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Abstract— In this paper, we introduce an algorithm to iden-
tify the nonlinear dynamics of a class of precision motion
systems, which is modeled as a Hammerstein system, that is,
a cascade of a Prandtl-Ishlinskii nonlinearity with a linear
system. The hysteresis nonlinearity, the linear system, and the
intermediate signal between them are assumed to be unknown.
The first stage in the algorithm is to identify the linear
plant from measurements of the input and the output of the
Hammerstein system. Then, the unknown intermediate signal
is reconstructed using the output and the identified model of
the linear system. Finally, the Prandtl-Ishlinskii nonlinearity is
estimated using the input and the reconstructed intermediate
signal. We show that under some conditions, the identified
model of the linear plant and the estimated Prandtl-Ishlinskii
nonlinearity are correct up to an unknown scalar factor.

I. INTRODUCTION

Smart material-based actuators, such as piezoceramic
and magnetostrictive actuators, are considered an attrac-
tive choice for applications where fast response with high
resolution is desired. These actuators are used in motion
control applications to deliver fast output displacement in
the micro/nano level in response to an external voltage or
current inputs. Scanning in atomic force microscopy, surface
finishing, micro-machining devices, and manipulating objects
in micro-environments are examples of relevant applications
that integrate smart actuators [1]–[4]. The advantages of
smart material-based actuators, however, come with the
hysteresis nonlinearities, which affect the performance and
cause positioning errors [5], [6].

The dynamics of smart material-based actuators can be
characterized by a Hammerstein system, that is, a cascade
of a hysteresis nonlinearity and a linear dynamic system,
see for example [7], [8]. Different models have been used
to model hysteresis nonlinearties in smart material-based
actuators. These models incldue the Preisach model, Bouc-
Wen model, Prandtl-Ishlinskii model, Maxwell-Slip model,
and Krasnoselskii-Pokrovskii model [9].

The Prandtl-Ishlinskii model has been recently used in
different studies to model hysteresis nonlinearties because
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ST Institute, Besançon France, email: mrakoton@femto-st.fr

M. Al Janaideh is with the Department of Mechanical Engineering,
Memorial University of Newfoundland, St John’s, Newfoundland A1B 3X5,
Canada, maljanaideh@mun.ca.

D. Kundur is with the Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, Ontario M5S 2E4, Canada
dkundur@ece.utoronto.ca.

it can be constructed with a fewer number of parame-
ters than other hysteresis models, and the inverse model
can be obtained analytically. In this study, we consider
a Hammerstein system with a Prandtl-Ishlinskii model to
characterize the dynamics of smart-material based actuators.
This Hammerstein system has been used to model different
smart material-based actuators, see for example [7], [10],
[11]. In [7], [10], the Preisach model has been used to model
the hysteresis nonlinearties of a magnetostrctive actuator. In
[11], the Prandtl-Ishlinskii model has been used to model
the dynamics of the piezo-cantilever beam over different
excitation frequencies.

Identification of Hammerstein systems has been well-
studied in the literature [12]–[18]. However, most studies
consider Hammerstein systems with memeoryless nonlinear-
ities. Identification of Hammerstein systems in the presence
of hysteresis-backlash and hysteresis-relay nonlinearities was
studied in [19]. However, hysteresis-backlash and hysteresis-
relay nonlinearities cannot describe hysteresis nonlinearities
that appear in smart material-based actuators. In [5], pseudo
random binary sequences were used to identify the linear
dynamic part only of the piezoceramic actuator.

In this paper, we consider the problem of identifying
Hammerstein systems with hysteresis nonlinearities. We as-
sume that only the input and the output of the Hammerstein
system are known, where the intermediate signal of the
Hammerstein system is inaccessible. The first stage in the
algorithm is to identify the linear plant from measurements
of the input and the output of the Hammerstein system. Then,
the unknown intermediate signal in the Hammerstein system
is reconstructed using the output and the identified model
of the linear part of the Hammerstein system. Finally, the
hysteresis nonlinearity is estimated using the input and the
reconstructed intermediate signal. The approach presented in
this paper can be applied to Hammerstein systems with either
static or dynamic nonlinearities.

