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Abstract: This paper proposes a simple solution regarding the stabilization of a quadcopter
unmanned aerial vehicle endowed with a manipulator arm. The manipulator robot is attached
below the rotors plane and this one induces torques producing stability issues. The present
study deals with the stabilization of the full system (quadcopter and arm) by means of a set
of nonlinear control techniques. First, a mathematical model is proposed for the system. Then,
an attitude control, consisting on a bounded quaternion-based feedback allows the quadcopter
attitude stabilization while compensating adverse torques from manipulator’s motion. A simple-
to-implement strategy is proposed to estimate the actual torque for compensation purposes.
Then, the formulation of a nonlinear control, which drives the aerial vehicle to a desired position
is presented. Both controls consist on saturation functions. Simulation results validate the
proposed control strategy and compare the results with different manipulator torque estimations.

Keywords: Aerial Manipulation, Euler-Lagrange and Quaternion Modeling, Stochastic vs
Deterministic State Estimation, Nonlinear Control

1. INTRODUCTION

Aerial manipulation has been an active area of research
in recent times, mainly because the active tasking of Un-
manned Aerial Vehicles (UAVs) increases the employabil-
ity of these vehicles for various applications. For active
task one would consider manipulation, grasping, trans-
portation, etc.
Unlike fixed wings UAVs, that are incapable of driving
their velocity to zero, VTOL (Vertical Take-Off and Land-
ing) vehicles with four, six, or eight rotary wings (af-
terwards called multirotors) are ideally suited for aerial
manipulation or grasping. However, there are many chal-
lenges in aerial grasping for these vehicles. The biggest
challenge arises from their limited payload. While multiple
robots can carry payloads with cables or grippers Mellinger
et al. (2010), their end effectors and grippers have to be
light weight themselves and capable of grasping complex
shapes. Secondly, the dynamics of the robot is significantly
altered by the addition of payloads. Indeed this is also an
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attraction in assembly because aerial robots can use this to
sense disturbance forces and moments, like in Mohammadi
et al. (2016). Besides, for payload transport, it is necessary
that the robots are able to estimate the inertia of the
payload and adapt to it to improve tracking performance.
Numerous approaches have been proposed to deal with
such a problem. In Orsag et al. (2013a), a Lyapunov based
model Reference Adaptive Control is used to stabilize a
quadrotor with a multi degree of freedom (DOF) manipu-
lator. Jimenez-Cano et al. (2013) presents a Newton-Euler
approach to model and control a quadrotor through a Vari-
able Parameter Integral Backstepping (VPIB). Kim et al.
(2013) presents aerial manipulation using a quadrotor and
a 2-DOF robot arm. The dynamic model of the whole
system is obtained by the Euler-Lagrange formulation.
Then, an adaptive sliding mode controller is designed.
The effectiveness of the proposed method is experimentally
showed by picking up and delivering an object. In Thomas
et al. (2014) the problem is solved through an autonomous
avian-inspired grasping method.
Finally, in Yuksel et al. (2016) a new class of aerial
manipulator is presented, which is called protocentric. It



consists on a PVTOL equipped with parallel manipulator
arms attached to the Center Of Mass (CoM) of the aerial
vehicle. A control law has been proposed for the case of
rigid joints and validated through simulations.

The present paper proposes a bounded quaternion-based
attitude controller tolerant to external disturbances via
the observer-based compensation of the manipulator’s
torque. For this, a mathematical model considering the
couplings between the aerial and manipulation subsystems
is presented. Moreover, unlike the cited works, our design
for attitude stabilization is based on quaternion formalism,
avoiding singularities. Concerning the observer scheme,
two approaches are presented to evaluate their effective-
ness for the estimation of the manipulator’s torque: a
Luenberger observer and a linear Kalman filter.

With quaternion parametrization one proposes a construc-
tive control law for the attitude and position stabilization.
First, the design of a smooth almost globally asymptot-
ically control law for attitude stabilization which takes
into account the arm motion effects is introduced. Then, a
globally asymptotically nonlinear controller for the trans-
lational dynamics is proposed. In general the control law
is based in the usage of nested and sum of saturation func-
tions. Simulation results validate the proposed strategy.

