〉
and |2〉 → |4〉 transitions. The same notations are used for
It and I1,2. In this case, we obtain a result qualitatively
similar to the one obtained for the singleΛ-scheme, see
Eqs. (3)–(6). It is worth noting that we can reduce the
expressions (20)–(23) to the same expression than (3)–(6) just
by replacing the intensitiesI1,2(Λ−Λ) = I1,2(Λ)/2. Indeed,
if we put I1(Λ − Λ) = I1(Λ)/2 and I2(Λ − Λ) = I2(Λ)/2
into Eqs. (20)–(23), we will come toWΛ−Λ=WΛ. While this
operation might just seem an interesting mathematical trick, it
has a real physical meaning. Indeed, by comparing theσ+ σ+

light field configuration with the lin⊥ lin configuration
[49], we can see that Rabi frequencies in these schemes
are related asR1,2(Λ − Λ) = R1,2(Λ)/21/2 due to cyclic
components of the light polarization vectors. Therefore,
the two polarization configurationsσ+ σ+ and lin ⊥ lin are
identical for a vacuum vapour cell and closed system of levels.

Both previous subsections II-A and II-B have considered
closed systems of atomic energy levels. This problem has
a general academic interest and can be applied in specific
experimental cases. However, in most experiments, the real
atomic transitions induced by the light waves form an open
system of levels (i.e.β1+β2 < 1 and, moreover, withβ1 6= β2).
Thus, the following subsection is dedicated to the study of a
single openΛ-scheme.

C. Single open Λ-scheme

Many systems of atomic energy levels relevant for real
experiments are open. In this configuration, one or more
sub-levels are non-resonant with the light field. These sub-
levels can collect the atomic population during a long time
and influence the properties of the nonlinear resonances. In



particular, it is well-known that the openness can harm the
amplitude of the dark resonance and impacts also the CPT
resonance linewidth [60], [30].
Considering an open system of levels makes the problem
much more complex in comparison with the closed one. An
open system of levels is usually studied using the low light
intensities regime, assuming that the "time-of-flight" saturation
parameter, given in (9), is small enough. Here, we focus on a
regime beyond this limit.
In this paper, we demonstrate the results for the resonance
amplitude only. For shortness, we consider intensities to be
equal (I1= I2= I) as well as the branching ratios (β1= β2=β).
We also assume thatβ1+β2 < 1 andΓ 6= 0. We takeΓ ≪ γ
as a typical condition for a real experiment with thermal
vapor. The branching ratiosβ1,2 are assumed to be small
(β ≪ 1). Eventually, one more important assumption is that
R2/γ > Γ, i.e. the power broadening prevails over the time-
of-flight broadening. Using the same approach than in the
previous paragraphs, we come to the following expression :

W̃Λ(x,∆R) =
p2x2+ p0

q4x4+ q2x2+ q0
(24)

with explicit expressions for the coefficientspk and qk

reported in Appendix.

In this regime, due to the decoherence effect in the ground
state (Γ 6= 0), the fluorescent signal described in Eq. (24) is
not equal to zero at∆R = 0, in contrast with (3) and (20). The
amplitude can be found as follows :

Ã = W̃max −W̃0 (25)

whereW̃max = 〈W̃Λ〉v(∆R = ∆′
R) with ∆′

R the position of the
fluorescence maximum. Here, the latter does not equal to
±2R as for the closed scheme.̃W0 = 〈W̃Λ〉v(∆R = 0) is the
level of the signal at the center of the two-photon resonance.