II. THE HAMMERSTEIN SYSTEM WITH THE
PRANDTL-ISHLINSKII MODEL

This section presents the Hammerstein system that char-
acterizes the dynamics of a class of smart material-based
actuators such as piezoceramic and magnetostrictive actua-
tors.

A. The Hammerstein system

Consider the discrete-time SISO Hammerstein system
shown in Figure 1, where u is the input, P : R → R is the



Prandtl-Ishlinskii hysteresis nonlinearity, v is the intermedi-
ate signal, and y0 is the output of the asymptotically stable,
SISO, linear, time-invariant, discrete-time system G. We
assume that G has no poles on the unit circle. Hammerstein
systems with hysteresis nonlinearities have been used in
different studies to model the dynamics of smart material-
based actuators, see for example [5], [7], [10].

B. The hysteresis model

The Prandtl-Ishlinskii hysteresis model has been used to
model nonlinearties in the output displacement of piezoce-
ramic and magnetostrictive actuators [6], [11]. This model is
constructed based on a linear combination of play hysteresis
operators. For all k ≥ 0, the output v of the Prandtl-Ishlinskii
model is represented by [20]

v(k) = P[u](k)
4
=

n∑
i=1

piΓri [u](k), (1)

where n is the number of play operators, p1, . . . , pn are
positive weights, r1, . . . , rn are positive constants represent
thresholds, and Γri [u](k) is the output of the ith play
operator at time step k, where

Γri [u](k) = max{u(k)− ri,min{u(k) + ri,Γri [u](k − 1)}},
(2)

which is also equivalent to

Γri [u](k) = (3)
u(k) + ri, u(k) < u(k − 1) andu(k) + ri < Γri [u](k − 1),

u(k)− ri, u(k) > u(k − 1) andu(k)− ri > Γri [u](k − 1),

Γri [u](k − 1), otherwise,

where for k < 0, we consider u(k) = 0 and Γri [u](k) = 0.
Note that, (3) can be written as

Γri [u](k) = u(k) + qi[u](k), (4)

where

qi[u](k)
4
= (5)

ri, u(k) < u(k − 1) andu(k) + ri < Γri [u](k − 1),

−ri, u(k) > u(k − 1) andu(k)− ri > Γri [u](k − 1),

Γri [u](k − 1)− u(k), otherwise.

Therefore, using (4), (1) becomes

v(k) = αu(k) +

n∑
i=1

piqi[u](k), (6)

P G
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Fig. 1. A SISO Hammerstein System, where u is the input, P is the Prantl-
Ishlanskii hysteresis nonlinearity, v is the unknown intermediate signal, and
y0 is the output of the linear, time-invariant, discrete-time system G.

where α
4
=
∑n
i=1 pi is a positive number. For all j ≥ 0, let

Hj denote the jth Markov (impulse response) parameter of
G. Then, y0 can be written as [21]

y0(k) =

k∑
j=0

Hjv(k − j). (7)

Moreover, using (6), (7) can be written as

y0(k) =

k∑
j=0

Hj(αu(k − j) +Rj(k))

= α

k∑
j=0

Hju(k − j) +

k∑
j=0

HjRj(k), (8)

where Rj(k)
4
=
∑n
i=1 piqi[u](k − j).

III. IDENTIFICATION OF THE LINEAR PART OF THE
HAMMERSTEIN SYSTEM

Consider the FIR model of G given by [21]

Gµ(q)
4
=

µ∑
i=0

Hiq
−i, (9)

where µ ≥ 0 is the order of Ĝµ, q−1 is the backward shift
operator, and for all i = 0, . . . , µ, Hi is the ith Markov
parameter of G.

