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Abstract— In the present paper we proceed the data-driven
modeling of a two degrees of freedom (2-DOF) piezoelectric
micromanipulator through models with the Nonlinear Au-
toRegressive with eXogenous inputs (NARX) structure and
real acquired data. We show the results when the system is
excited at high frequencies, aiming towards rapid and precise
micropositioning. The order of NARX the models are increased
until they satisfy the statistical tests based on higher-order
correlations and the multiple correlation coefficients, which
are close to unity for both measured outputs. The results
herein presented encourage the use of data-driven methods for
modeling piezoelectric micromanipulators.

I. INTRODUCTION

Micropositioning deals with positioning that involves sub-
micron resolution. Applications of micropositioning are nu-
merous: microassembly and micromanipulation of artificial
objects [1], medical exploration [2] and images scanning [3].
An efficient way to carry out micropositioning tasks is to
employ smart or active materials as basis of the actuators as
they allow a highly resolute displacement [4]. Piezoelectric
actuators are among the well appreciated for that because,
additionally to the nanometric resolution possible, they have
a large force density and a large bandwidth (in excess of
kilohertz is possible) and they are easy to integrate in the de-
sign since the power required is electrical. In microassembly
and micromanipulation applications, cantilevers structured
piezoelectric actuators have been successfully used [1],[4]-
[6]. Since some years, two degrees of freedom (2-DOF) [7],
[8] have been opening the exploration of dexterous tasks.

Beyond the nonlinearities (hysteresis and creep), piezo-
electric cantilevered actuators exhibit high Q-factor. Though
the bandwidth is large, such high Q-factor finally leads
to a settling time (stabilization time) that is strongly high
relative to the raise time. In micromanipulation applications,
such long stabilization time as well as the large overshoot
drastically affect the tasks. Furthermore, in 2-DOF piezo-
electric actuators, there are strong-couplings between the
positioning axes which lead to a loss of the accuracy of the
tasks. Finally, both the high Q-factor and the cross-couplings
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could affect the stability of the multi-DOF piezoactuator if
they are not considered carefully. Control of the actuators is
therefore mandatory. Different works have been carried out in
the modeling of 2-DOF piezoelectric cantilevered actuators
[7]–[13] for control purpose, but the consideration of the
strong-couplings in high frequency were not fully explored.
Consequently, the used models are often approximated or
simplified which make necessary the use of robust control
techniques with high orders [14]. In addition, such models
can not be used to synthesize feedforward controllers which
have the advantages of being highly packageable and having
low cost [15]. In this paper, we suggest a nonlinear black-
box modeling technique and an identification procedure in
order to consider strong-couplings in high frequency in 2-
DOF piezoelectric actuators. The data-driven models herein
presented will provide statistically sound mathematical ab-
stractions to enable better control design and more accurate
sensorless control.

The system identification procedure consists in few steps
in order to build a model based on measured data, generally
for the purpose of control and/or simulation. Many control
techniques are model-based, what makes this procedure
important in the context of process regulation. Also, for
simulation purposes the demand is high, given the com-
plexity of modern processes and the gain in competitiveness
simulation offers. Nonlinear black-box system identification
offers a general framework to build models capable of
capturing nonlinear dynamics phenomena, where nonlinear
mappings such as higher order polynomials, artificial neural
networks and fuzzy systems are used to construct input-
output mathematical relations [16]. In the scope of robotics,
in [17] the authors proceed the modeling of an industrial
robot through commercially available software for subspace
identification. In [18] the authors use system identification
procedures in order to estimate inertial and flexibility pa-
rameters of an industrial robot. The barycentric parameters
of a robot are estimated through computational intelligence
techniques in [19]. In [20] the importance of experimental
data driven modeling and parameter estimation in robotics
are highlighted.

In the present paper the goal is to model the dynamics
of the 2-DOF piezoelectric micromanipulator at high fre-
quencies with a two-input two-output (TITO) model. The
purpose is to obtain a model for representing the fast
dynamics which these devices may achieve. The models
which are able to represent rapid dynamics may then be
used for design of e.g. model predictive controllers [21],
[22] and for simulation. To this end, we measured an input



and output data at high frequencies and built black-box
models with different complexities. They were validated by
analyzing the properties of the residuals through higher-
order cross-correlation based tests, showing the soundness
of the approach. modeling 2-DOF piezoelectric devices in
high frequencies is a challenging task due to the nonlinear
coupling between both degrees of freedom and the hysteretic
behavior of the manipulator [23]. The application of the
identification procedure to 2-DOF piezoactuators presented
in this paper has not been explored in the literature at the
best of our knowledge. The approach presented leads to
the following advantages: (i) more precise models, which
are able to adjust themselves intrinsically to the underlying
measured data; (ii) the identification of the hysteresis is made
at the same time as the dynamics is captured, which is not
the case in traditional modeling of piezoelectric manipulators
[24]; and (iii) a unique identification for the multivariable
case, which is also not the case in usual works in this domain
[4].