Actually, the CPT effect can be "switched off" to calculate
the first term in Eq. (25). This trick gives a quite acceptable
result and means that the two light waves can be assumed
to be mutually incoherent (for example, there could be two
different laser sources without any phase lock). In this situation
the low-frequency coherence between the ground states|1〉
and |2〉 is not induced (see Fig.1) and the dark resonance
does not occur. To consider this regime in our theoretical
model, we can just assume the low-frequency coherence (i.e.
corresponding density matrix elements) to be null. Despitethe
use of this approximation, the analytical integration of Eq.
(25) over the Maxwellian distribution still leads to a complex
expression. Taking into account the assumptions mentionedin
the beginning of this paragraph, the latter is simplified to :

W̃max ≈
Γ̃ξ

(1−β)
[
x0+(1−β)ξ

] (26)

where Γ̃ = Γ/γ. A new time-of-flight saturation parameter
(instead of the one given in Eq. (9)) has been introduced such
that :
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Fig. 4. Amplitude of the dark resonance in a vacuum vapour cell for a
singleopen Λ-scheme versus the light-wave intensity. The Doppler halfwidth
is kv0 = 50γ and the time-of-flight relaxation rate isΓ = 0.02γ. The solid line
corresponds to the numerical calculation on the basis of theexpressions (8)
and (24). The dash-dotted blue line corresponds to the simplest approximate
expression (30). The red dashed curve represents the law (29).

ξ =
√

πξ0 =
√

πγτI =
√

πI/Γ̃ (27)

with ξ0 used in Eq. (9).
For the center of the resonance, we obtain a very similar

expression :

W̃0 ≈
Γ̃ξ√

2(1−β)
[
x0+

√
2(1−β)ξ

] (28)

Both expressions (26) and (28) give the amplitude :

Ã ≈ Γ̃ξ
(1−β)

[
1[

x0+(1−β)ξ
]−

−
√

1−β√
2
[
x0+

√
2(1−β)ξ

]
]

(29)

Actually, under the low and moderate intensities (up to
several tens of mW/cm2), even if the conditionξ ≪ x0 is not
satisfied, we can use a much simpler expression :

Ã ≈
(

1−
√

1−β
2

)
Γ̃ξ

x0(1−β)
(30)

Let us now clarify the value of approximations (29) and
(30) with the help of plots. In typical experiments using Rb
or Cs thermal vapors and light beam diameters in the 1 – 10
mm range, we approximately haveΓ ≃ (0.5−5)×10−2γ and
x0 = kv0/γ ≈ 50. The branching ratio, as explained further, is
assumed to beβ=5/24.
Figure 4 presents the approximate analytical expressions (29)
and (30), together with the exact numerical calculation based
on equations (24) and (8). Compared to the case of the closed
Λ-scheme (Fig. 3), Fig. 4 reveals in the case of the openΛ-
scheme a dramatic reduction of the CPT signal amplitude.
As shown on Fig. 4, the obtained formula give quite good
analytical approximations for the dark resonance amplitude
in a wide range of light intensitiesI = (R/γ)2. The simplest



analytical expression, given in Eq. (30), can be used to
estimate the CPT amplitude up to relatively large intensity
values such thatI ≈ 10. Such values, corresponding to several
hundreds of mW/cm2, are not often used in the experiments.

III. C OMPARISON BETWEEN THEORY AND EXPERIMENTAL

TESTS

A. Connexion of theory with experiments

The present section III is devoted to comparison between
theoretical and experimental results. In a first step, theoreti-
cal parameters likeI j = (R j/γ)2, Γ etc. must be connected
with those used in the experiments. In particular, during the
derivation of expressions (29) and (30), we have assumed
both ground-state sub-levels in theΛ-scheme to have initial
populations equal to 1/2. In the case of a real alkali atom,
one should multiply (29) and (30) by the coefficientα defined
as :

α =
(
Fg1+Fg2+1

)−1
(31)

with Fg1,g2 the total angular momenta of the hyperfine levels
in the ground state. For133Cs, we haveα = 1/8.