For all k ≥ 0, (7) can be written as

y0(k) = y0,µ(k) + eµ(k), (10)

where

y0,µ(k)
4
=

min{µ,k}∑
j=0

Hjv(k − j) (11)

is the output of the FIR model (9) of G. The FIR model
output error at time k defined by

eµ(k)
4
= y0(k)− y0,µ(k) (12)

is the difference between the output of G and the FIR model
output at time k. Since G has no poles on the unit circle, then
we can find finite µ such that eµ is negligible [21]. Taking
the limit of (11) as µ tends to infinity, and using (7) yields,
for all k ≥ 0,

lim
µ→∞

y0,µ(k) =

k∑
j=0

Hjv(k − j) = y0(k). (13)

Therefore, for all k ≥ 0,

lim
µ→∞

eµ(k) = y0(k)− lim
µ→∞

y0,µ(k) = 0. (14)

Consider the identification problem shown in Figure 2,
where u is a deterministic signal that is persistently exciting
of a sufficient order, w is a realization of a zero-mean, sta-
tionary, white random process W with Gaussian probability
density function N (0, 1), and the intermediate signal v is
unknown.



Note that (10) can be expressed as

y0(k) = θµφv(k) + eµ(k), (15)

where

θµ
4
=
[
H0 · · · Hµ

]
,

φv(k)
4
=
[
v(k) · · · v(k − µ)

]T
.

Moreover, for all k ≥ 0

y(k) = θµφv(k) + w(k) + eµ(k). (16)

The least squares estimate θ̂µ,` of θµ is given by

θ̂µ,` = arg min
θ̄µ

∥∥Ψy,` − θ̄µΦµ,`
∥∥

F
, (17)

where θ̄µ ∈ R1×µ,

Ψy,`
4
=
[
y(µ) · · · y(`)

]
,

Φµ,`
4
=
[
φµ(µ) · · · φµ(`)

]
,

φµ(k)
4
=
[
u(k) · · · u(k − µ)

]T
,

and ` is the number of samples.
The eigensystem realization algorithm (ERA), which is

based on the Ho-Kalman realization theory, can be used
to construct a transfer function estimate Ĝ of G from the
estimated Markov parameters θ̂µ,` [22], [23].

IV. CONSISTENCY ANALYSIS

It follows from (17) that the least squares estimate θ̂µ,` of
θµ satisfies

Ψy,`Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (18)

Moreover, it follows from (16) that

Ψy,` = θµΦv,` + Ψw,` + Ψeµ,`, (19)

where

Φv,`
4
=
[
φv(µ) · · · φv(`)

]
, (20)

Ψw,`
4
=
[
w(µ) · · · w(`)

]
, (21)

Ψeµ,`
4
=
[
eµ(µ) · · · eµ(`)

]
. (22)

Using (19), (18) becomes

(θµΦv,` + Ψw,` + Ψeµ,`)Φ
T
µ,` = θ̂µ,`Φµ,`Φ

T
µ,`. (23)

Using (6), note that for all k ≥ 0,

φv(k) = αφu(k) + φr(k), (24)

P G
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Fig. 2. Identification of the Hammerstein system consisting of the hysteresis
nonlinearity P and the linear system G, where u and y are used to identify
G, and w is the output sensor noise. The intermediate signal v is unknown.

where

φr(k)
4
=
[ ∑n

i=1 piqi[u](k) · · ·
∑n
i=1 piqi[u](k − µ)

]T
.

(25)

Therefore, using (24) we can write

Φv,` = αΦµ,` + Φr,`, (26)

where

Φr,`
4
=
[
φr(µ) · · · φr(`)

]
. (27)

Then, using (26), (23) can be written as

αθµΦµ,`Φ
T
µ,` + θµΦr,`Φ

T
µ,` + Ψw,`Φ

T
µ,` + Ψeµ,`Φ

T
µ,`

= θ̂µ,`Φµ,`Φ
T
µ,`. (28)

Dividing (28) by ` and taking the limit as ` tends to infinity
yields

αθµ lim
`→∞

1

`
Φµ,`Φ

T
µ,` + θµ lim

`→∞

1

`
Φr,`Φ

T
µ,` + lim

`→∞

1

`
Ψw,`Φ

T
µ,`

+ lim
`→∞

1

`
Ψeµ,`Φ

T
µ,` = lim

`→∞
θ̂µ,` lim

`→∞

1

`
Φµ,`Φ

T
µ,`. (29)

Since w is a realization of a white, zero-mean random
processes and u is deterministic, then

lim
`→∞

1

`
Ψw,`Φ

T
µ,` = 01×µ.