The remainder of this paper is organized as follows.
Section II gives the equations used for nonlinear black-
box system identification in this work. The piezoelectric
micromanipulator is detailed in Section III together with the
description of the experiment. Section IV exposes the results
of the application of the black-box system identification
methodology to the 2-DOF micromanipulator and in Section
V we give final remarks and future research directions with
respect to piezoelectric-based system modeling.

II. NONLINEAR BLACK-BOX SYSTEM
IDENTIFICATION

In the following we discuss the system identification pro-
cedure, nonlinear structures for autoregressive with exoge-
nous inputs (NARX) models and their validation procedures.
The methods herein presented will be applied to model the
2-DOF micromanipulator described in the following section.

The system identification procedure is an iterative and
subjective decision making process. It may be summarized
in four steps as given below:

1) Perform data acquisition: An experiment must be per-
formed in order to get input-output data for the system.
The data gathered should be informative enough with
respect to the amplitude and frequency band desired to
be modeled;

2) Define the model: The structure of the model is defined,
which in the case of black-box modeling refers to setting
the complexity by the choice of the inputs and number
of elements;

3) Estimate model parameters: Having the data at hand, the
input-output pairs are constructed and the parameters
are estimated by e.g. some optimization procedure;

4) Validate the model: The model should be validated, ide-
ally by analyzing the amplitude and statistical properties
of the residuals. Whether it is not validated, one must
return to prior steps.

Let us give some notation in order to introduce the class
of models used in the scope of the present work. As we here

deal with discrete-time dynamical systems models, the index
t refers to the discrete time instants such that t ∈ [0,1, . . . ,Tf ].
The i−th output1 of a multivariable system with I and J
inputs and outputs, respectively, is termed as yi(t), while the
j−th output of the system is given by u j(t). The focus will
be on models with the form

ŷyy(t) =FFF [Φ(t)] (1)

with FFF [·] as a vectorial nonlinear mapping to the predicted
outputs ŷyy(t) from Φ(t), which is the matrix of regressors.
Considering the NARX case, we have in Φ(t) each input
and output of the system as

Φ(t) = [y1(t−1),y1(t−1), . . . ,y1(t−ny1),

y2(t−1),y2(t−1), . . . ,y2(t−ny2), . . . ,

yI(t−1),yI(t−1), . . . ,yI(t−nyI ),

u1(t−1),u1(t−2), . . . ,u1(t−nu1),

u2(t−1),u2(t−2), . . . ,u2(t−nu2), . . . ,

uJ(t−1),uJ(t−2), . . . ,uJ(t−nuJ ],

(2)

where nyi and nu j are the orders of the i−th and j−th output
and input, respectively. In the present work we restrict to the
case where each output is given its own nonlinear mapping
which depends on its previous values and the inputs of the
system

ŷi(t) = Fi[yi(t−1),yi(t−2), . . . ,yi(t−nyi),

u1(t−1),u1(t−2), . . . ,u1(t−nu1),

u2(t−1),u2(t−2), . . . ,u2(t−nu2),

. . . ,

uJ(t−1),uJ(t−2), . . . ,uJ(t−nuJ )].

(3)

Available choices for the nonlinear mapping Fi[·] are e.g.
different types of artificial neural networks [25].

In order to estimate the parameters of the model which are
present in FFF [·], generally the one-step-ahead (OSA) error is
used, as it leads to faster parameter estimation algorithms.
The OSA prediction is calculated as in (3), by using the
most recent amount of measured data. The sole use of
the OSA error, however, may be insufficient to asses the
quality of a model. It is more adequate to use the free-run
(FR) simulation, which amounts to use (3) with past values
predicted from the model. In the FR case, measured data is
used solely to define the initial conditions of the model. The
definition of the residual of the i−th output is

ξi(t) = yi(t)− ŷi(t) (4)

where the prediction may be in OSA and FR, according to
the type of error one is interested in analyzing. There is a
complementary metric called multiple correlation coefficient
(R2) which is defined for the i−th output as [26]

R2
i = 1− ∑N

t=1 [ξi(t)]
2

∑N
t=1 [yi(t)− ȳi]

2 , (5)

1In general the n-th component of a generic vector v is denoted as vn.
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Fig. 1. Exciting signal (lower) and system output (upper) for the 2-DOF micromanipulator.

where ȳi denotes the mean value of the sequence
yi(0),yi(1), . . . ,yi(Tf ). The R2 has its maximum value as 1,
in the situation that the model has perfectly reconstructed the
data.