In present experiments, the CPT resonance is detected by
monitoring the light power transmitted through the cell. With
the help of Maxwell equations, the transmitted light wave
intensity can be written in the form of quadratures :

JL(∆R) = J0exp
[
−
∫ L

0
η
(
J(z)

)
dz
]
, (32)

where J0 is the incident light beam intensity andJL is the
output intensity at the output of the cell, withL the cell length.
The functionη(z) is the absorption index per unit length. As
mentioned in the introduction, the medium is considered to be
optically thin. In such a case, the absorption index is small
enough. Moreover, the latter does not depend significantly on
the z-coordinate. For this purpose, this dependence is neglected
here. Therefore, we can write :

JL(∆R)≈ J0
(
1−ηL

)
= J0

(
1−σnL

)
, (33)

with σ the absorption cross section andn the atomic density
in the cell. The optical Bloch equations lead to :

σ =
2πc~γ

λ
× 〈W̃Λ〉v

(
J0
)

J0
, (34)

with c the speed of light and~ = h/(2π) with h the Planck
constant andW̃Λ extracted from (24).

The dark resonance amplitudeÃT observed in the transmit-
ted signalJL(∆R) is determined by the expression :

ÃT = J0nL
(
σmax −σ0

)
. (35)

Hereσ0 is the cross section at the center of resonance (∆R =
0), σmax corresponds to the maximum level of the light wave
absorption and defines a wide background pedestal of the dark
resonance.
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Involving the approximate solution (30), expressions (34)
and (35) together with (25) and (31) result in the expression:

ÃT =
2παc~γnL
λx0 (1−β)

×
(

1−
√

1−β
2

)√
πΓ̃ I . (36)

The experimental intensityJ is defined from the intensityI
used in the theory such that :

I ≡ (
R
γ
)2 =

J
8Js

×Ψ , (37)

where Js is the saturation intensity determined here in the
following way [61] :

Js =
2π2

~cγ
3λ3 , (38)

For cesium D1 line, we get Js ≈7900 erg/s/cm2=0.79
mW/cm2. The parameterΨ in (37) contains information about
the relative strength of a certain dipole transition

∣∣Fg,mg
〉
→∣∣Fe,me

〉
with mg,e the magnetic quantum numbers of the

ground (g) and excited (e) states (see Fig.5) :

Ψ =
(
2Je +1

)(
2Fg +1

)(
2Fe+1

)
×

×
(

Fe 1 Fg

−me 1 mg

)2{
Je Fe In

Fg Jg 1

}2

. (39)

HereIn is the nucleus spin.Jg, Je are the total angular momenta
of electrons for the ground and excited states respectively.
Since theσ+σ+ excitation configuration is studied, we took
q = 1 in Eq. (39), withq the light polarization component
in the circular basis (in general,q = ±1,0). The standard
notations(. . . ) and{. . .} for 3 jm− and 6j−symbols are used
[62].
Figure 5 shows the partial structure of energy levels of the



Cs D1 line (Fe =4 excited state). The strengthΨ = 5/24 is
the same for both transitions induced in theΛ-scheme shown
in Fig. 5. Therefore, as already assumed above,I1 = I2 ≡ I.
The total intensity of the light field isIt = 2I (Jt = 2J).
Expression (39) coincides with the effective branching ratio
for a single transition of theΛ-scheme. The branching ratios
for both transitions of the scheme are equal toβ1 = β2 = 5/24.
Expressions (36)–(38) lead to the square-root law dependence
of the CPT amplitude to the intensityJ, such as :

ÃT =
3αλ2nL

4x0

(√
2

1−β
−1

)
×
√

Γ̃JsΨ
2π(1−β)

Jt , (40)

B. Description of the experimental setup

We have implemented an experimental setup, similar to the
one described in [63], to perform CPT spectroscopy in a Cs
vapor microfabricated cell.