Therefore, (29) becomes

αθµ lim
`→∞

1

`
Φµ,`Φ

T
µ,` + θµ lim

`→∞

1

`
Φr,`Φ

T
µ,`

+ lim
`→∞

1

`
Ψeµ,`Φ

T
µ,` = lim

`→∞
θ̂µ,` lim

`→∞

1

`
Φµ,`Φ

T
µ,`. (30)

Since u is a persistently exciting signal of sufficient order,
then

Q
4
= lim
`→∞

1

`
Φµ,`Φ

T
µ,`

has full rank. Therefore, multiplying (30) by Q−1 from the
right yields

αθµ + θµRQ
−1 + lim

`→∞

1

`
Ψeµ,`Φ

T
µ,`Q

−1 = lim
`→∞

θ̂µ,`, (31)

where
R
4
= lim
`→∞

1

`
Φr,`Φ

T
µ,`.

Note that

R = lim
`→∞

1

`
Φr,`Φ

T
µ,`

= lim
`→∞

1

`

 r(µ) · · · r(`)
...

. . .
...

r(0) · · · r(`− µ)


 u(µ) · · · u(0)

...
. . .

...
u(`) · · · u(`− µ)



= lim
`→∞

1

`



∑̀
j=µ

r(i)u(i) · · ·
∑̀
j=µ

r(i)u(i− µ)

...
. . .

...∑̀
j=µ

r(i− µ)u(i) · · ·
∑̀
j=µ

r(i)u(i)


.

(32)



Moreover, note that

Q = lim
`→∞

1

`
Φµ,`Φ

T
µ,`

= lim
`→∞

1

`

 u(µ) · · · u(`)
...

. . .
...

u(0) · · · u(`− µ)


 u(µ) · · · u(0)

... · · ·
...

u(`) · · · u(`− µ)



= lim
`→∞

1

`



∑̀
j=µ

u(i)2 · · ·
∑̀
j=µ

u(i)u(i− µ)

...
. . .

...∑̀
j=µ

u(i)u(i− µ) · · ·
∑̀
j=µ

u(i)2


.

(33)

Note from (32) and (33) that if the entries of R are much
smaller than the entries of Q, then RQ−1 can be neglected.
Therefore we choose the amplitude of the input signal u to be
as large as possible. Assuming that RQ−1 can be neglected,
(31) becomes

αθµ + lim
`→∞

1

`
Ψeµ,`Φ

T
µ,`Q

−1 ≈ lim
`→∞

θ̂µ,`. (34)

Note from (14) and (22) that, as µ increases, the entries of
Ψeµ,` become smaller. Therefore, we choose µ to be large
enough such that

lim
`→∞

1

`
Ψeµ,`,µΦT

u,`,µ ≈ 01×(µ+1). (35)

Therefore, (34) becomes

lim
`→∞

θ̂µ,` ≈ αθµ. (36)

It follows from (36) that θ̂µ,` is approximately a semiconsis-
tent estimate of θµ, that is, lim`→∞ θ̂µ,` is a correct estimate
of θµ up to an unknown scalar factor.

V. IDENTIFICATION OF THE HYSTERESIS NONLINEARITY

Identification of the hysteresis nonlinearity is performed
by first estimating the unknown intermediate signal v, and
then using the input u and the estimated intermediate signal
to construct an estimate of the hysteresis nonlinearity.