Detecting the amplitude of the errors is important in
order to validate or discard the model depending on the
application. A complimentary way to validate the model is
the statistical analysis of the residuals, in order to check
the randomness of the signal present in the error. The set
of tests proposed by [27] can be used, which are based on
higher order correlations and also valid for systems on the
form (3) for the case of artificial neural networks [28]. It is
possible to calculate it between i−th and j−th output and
input respectively with



φξiξi(τ) = δ (τ),
φu jξi(τ) = 0, ∀τ,
φξi(ξiu j)(τ) = 0, τ ≥ 0,
φ(u2

j )
′ξi
(τ) = 0, ∀τ,

φ(u2
j )
′ξ 2

i
(τ) = 0, ∀τ,

(6)

where δ (·) is the Kronecker delta function, (u2
j)
′(t) =

(u j(t))2− ū2
j , (ξiu j) = ξi(t +1)u j(t +1) and φab is the nor-

malized cross-correlation function between two sequences

{a} and {b}, which is given by [29]

φab(τ) =
∑N−τ

t=1 [a(t)− ā]
[
b(t + τ)− b̄

][
∑N

t=1[a(t)− ā]2 ∑N
t=1[b(t)− b̄]2

]1/2 . (7)

Once the values of the normalized cross-correlation coeffi-
cients are calculated for a range of τ in (6), it is possible to
infer whether the model adheres to the tests according to the
conditions. Commonly, the tests are confronted with an 95%
margin as 1.96/(Tf +1)0.5, where Tf +1 is the total amount
of data.

III. PIEZOELECTRIC MICROMANIPULATOR
WITH 2-DOF: CASE STUDY

The present section is devoted to describe the case study,
whose measured input and output data are given in Fig. 1.
The 2-DOF piezoelectric actuator is presented in Fig. 2a and
the different phenomena (e.g. hysteresis and step responses)
were explicitly characterized in our previous works [8]. In
this paper, the suggested nonlinear black-box model permits
to avoid a separated model of each phenomenon, allowing
therefore an ease of modeling and identification. When a
voltage Ux (resp. Uy) is applied, it bends along the x-axis
(resp. y-axis). Unfortunately, there is a residual displacement
obtained along the y-axis (resp. x-axis) when Ux (resp. Uy) is
applied. This cross-coupling drastically affects the accuracy
of the tasks for which the actuator is used. So in the sequel,
we consider the actuator as a two-inputs-two-outputs (TITO)



system instead of two single-input-single-output one (see Fig.
2b).

Fig. 2. (a): the 2-DOF piezoelectric actuator. (b): the 2-inputs-2-outputs
system.

Figure 3 presents the experimental setup used for the
experiments in the rest of the paper. It is composed of (i)
the piezoelectric actuator (clamped-free) which has active
dimensions of: 25mm x 1mm x 1mm; (ii) two inductive
sensors (ECL202 from IBS) measuring the displacement
along the x-axis and the y-axis. The sensors are tuned to have
a bandwidth of 2kHz and submicron precision; and (iii) a
computer and a dSPACE board (DS1103) for the acquisition
of the measured displacements and for generating the input
voltages.

Fig. 3. Diagram of the experimental setup.

Following the notation introduced in (1), the j−th input
signal was designed as a multisine with

u j(t) =
n f

∑
k=1

[A · cos(2π fkt +αk)] (8)

where n f is the number of the frequencies of interest,
the frequencies are given in Hertz by the vector fff =[
10 50 100 200 300 400 500

]
, A is the amplitude

set equal for every frequency and αk random phases for each
frequency. We used the inverse Fourier transform to speed
up calculations [30]. After this calculation, we scale the
signal u j(t) between [−5,5] Volts, which is the amplitude of
interest. Since the voltage Ux and Uy of the actuator should
be within +-10V, there are no requirements for amplifiers.
The input and output pairs are recorded and then used for
the purpose of data-driven modeling through system identi-
fication methods. The results are depicted in the following.
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Fig. 4. Correlation tests for the inputs and outputs of the system.