The paper is structured as follows. In section 2, the atti-
tude model of the quadcopter with the manipulator arm
is presented. Section 3 presents two strategies to estimate
the angular position of each link in the robot manipu-
lator. Then, the attitude and position control laws are
formulated in section 4. Section 5 presents the simulation
scenario and results. Finally, section 6 .

2. MATHEMATICAL MODELING

2.1 Unit quaternion and attitude kinematics

Consider two orthogonal right-handed coordinate frames:
the body coordinate frame, B(xb, yb, zb), located at the
center of mass of a rigid body and the inertial coordinate
frame, N(xn, yn, zn), located at some point in the space
(for instance, the earth NED frame). The rotation of
the body frame B with respect to the fixed frame N is
represented by the attitude matrix R ∈ SO(3) = {R ∈
R3×3 : RTR = I, detR = 1}.
The cross product between two vectors ξ, % ∈ R3 is
represented by a matrix multiplication [ξ×]% = ξ×%, where
[ξ×] is the well known skew-symmetric matrix.

The n-dimensional unit sphere embedded in Rn+1 is de-
noted as Sn = {x ∈ Rn+1 : xTx = 1}. Members of SO(3)
are often parameterized in terms of a rotation β ∈ R about
a fixed axis ev ∈ S2 by the map U : R×S2 → SO(3) defined
as

U(β, ev) := I3 + sin(β)[e×v ] + (1− cos(β))[e×v ]2 (1)

Hence, a unit quaternion, q ∈ S3, is defined as

q :=

(
cos β2
ev sin β

2

)
=

(
q0
qv

)
∈ S3 (2)

where qv = (q1 q2 q3)T ∈ R3 and q0 ∈ R are known as
the vector and scalar parts of the quaternion respectively.
The quaternion q represents an element of SO(3) through
the map R : S3 → SO(3) defined as

R := I3 + 2q0[q×v ] + 2[q×v ]2 (3)

Remark 2.1. R = R(q) = R(−q) for each q ∈ S3, i.e. even
quaternions q and −q represent the same physical attitude.

Denoting by ω = (ω1 ω2 ω3)T the angular velocity
vector of the body coordinate frame, B relative to the
inertial coordinate frame N expressed in B, the kinematics
equation is given by(

q̇0
q̇v

)
=

1

2

(
−qTv

I3q0 + [q×v ]

)
ω =

1

2
Ξ(q)ω (4)

The attitude error is used to quantify mismatch between
two attitudes. If q defines the current attitude quaternion
and qd the desired quaternion, i.e. the desired orientation,
then the error quaternion that represents the attitude error
between the current orientation and the desired one is
given by

qe := q−1d ⊗ q = (qe0 q
T
ev )T (5)

where q−1 is the complementary rotation of the quaternion
q which is given by q−1 := (q0 − qTv )T and ⊗ denotes the
quaternion multiplication, Shuster (1993).

2.2 Model of a quadcopter carrying a manipulator arm

The attitude dynamics and kinematics for the quad-
copter have been reported in many works e.g. Guerrero-
Castellanos et al. (2008); Alaimo et al. (2013). In these
works it is considered that the quadcopter mass distri-
bution is symmetric. However, the mass distribution of a
quadcopter with a manipulator is no longer symmetrical
and varies with the movement of the arm. Consider a
quadcopter with a manipulator arm with n links attached
to its lower part. If the dynamics of the arm is neglected,
the attitude kinematics and dynamics is given by(

q̇0
q̇v

)
=

1

2
Ξ(q)ω (6)

Jω̇ = −ω×Jω + ΓT (7)

where J ∈ R3×3 is the inertia matrix of the rigid body
expressed in the body frame B and ΓT ∈ R3 is the vector
of applied torques. ΓT depends on the (control) couples
generated by the actuators, the aerodynamic couples such
as gyroscopic couples, the gravity gradient or, as in the
case of the present work, the couple generated by the
movement of a robot manipulator placed under the body.
Here, only the control couples, gyroscopic couples and the
couple generated by the manipulator is considered in the
control design. Consequently,

ΓT = Γ + Γarm + ΓG (8)

where Γ and ΓG are the control torques and the vector
of gyroscopic couples, Castillo et al. (2004), respectively.
On the other hand, the vector Γarm = (τ1, τ2, τ3)T is the
torque exerted by the total propulsive force being applied
at the quadcopter geometric center which is displaced from
the center of mass.