Fig. 6. Experimental setup to perform CPT spectroscopy. DFB: distributed
feedback laser, EOM : Mach-Zehnder electro-optic modulator, LO : local
oscillator, AOM : acousto-optic modulator, RF : radiofrequency synthesizer,
Cell : cell under test, PD : photodiode

The laser source is a 1 MHz-linewidth distributed feedback
(DFB) diode laser, tuned on the Cs D1 line at 895 nm. A 70 dB
optical isolation stage is implemented at the output of the laser
source to prevent optical feedback. The laser light is injected
into a fibered Mach-Zehnder EOM (EOM iXblue Photline
NIR-MX800-LN-10). The EOM is driven by a microwave
frequency synthesizer at 4.596 GHz such that both first-order
optical sidebands are frequency-split by 9.192 GHz and can
be used for CPT interaction. Dedicated servo systems are used
to reduce greatly the optical power contained in the optical
carrier and higher-order harmonics. This allows to obtain a
clean optical spectrum, composed roughly of only two optical
lines. At the output of the EOM, the light is sent into an
acousto-optical modulator which can be used to control the
laser power. The light is then sent into a quarter-wave plate
to obtain a circularly-polarized laser beam and crosses a 2-
mm diameter and 1.4-mm length Cs vapor microfabricated
cell [64]. The beam diameter has been measured to be 1.21
mm using a beam profiler. The cell is temperature-stabilizedat
75◦C. On the basis of measured linear absorption profiles, the
atomic density was estimated to be about 1.2× 1012 at.cm−3.
At this temperature, the optical absorption is measured to
be about 40 %, corresponding to a non-negligible optical
thickness. A static magnetic field of 10.4 G is applied in
order to separate well Zeeman transitions and isolate the 0-
0 clock two-photon transition. During the experiments, the
laser frequency is connected to the|F = 4〉 excited state. The
frequency of the microwave frequency synthesizer is swept
over a few MHz in order to detect the CPT resonance in the
bottom of the CPT-resonant absorption line. Once recorded,

the CPT resonance is fitted by a Lorentzian function in order
to extract its main characteristics (linewidth and amplitude).
Such measurements are performed for a wide range of laser
intensities, up to about 60 mW/cm2.

C. Experimental results and comparison with theory

Figure 7 plots the evolution of the CPT amplitude versus the
laser intensity, in the case of a circular polarization scheme.
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Fig. 7. Comparison between theoretical curves and experimental data (black
squares). Amplitude of the CPT resonance versus the total laser intensityJt of
the laser field. The solid orange line is for numerical calculations on the basis
of equations (24) and (8). The time-of-flight relaxation constant is taken to be
Γ = 0.06γ. The dashed black line shows the result of the analytical expression
reported in (40).

Experimental results are compared with theoretical expec-
tations extracted from analytical results and numerical simu-
lations. Numerical calculations are found to be in correct
agreement with the experimental data. The agreement between
analytical formula and experimental data is less satisfying.
Several reasons can explain this discrepancy. The first sug-
gestion is that the optical thickness of the medium is not
negligible in our experimental test. The medium can not be
fully considered as an optically thin medium as assumed in the
theoretical section. The second and the most valuable reason
is that the calculation a priori of an appropriate value for the
time-of-flight relaxation constantΓ is difficult. Indeed, our
theory relies on the standard theoretical approach of relaxation
constants, often used to obtain analytical results [28], [30],
[29]. However, strictly speaking, the validity of this approach
is higher for light beams with a large-enough beam diameter
and exhibiting a step-like intensity profile. In the latter case,
the constantΓ can be estimated on the basis of well-known
expressions (for instance, see [61]). The acceptable results can
be also obtained for the case of small time-of-flight saturation
parameter (9) [59]. At the same time, it is well known that
in the general case the relaxation-constants approach may de-
monstrate a significant discrepancy with either real experimen-
tal observations or accurate numerical calculations taking into
account the transit-time effect under the real transverse laser
intensity distribution (e.g., see [45], [65], [66]). This problem
can be really relevant in the case where a narrow Gaussian
beam is used, as actually operated in our experimental setup.
Additionally, our situation is even more complicated through