Note that, if we use y as an input to the transfer function
G−1 = 1/G, then the output of G−1 is the unknown
intermediate signal v. Assuming that Ĝ is an estimate of the
transfer function G, then using y as an input to the transfer
function Ĝ−1 = 1/Ĝ, the output of Ĝ−1 is an estimate v̂ of
the unknown intermediate signal v. However, if Ĝ is strictly
proper, then Ĝ−1 is improper, that is, noncausal. Moreover,
if Ĝ has a nonminimum-phase zero, that is, a zero that is
outside the closed unit disk, then Ĝ−1 is unstable. In order
to simulate Ĝ−1 with y as an input, we need to circumvent
these two problems.

Noncausal FIR models have been used to obtain asymp-
totically stable approximations of unstable and noncausal
systems [21], [24]. A noncausal FIR model of a transfer
function G is a truncation of the Laurent expansion of G in
an annulus that contains the unit circle [21].

A. Asymptotically Stable Inversion of G

Let A(ρ1, ρ2)
4
= {z ∈ C : |z| > ρ1 and |z| < ρ2} denote

an open annulus in the complex plane centered at the origin
with inner radius ρ1 and outer radius ρ2, where ρ1 < 1 <
ρ2. Then, assuming that Ĝ−1 is analytic in A(ρ1, ρ2), the
Laurent expansion of Ĝ−1 in A(ρ1, ρ2) can be written as

Ĝ−1(z) =

∞∑
i=−∞

ĥiz
−i, (37)

where ĥi is the ith coefficient of the Laurent expansion of
Ĝ−1 in A(ρ1, ρ2). Truncating the sum in (37) yields the
truncated model

Ĝinv,r,d(q)
4
=

r∑
i=−d

ĥiq
−i, (38)

where r is the order of the causal part of Ĝinv,r,d and d
is the order of the noncausal part of Ĝinv,r,d. Note that all
poles of Ĝinv,r,d are located at zero, and thus Ĝinv,r,d is an
asymptotically stable approximation of Ĝ−1. Since Ĝ−1 is
analytic in A(ρ1, ρ2), then we can find finite r and d such
that ‖Ĝ−1 − Ĝinv,r,d‖ is negligible [21, Theorem 4.1], [25].

Using y as an input to Ĝinv,r,d, and using (38), yields, for
all k ≥ r,

v̂(k) = Ĝinv,r,d(q)y(k) =

r∑
i=−d

ĥiy(k − i). (39)

Note from (39) that computing v̂(k) requires knowledge of
y(k + d), . . . , y(k − r), which makes Ĝinv,r,d a noncausal
model.

B. Identification of the Hysteresis Nonlinearity
To identify the hysteresis nonlinearity, we apply a pure

sinusoidal input signal u to the Hammerstein system. Then,
we use the output of the Hammerstein system due to the
sinusoidal signal u along with Ĝinv,r,d obtained from the
previous subsection to construct an estimate v̂ of the inter-
mediate signal v. Then, we plot v̂ versus the sinusoidal input
u to obtain a nonparametric model of the hysteresis nonlin-
earity. If the hysteresis nonlinearity is rate independent, then
the estimated hysteresis nonlinearity is independent of the
frequency of the single sinusoidal input.

VI. A NUMERICAL EXAMPLE

Consider the hysteresis nonlinearity described by (1) with
r1 = 0, r2 = 0.2, r3 = 0.3, r4 = 0.4, r5 = 0.5, and
p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4, p5 = 0.6, and the
linear plant

G(q) =
(q− 0.4)(q− 0.5)

(q− 0.3)(q + 0.1)
. (40)

For all k ≥ 0, let u0(k) = 500 sin(k). Moreover, for all
k ≥ 0, let u(k) be obtained by saturating u0(k) between
−100 and 100, that is,

u(k) =


−100, u0(k) ≤ −100,

u0(k), −100 < u0(k) < 100,

100, u0(k) ≥ 100.