The total torque exerted by the manipulator arm can be
found from its dynamic model by:

M(θai)θ̈ai + C(θai, θ̇ai)θ̇ai +N(θai, θ̇ai) = τi (9)

where θai, θ̇ai and θ̈ai are the angular position, velocity and
acceleration vectors, respectively on each link, M ∈ R3×3

is the manipulator inertia matrix, C is a matrix containing
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Figure 1. Manipulator arm with two degrees of freedom.

the Coriolis and centrifugal force terms, N includes gravity
terms acting at the joints and τi is the vector of the
actuator torques.

To derive the dynamics of the system, the Lagrange
equation is used

d

dt

∂L
∂θ̇ai

− ∂L
∂θai

= τi (10)

L = K − U (11)

where K and U are the total kinetic and potential energy
of the system and τi represents the generalized force.

The kinetic energy can be computed from:

K =
1

2
miv

T
i vi +

1

2
Iiθ

2
ai (12)

where mi, vi and Ii are the mass, the velocity vector and
the inertia moments for every link in the manipulator,
respectively.

Finally, the gravitational forces on the manipulator are
computed from:

N(θai, θ̇ai) =
∂U

∂θai
(13)

where U : Rn → R is the potential energy of the manip-
ulator. For the two link-manipulator under consideration
here, the potential energy is given by

U(θai) = U(θa1) + U(θa2) (14)

Since each link has its own frame, the computed torque
has a rotation matrix according to the axis in which
the links are moving. Besides, the quadcopter rotation
matrix is equally considered. Then, the computation of the
manipulator’s torque considering the dynamics is given by:

Γarm = R(τ1 +R1τ2) (15)

where R was given by (3) and R1 is a rotation matrix on
the y axis.

In this case, let consider the scheme in Fig. 1, which
shows a 2-dof arm manipulator, where lc1 and lc2 are the
distances from the respective joint axes to the center of
mass of each link, l1 and l2 are the length of the links,
and θai measures the angular displacement in the x axis.
Then, since servomotors are used as actuators for the
manipulator arm, these can be considered as first order
systems. For this, a parameter identification is performed.
In general, the found system has the form:

θaim =
Ku(t)− aθ̇aim

a
(16)

where θaim and θ̇aim are the angular position and velocity
of the servo, a is a time constant linked to the time
response of the servo, K is the gain of the system and
u(t) is the velocity input generated by the torque.

3. ESTIMATION STRATEGY AND TORQUE
RECONSTRUCTION

This section presents two observers schemes to estimate
joints angular displacements: a Luenberger state observer
(LSO) and an augmented-state Kalman filter (ASKF).
The estimation of joint angles in the manipulator arm is
computed combining the data coming from the first order
model of the manipulator actuators and the end effector
position data tracked by a positioning system, since the
first order model does not fully describe the behavior of
the arm manipulator (non-modeled dynamics, actuators
malfunction, etc.). Then, in order to know the manipulator
links angular positions with respect to the base body
(quadcopter), the inverse kinematics of the manipulator
arm is used.

3.1 Manipulator links Luenberger observer design

The objective of the observer is to estimate the angular
positions and velocities on the arm manipulator, using the
expression in (16).

A positioning system is used to obtain the end-effector
position information and then, the inverse kinematics is
applied to know the angle on each link. With this in
consideration, the expression that describes a link angle
is given by:

θaV = θa + µV (17)
where θaV is the estimated angle computed with the
positioning system and the inverse kinematics, θa is the
real angle and µV is a noise of minimal value.

On the other hand, the observer allows the computation
of the angular velocity. The expressions that represent the
observer are given by:

˙̂
θδ = aθ̂δ +Kuδ + L(θaV − θ̂) (18)

θ̂ = θ̂V (19)

where θ̂δ is the estimated angle on a link in the manip-
ulator, a and K are parameters of the first order system
previously presented and L is a positive tuning parameter.