the use of a miniature vapor cell, which does not allow us using
larger beam diameters (5–10 mm instead of 1.2 mm). Under
these conditions, the assumption in the theoretical section
that the power broadening is the dominant contribution to
the CPT line shape might be distorted due to the interaction
with a beam of finite width [43]. In particular, this is why
the relative discrepancy between the dashed curve and black
squares in Fig. 7 is more noticeable at low light intensity
levels than at the high ones. Nevertheless, we consider that
the agreement between theory and experiments is correct, so
that the derived analytical expression (40) can be used for
estimating the amplitude of CPT resonance in practice.
A last possible reason to explain the discrepancy between
experimental data and the model comes from our theoretical
model in which the multi-level Cs D1 structure is simplified
to a 3-level Λ-model. For example, the particular ground-
state sub-level|Fg = 4,m = 0〉 in Fig. 5 experiences additional
optical pumping due to spontaneous emission from excited-
state sub-levels|Fe = 4,m = 0〉 and |Fe = 4,m = −1〉. Such
processes are not considered in theΛ-scheme approach used
in our theory. Nevertheless, we consider that experimentaland
theoretical results fit correctly and that the derived analytical
expression Eq. (40) can be used for estimating the amplitude
of CPT resonance.
To summarize aforesaid, we can state that in our configuration
the relaxation rateΓ can be considered as a matching parame-
ter to get a good agreement between theory and experiments.
In particular, the numerical calculation presented in Fig.7
has been performed withΓ = 0.06γ. This value gives a good
agreement between the numerical calculation and experimental
data but this regime remains pretty far from the one required
in the theoretical section. We anticipate that a better agreement
between theory and experiments should be obtained using a
laser beam with a larger diameter and a cm-size vapor cell. In
this case, theΓ rate could be estimated a priori as described
in [61].

IV. CONCLUSIONS

We have reported a theoretical and experimental study on
the properties (amplitude and linewidth) of CPT resonances
detected in a vacuum vapor cell, using single or doubleΛ-
schemes. Theoretical results have been obtained in the case
the closed single and doubleΛ-schemes. In the case of an
open singleΛ-scheme, the CPT amplitude vs. light intensity
dependence has been derived and presented in a clear compact
form for the first time. A main feature of the reported approxi-
mate analytical expressions is their validity for a wide range
of light wave intensities. Analytical expressions demonstrate a
good agreement with exact numerical solutions until the power
broadening prevails over the other broadening mechanisms
and until the atomic vapor can be assumed as an optically
thin medium. Experimental results (CPT amplitude), obtained
by performing CPT spectroscopy in an evacuated Cs vapor
microfabricated cell have been reported. A good agreement
with exact numerical calculations is reported. Comparisons
between experimental data and analytical expressions for the
CPT amplitude are found to be acceptable. A better agreement

should be obtained using a regular cm-size vapor cell and a
larger beam diameter.
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APPENDIX

The explicit form for the coefficients in (24) is :

p0 = 4R2Γ
[
4R2Γ+ γ

(
Γ2+∆2

R

)]
×

×
[
4R2γ+Γ

(
γ2+∆2

R

)]
,

p2 = 16R2Γ2γ3(Γ2+∆2
R

)
,

q0 =
[
4R2γ+Γ

(
γ2+∆2)]

{
32R4Γ

(
2Γ+ γ(1−β)

)
+

+Γ(γ+Γ)
(
γ2+∆2

R

)
(Γ2+∆2

R

)
+

+4R2
[
γΓ2(5Γ+ γ(3−2β)

)
+

+∆2(γ2(1−2β)+Γ(γ−2Γ)
)]
}
,

q2 = 8Γγ2

{
Γ(γ+Γ)

[
8R4+

(
γ2−∆2

R

)(
Γ2+∆2

R

)]
+

+4R2
[
Γ2γ
(
3Γ+ γ(2−β)

)
+∆2

R

(
γ2(1−β)+Γ(3γ+Γ)

)]
}
,

q4 = 16Γ2γ4(γ+Γ)
(
∆2

R +Γ2) .
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population trapping linewidths for open transitions : Cases of different
transverse laser intensity distribution,"Phys. Rev. A, vol. 79, 023805,
2009.