IV. RESULTS

In the present section we describe the results when apply-
ing the system identification methodology given in Section
II to the 2-DOF piezoelectric micromanipulator described in
Section III. We analyze the results in terms of the statistical
validation tests based on correlation as in (6) and the R2

metrics, respectively shown in Figures 4 and 5.
The general NARX model as in Eq. (1) is used to model

the TITO system, where the outputs are defined as the
displacements in x and y Cartesian axes as respectively y1(t)
and y2(t) (the same numeration is used for the input signals).
As in Eq. (3), we restrict to the case where the models for
each output has their own past measurements and both inputs.
The reason is to make explicit the cross-couplings among
the inputs and outputs of the system. The vectorial nonlinear
mapping FFF [·] is defined by two artificial neural networks
with sigmoidal activation functions, having 6 neurons for
each output. We chose such nonlinear mappings due to their
well known function approximation capabilities and their
complexities where chosen after some trial and error.

The data was acquired with 50 µs and decimated to 200
µs. In this setting, the sampling frequency is five times higher
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Fig. 5. Real data and model outputs in free-run simulation for the estimation and validation phases.

than the Nyquist sampling frequency one should need to
represent a signal with 500 Hz (highest frequency in the
input signal). The acquired data was then split in estimation
and validation datasets, with 250 samples each.

We performed numerical simulations using MATLAB
software by varying the order of the models nyi = nu j =

1,2, . . . ,10. The results in terms of R2 improve together with
increasing orders on the lagged inputs and output and with
nyi = nu j = 4 this metric is close to unity for all measured
outputs. The statistical tests in (6) however are not satisfied
until nyi = nu j = 9, which is the solution which will be
depicted in the following.

In Fig. 4 we show the correlation based tests as in (6).
It is possible to see that the model is statistically valid
with respect to the tests in (6). This shows that the system
dynamics present in the data has been adequately captured by
the model. In Fig. 5 we plot the results in terms of the model
responses in FR simulation in the estimation and validation
data. It is possible to see that the model is accurate and able
to adequately represent the micromanipulator dynamics.

V. CONCLUSIONS

We showed the effective application of nonlinear black-
box system identification to model a 2-DOF piezoelectric mi-
cromanipulator with real acquired data. The results showed
that the model was able to adequately capture the cross-
coupled dynamics of the system even at higher frequency
rates. The goal was to explore the adherence of the model
to the data towards more effective control design at higher
frequency ranges. This will permit rapid and precise micro-
manipulation, through the use of model-based control design
or model feedback in the case of sensorless applications.

In future works we will aim at different nonlinear model
structures, such as NARMAX [31] and novel approaches,
such as nonlinear difference equation with moving average

noise [32], in order to assess the best structure for the 2-
DOF micromanipulator system. Moreover, another use of the
model would be to enhance feedback in micropositioning,
as avoiding the use of sensors represents a major gain in
cost and the possibility to embed such micromanipulators
in specific applications. A future research endeavour will be
to assess the performance of the above mentioned model
classes to perform feedback. In this context, the use of
standard and advanced control techniques for such models
will also be pursued, such as evolutionary multiobjective
proportional-integral-derivative, robust, optimal and model
predictive controllers [33]-[36]. The design of the excitation
signal for the case of micromanipulators should be further
studied. The general guidelines for designing excitation
signals for nonlinear identification is to use prior knowledge
about the system at hand according to the intended use for
the model, excite both the bandwith of interest and the full
amplitude range and set length and distribution of the dataset
[29], [37]. In the specific case of piezoelectric micromanip-
ulators, we are interested in acquiring both the dynamics
and the cross-coupled hysteretic behavior of the system and
a thorough comparison of excitation signals for the present
case is lacking. Another approach which deserves attention
in the future is the application of gray-box modeling, as we
illustrate in the following examples. The model structure
of hysteresis may be estimated in conjunction with black-
box approaches, so that the later is able to capture what
is left of dynamics in the former, what may leverage the
accuracy of the models as a whole. The second suggestion is
to use the knowledge of the hysteretic behavior of the model
as a complimentary metric of the residuals, a problem that
can be solved with a multiobjective optimization approach.
Being so, there could be two different data-sets which are
used in the training procedure, where the multiobjective
approach tries to minimize the error. In [38] the authors use



the knowledge about the static curve of the system to be
optimized together with the dynamic data in a multiobjective
problem.
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