3.2 Augmented-state Kalman Filter

An augmented-state discrete linear Kalman filter (AS-
LKF) is designed regarding the estimation of the distur-
bances arising during the arm’s planar joint displacement.
The disturbed nominal model (16) is extended to include
the velocity couplings between the aerial robot and the
robotic arm

θ̇aim = −aθaim + biui(t) + ρ(t)i (20)

where ρ(t) corresponds to external disturbances (e.g. wind
gusts), and whose dynamics is considered as

ρ̇ ≈ 0 (21)

Thus, it is possible to rewrite (20) and (21) into state-space
representation(

θ̇aim
ρ̇i

)
=

(
−ai ρi

0 0

)(
θaim
ρi

)
+

(
ki
0

)
u(t) (22)

The Linear Kalman Filter (LKF) is derived from a contin-
uous system

ẋ(t) = Ax(t) +Bu(t) + Pρ+Mα(t)
y(t) = Cx(t) + β(t)

(23)



Figure 2. Observer-based manipulator’s torque reconstruc-
tion

that considers that the pair AC verifies the controlla-
bility property. The signals α (unmodeled dynamics and
parametric uncertainties) and β (sensors noise) stand
for a white Gaussian random process with zero-mean
(E [α(t)] = 0) and E [β(t)] = 0)) with constant power spec-
tral density (PSD)W (t) and V (t) defining respectively, the
process covariance matrix,

Q = E
[
α(t)α(t+ τ)T

]
= W∆(τ) (24)

, and the sensor covariance matrix,

R = E
[
β(t)β(t+ τ)T

]
= V∆(τ) (25)

It is also assumed that both stochastic processes are not
correlated, i.e.

E
[
α(t)β(t)T

]
= 0 (26)

Including the disturbance as state the transition matrix is
augmented and the state-space equations are written as

Ẋe(t) =AXe(t) + B(ui) +Mαi (27)

Y e(t) = CXe(t) + βi (28)

In the previous regard, let us modify the extended model
of the servomotor (22)(
θ̇aim
ρ̇i

)
=

(
−ai ρi

0 0

)(
θaim
ρi

)
+

(
ki
0

)
u(t) +

(
1 0
0 1

)(
αθ
αρ

)
(29)

Finally, the classical linear Kalman filter is applied to (29).

3.3 Torque Reconstruction

Based on the information provided by the LSO and ASKF
presented before, it is possible to compute the manipulator
torque from the equation (15) and use this term as Γarm
into the attitude control law (32).

4. ATTITUDE AND POSITION CONTROL

4.1 Attitude Control: Problem statement

The objective is to design a control law which drives the
quadcopter carrying the manipulator arm to attitude sta-
bilization. Let qd denotes the constant quadcopter stabi-
lization orientation, then the control objective is described
by the following asymptotic conditions

q → [±1 0 0 0]T , ω → 0 as t→∞ (30)

Furthermore, it is known that actuator saturation reduces
the benefits of the feedback. Then, besides the asymptotic
stability, the control law also takes into account the
physical constraints of the system in order to apply only
feasible control signals to the actuators.

xb

zb

ybmg

φ
θ

ψ

Figure 3. Schematic configuration of a quadrotor carrying
a manipulator arm.

4.2 Attitude control with manipulator arm

In this subsection, a control law that stabilizes the system
described by (6) and (7) is proposed. The goal is to design
a control torque that is bounded.

Definition 4.1. Given a positive constantM , a continuous,
nondecreasing function σM : R→ R is defined by

(1)σM = s if |s| < M ;
(2)σM = sign(s)M elsewhere.

(31)

Note that the components of Γarmi
are always bounded,

i.e. | Γarmi
|< δi. Then, one has the following result.