Denis V. Brazhnikov was born in Novosibirsk, Russia, in 1982. He received
the master of physics degree from Novosibirsk State Technical University in
2006, and the Ph.D. degree in physics from Institute of LaserPhysics, Siberian
Branch of Russian Academy of Sciences in 2009. He is currently an associate
professor in the Physics Department of Novosibirsk State University and a
senior researcher in the ILP SB RAS. His research interests include theoretical
aspects of high-resolution laser spectroscopy of atoms, coherent population
trapping and related effects, atomic clocks, magnetometers and laser cooling
of neutral atoms.

Grégoire Coget was born in Caen, France, in 1991. He received the Master
degree of Physics (option : Photonics) in 2015 from Université de Rennes,
France. He’s now pursuing a PhD degree at FEMTO-ST, Besançon, France,
working on a high-performance pulsed Cs vapor cell CPT clock. His research
interests include time-frequency metrology, CPT-based vapor cell atomic
clocks and high-resolution laser spectroscopy.

Moustafa Abdel Hafiz was born in Paris, France, in 1989. He received the
Master of physics (Option : quantum devices) from Université Paris 7, France
in 2012. He received his Ph.D. degree in 2017 from Universitéde Franche-
Comté, Besançon, France. His thesis, performed at FEMTO-ST, Besançon,
France, dealt with the development and metrological characterization of a
high-performance CPT-based Cs cell clock.

Vincent Maurice was born in Langres, France, in 1988. He received his
Ph.D. degree in 2016 from Université de Franche-Comté, Besançon, France.
His thesis, performed at FEMTO-ST, Besançon, France, dealtwith the design,
microfabrication and characterization of alkali vapor cells for miniature atomic
frequency references. V. Maurice is now working as a post-doctoral researcher
at NIST, Boulder, in Atomic Devices and Instrumentation (ADI) Group.

Christophe Gorecki is a Director of Research (DR1) at CNRS. He received
the Ph.D. degree in Optics from Université de Franche-Comté, Besançon,
France in 1983. He joined the CNRS in 1984 as a CNRS Scientist.His
research interests included optical inspection and micro-measurements, ap-
plications of image processing techniques in optical metrology and Optical
Pattern Recognition methods. From 1995 to 1998, he worked atthe University
of Tokyo where he started to develop MOEMS architectures formicro-
and nano-sensors. He has to his credit more than 200 technical papers
and three book chapters. He has been a reviewer for several international
journals and has organized and chaired various SPIE conferences. He is a
Fellow of the SPIE and the elected member of SPIE Board of Directors.
He has supervised several European and national projects inthe field of
micro and nanotechnologies and coordinated the collaborative project MAC-
TFC, dedicated to the development of a European miniature atomic clock. C.
Gorecki has received in 2012 the annual prize of the EuropeanSociety of
Optics.

Rodolphe Boudotwas born in Dijon, France, in 1980. He received the M.S.
degree in electronics in 2003 and the Ph.D. degree in engineering sciences in
2006, both from Université de Franche-Comté, Besançon, France. His PhD
thesis, performed at FEMTO-ST, Besançon, France, dealt with the develop-
ment and metrology of low phase noise microwave sapphire oscillators. From
2007 to 2009, R. Boudot spent a 2-year post-doctoral position at the Systèmes
de Référence Temps-Espace laboratory (SYRTE, Paris, France), working on a
pulsed Cs vapor cell clock based on coherent population trapping (CPT). Since
October 2008, R. Boudot has been a permanent CNRS researcherat FEMTO-
ST. His research interests include CPT-based vapor cell atomic clocks, low
noise electronics, oscillators and frequency synthesizers, high-resolution laser
spectroscopy and more recently cold-atoms and ion-trappedatomic clocks.