(41)
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Fig. 3. Markov parameters of G and the estimated Markov parameters of
G after scaling, that is, dividing all the estimated Markov parameters by
α =

∑5
i=1 pi = 1.6.

To identify G, we use ` = 10, 000 samples of u and y with
least squares and an FIR model with order µ = 20. Figure
3 shows the Markov parameters of G and the estimated
Markov parameters of G obtained using (17) after scaling,
that is, dividing all the estimated Markov parameters by
α =

∑5
i=1 pi = 1.6. Then, we construct an IIR model Ĝ

of G using ERA and the estimated Markov parameters of
G after scaling. Figure 4 shows the Bode plots of G and
Ĝ, which are very close to each other. Next, we find a
noncausal FIR approximation Ĝinv,r,d of Ĝ−1 by truncating
the Laurent expansion of Ĝ−1 in the annulus that contains
the unit circle with r = d = 25. Applying y as an input
to the noncausal FIR approximation Ĝinv,r,d of Ĝ−1 yields
an estimate v̂ of the intermediate signal v. Figure 5 shows
the intermediate signal v, the estimated intermediate signal
v̂, and the difference between them.

Next, we use u(k) = sin(Tsk) where k ≥ 0 as an
input to the Hammerstein system, and we obtain the output
y of the Hammerstein system due to u. We use y and
the noncausal FIR approximation Ĝinv,r,d of Ĝ−1 obtained
above to obtain an estimate v̂ of the unknown intermediate
signal v. Figure 6 shows the intermediate signal v and the
estimated intermediate signal v̂ of v. Finally, Figure 7 shows
the hysteresis loop obtained by plotting v versus u and the
estimated hysteresis loop obtained by plotting v̂ versus u,
which are very close to each other.

VII. CONCLUSIONS

This paper considered the problem of identification of the
nonlinear dynamics of a class of precision motion systems.
The precision motion system was modeled as a Hammerstein
system, that is, a cascade of a nonlinearity and a linear
plant, where a Prandtl-Ishlinskii hysteresis nonlinearity was
considered. We used least squares with an FIR model to
identify the linear part of the Hammerstein system using
measurements of the input and the output of the Hammerstein
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Fig. 4. Bode plot of G and the identified model Ĝ obtained using ERA
and the estimated Markov parameters of G after scaling.

Fig. 5. The intermediate signal v and the estimated intermediate signal
v̂ obtained by applying y as an input to the noncausal FIR approximation
Ĝinv,r,d of Ĝ−1, where u is as given in (41).

0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 6. The intermediate signal v and the estimated intermediate signal
v̂ obtained by applying y as an input to the noncausal FIR approximation
Ĝinv,r,d of Ĝ−1, where for all k ≥ 0, u(k) = sin(Tsk).



Fig. 7. The hysteresis loop obtained by plotting v versus u and the
estimated hysteresis loop obtained by plotting v̂ versus u.

system, where the intermediate signal was assumed to be
unknown. The ERA algorithm was used to construct a
transfer function model from the estimated FIR model. A
noncausal FIR model was used to obtain an asymptotically
stable approximation of the inverse of the estimated linear
part of the Hammerstein system. To obtain an estimate of
the hysteresis nonlinearity, a pure sinusoidal signal was used
as an input to the Hammerstein system. The output of the
Hammerstein system due to the sinusoidal input was used
along with the noncausal FIR approximation of the inverse of
the estimated linear part of the Hammerstein system to obtain
an estimate of the unknown intermediate signal. Finally, the
estimated hysteresis nonlinearity was obtained by plotting the
estimated intermediate signal versus the sinusoidal input.

VIII. FUTURE RESEARCH

Future research will consider studying the accuracy of dif-
ferent model structures and identification methods to identify
the linear part of the model. Moreover, future research will
focus on using unknown input reconstruction methods, such
as [26], [27] to reconstruct the intermediate signal using the
output measurements and the identified linear part of the
Hammerstein system. The algorithm will be applied to the
piezoelectric cantilever actuator presented in [11].
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