Theorem 4.2. Consider a rigid body rotational dynamics
described by (6) and (7) with the following bounded
control inputs Γ = (Γ1 Γ2 Γ3)T such that

Γi = −σMi2
(Γarmi

+ σMi1
(λi[ωi + ρiqi])) (32)

with i ∈ {1, 2, 3} and where σMi1
and σMi2

are satura-
tion functions. Assuming δi < Mi2 − Mi1 and Mi1 ≥
3λiρi. λi and ρi are positive parameters. Then the inputs
(32) asymptotically stabilize the rigid body to the origin
(1 0T 0T )T (i.e. q0 = 1, qv = 0 and ω = 0) with a domain
of attraction equal to S3 × R3 \ (−1 0T 0T )T .

4.3 Position control: Problem statement

The objective is to design a control law which stabilizes the
quadcopter to a desired position. Once the control law has
stabilized the attitude of the system, the position control
law should stabilize the quadcopter to a desired position,
limt→∞(p,v) = (pd,0).

4.4 Position stabilization strategy

The schematic representation of a quadcopter carrying
a manipulator arm can be seen in Fig. 3, where the
inertial reference frame N(xn, yn, zn), the body reference
frame B(xb, yb, zb), the force u (thrust) and the weight
vector mg are depicted. The dynamics of the whole system
is obtained with the Newton-Euler formalism and the
kinematics is represented using the quaternions formalism,
given by

ΣT :


ṗ = v

mT v̇ = −mTg +R

(
0
0
u

)
(33)

ΣO :

{
q̇ = 1

2Ξ(q)ω
Jω̇ = −ω×Jω + ΓT

(34)



where p and v are linear position and velocity vectors, mT

is the total mass of the system, g is the gravity, R is the
rotation matrix, given in (3).
Note that the rotation matrix R can also be given in
function of the Euler angles, given in Castillo et al. (2004).

Now, assume that using the control law (32) one can
stabilize the yaw dynamics, that is ψ = 0, then after a
sufficiently long time, system (33) becomes:(

ṗx
ṗy
ṗz

)
=

(
vx
vy
vz

)
, (35)

(
v̇x
v̇y
v̇z

)
=

 − u
mT

sin θ
u
mT

sinφ cos θ
u
mT

cosφ cos θ − g

 (36)

With an appropriate choice of the target configuration, it
will be possible to transform (35)-(36) into three indepen-
dent linear triple integrators. For this, take

φd := arctan

(
r2

r3 + g

)
,

θd := arcsin

(
−r1√

r21 + r22 + (r3 + g)2

) (37)

where r1, r2 and r3 will be defined after. Then, choose as
positive thrust the input control

u = mT

√
r21 + r22 + (r3 + g)2 (38)

By taking (35) and (36), it follows:

Σx :

{
ṗ1 = p2
ṗ2 = p3
ṗ3 = r1

Σy :

{
ṗ4 = p5
ṗ5 = p6
ṗ6 = r2

Σz :

{
ṗ7 = p8
ṗ8 = p9
ṗ9 = r3

(39)

Note that u will be always positive, and u ≥ mg, in order
to compensate the system’s weight.
Since the chains of integrators given in (39) have the same
form, a control law can be proposed as in Cruz-José et al.
(2012), and can be established by the next theorem:

Theorem 4.3. Consider the quadcopter translational dy-
namics expressed in (35-36). Then, the thrust input u,
with control laws r1, r2, r3 as in (40), where σM1

(·) is
defined in (31) with M1 = 1 and ςi are given by (41),
a(1,2,3), b(1,2,3), c(1,2,3) > 0 tuning parameters.

r1 := −ς1{a3σM1[
1

ς1
(a2p1 + p2 + p3)]

+ a2σM1[
1

ς1
(a1p2 + p3)] + a1σM1[

1

ς1
(p3)]},

r2 := −ς2{b3σM1[
1

ς1
(b2p4 + p5 + p6)]

+ b2σM1[
1

ς2
(b1p5 + p6)] + b1σM1[

1

ς2
(p6)]},

r3 := −ς3{c3σM1[
1

ς1
(c2p7 + p8 + p9)]

+ c2σM1[
1

ς3
(c1p8 + p9)] + c1σM1[

1

ς3
(p9)]}

(40)

ς1 = r̄1/(a1 + a2 + a3),

ς2 = r̄2/(b1 + b2 + b3),

ς3 = r̄3/(c1 + c2 + c3)

(41)

The proof of this Theorem is not presented here, but it can
be derived from the seminal work of Marchand and Hably
(2005), Teel (1992) and Johnson and Kannan (2003).

Remark 4.4. In the above Theorem, the stabilization goal
is the origin. In the case where the asymptotic condition
is different from the origin, the variables p2, p5, p8 should
be replaced in the control law (40) by e1 = p2 − pdx,
e2 = p5 − pdy, e3 = p8 − pdz , respectively. In this case

pdx, p
d
y, p

d
z represent the desired position in the space.

5. SIMULATION RESULTS

This section presents numerical results to show the ef-
fectiveness of the proposed control-estimation strategy of
a quadrotor having a 2-DOF robotic manipulator. The
simulation model features the parameters depicted by the
Table 1.

Table 1.

System Description Value Units

Mass (m) 590 g
Distance (d) 25 cm

Quadcopter Inertial moment x (Jφ) 0.0039 Kg ·m2

Inertial moment y (Jθ) 0.0039 Kg ·m2

Inertial moment z (Jψ) 0.0073 Kg ·m2

Mass ma 160 g
Manipulator Length links l1 and l2 12 cm

5.1 Simulation scenario

A set of simulations were carried out in order to compare
the performance of the proposed control-estimation strate-
gies, scenario 1 and scenario 2, respectively. For the atti-
tude control law (32) and the position control law given in
(40), where max|Γarmi| = 0.65Nm and δi = 0.1, the next
parameters values are proposed: M11,21,31 = 1.5, M12,22 =
1, M32 = 0.8, λ1,2 = 0.035, λ3 = 0.033, ρ1,2 = 10.5 and
ρ3 = 11. For the control (40), a1 = b1 = 5.2, c1 = 0.45,
a2 = b2 = 2.3, c2 = 2, a3 = b3 = 0.1, c3 = 0.05 and r̄1,2,3 =
6. The simulations consists on two parts. First, the links
of the manipulator arm are initialized to θai = (0◦ 0◦)T

and the quadrotor is driven to the position pd = (0 0 1)T ,
then, at time 7s the links change to θai = (45◦ 45◦)T , at
15s the manipulator links perform a signal tracking given
by θai = ((30 sin(2t) + 40)◦ (4 sin(1.5t) + 5)◦)T , at 22s the
angles change to θai = (0◦ 90◦)T . Finally, at time 26s a
constant disturbance is exerted to the manipulator and the
simulation finishes.

Fig. 4 shows the simulation results using the two esti-
mation strategies: Luenberger observer and Kalman filter.
From top to bottom it shows the real and the estimated
manipulator torques, the torque errors, and the angular
and linear positions of the aerial robot during the simula-
tion.

A general comparison can be made from the obtained re-
sults. First, the Luenberger observer or the Kalman filter,
estimate the torque generated by the manipulator arm,
then this estimation is used by the attitude control law as
a feed-forward term in order to compensate the perturba-
tion. From the results, the Kalman filter allows a better
torque estimation. Even more, the Kalman filter is able to
estimate the external constant disturbance. Consequently,
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Figure 4. General behavior of the system during the
simulation.

the computed control signals allow a better orientation
stabilization and then, the non-desired displacement along
the 3d space is reduced.

6. CONCLUSIONS

In this paper, a novel model for a quadcopter carrying
a manipulator arm was proposed. Besides, a control law
was designed to asymptotically stabilize the attitude and
position of the system. Moreover, this work has presented
two strategies for aiding the solution through the design
of a Luenberger observer or a Kalman filter to develop a
feed-forward term which allows the estimation of the mo-
ments and torques exerted by the manipulator. Simulation
results show the effectiveness of the proposed estimation-
control strategy face to the disturbances coming from the
manipulator. With the use of two strategies, a comparison
was performed, showing that the usage of the Kalman
filter allows a better stabilization of the system. As a
future work, experimental torque and mass estimations for
picking up and delivery an object will be pursued.
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