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Abstract— In this paper, a nonlinear robust internal model
control is suggested to control a piezoelectric actuator that is
typified by hysteresis, creep phenomenon and badly damped
behavior. The principle of the proposed methodology consists
of combining three techniques: i) considering the creep as
internal disturbance that can be rejected using a distur-
bance observer/compensator, ii) eliminating of hysteresis with
a feedforward compensator, and iii) handling the dynamics
and furnishing the global robustness using a feedback linear
internal model controller. The overall nonlinear controller
was implemented and verified through hardware-in-the-loop
experimental tests to explore its efficiency. The results revealed
that hysteresis nonlinearity in excess of 14% was reduced to
less than 1%, creep in excess of 22% was completely removed,
and finally oscillation with overshoot of 35% was completely
damped.

I. INTRODUCTION

Piezoelectric actuators are considered decent choice for
applications that require positioning/manipulating objects at
micro/nano scale levels in micro-seconds. Examples of these
applications include actuation of proportional-flow control
valves [1], transportation of micro objects in sensitive ap-
plications [2], and operating of fuel injection systems [3].
However, these actuators exhibit hysteresis and creep non-
linearities that degrade their positioning accuracy [4], [5].
Moreover, the geometric structure of piezoelectric actuators
adds linear dynamics to the hysteresis and creep nonlin-
earities [6]-[14]. Such nonlinearities yield oscillations and
instabilities in open and closed-loop control systems [6].

The control of systems that exhibit hysteresis and creep ef-
fects necessitates formulating a model that can describe these
nonlinearities. Consequently, different methodologies have
been suggested to characterize the nonlinear properties of
these systems. Hammerstein system-based Prandtl-Ishlinskii
model [10], [11], Hammerstein system-based Preisach model
[14], [15], and Hammerstein system-based Bouc-wen model
[16], [17] are examples of models that have been used to
synthesize open-loop and feedback control techniques to
stabilize smart material-based actuators. Some other studies
have further considered addressing the effects of creep beside
the control of hysteresis nonlinearities [18]-[20].
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The adequate consideration of piezoelectric actuators to
serve different precision motion applications requires propos-
ing a comprehensive control technique that can cancel-
out the effects of creep, hysteresis, and also dampen the
linear dynamics. Consequently, it is essential to formulate a
model that can account for all these undesirable properties.
This study proposes an internal model control with inverse
Prandtl-Ishlinskii model to enhance the tracking performance
of piezocantilever actuator that shows hysteresis, creep and
high oscillations in real-time system. For modeling hysteresis
properties of the actuator, the study considers the Prandtl-
Ishlinskii model so as to formulate an exact inverse that
permits obtaining an exact mathematical model for the
inverse compensation errors [11].

The paper is organized as follows. Section II describes The
experimental setup, the creep-Hammerstein model for the
piezocantilever actuator, and the parameters identification.
Section III introduces the proposed internal model control to
stabilize the piezocantilever actuator considering hysteresis,
creep, and oscillations. The experimental results that examine
the effectiveness of the proposed internal model control in
real-time are presented in Section IV. The conclusions and
future research are summarized in Section V.

II. THE EXPERIMENTAL SETUP AND THE NONLINEAR
MODEL

A. The experimental setup

The piezoelectric actuator that was used in the experi-
mental study is depicted in Fig.1. As the figure shows the
actuator has a cantilever structure with rectangular section.
The actuator is composed of several layers of lead-zirconate-
titanate (PZT) piezoelectric material and has 25mm active
length (out of the clamping), 1mm width, and 1mm total
thickness. The actuating signals are applied to the actuator
via electrodes that were furnished on the top and bottom
surfaces of the actuator. The function of the actuator allows
bending along y axis or z axis based on sensitization of
input signal uy or uz . The output movements/displacements
have high resolution (down to tens of nanometer) within
high bandwidth (up to several hundreds of Hertz). These
advantages make this actuator well-suited for wide range of
micro-scale applications such as micromanipulation, precise
positioning, micro-scale characterization [4].

Although piezocantilever actuators produce the output
displacement with a fine resolution, this nano-level of dis-
placement comes at the cost of hysteresis and creep non-
linearities. These nonlinearities find their origin in the com-
plex properties of piezoelectric ceramics and ferro-electric



materials limit the implementation of these actuators in the
above mentioned applications to a narrow operating range of
input amplitudes and frequencies as they could drastically
compromise the success of the tasks in these applications.
Furthermore, the cantilever structure based piezoactuator
exhibits badly damped oscillation which is inherited from the
high stiffness of the material combined with the geometrical
cantilever structure. This badly damped oscillations have sev-
eral drawbacks: increase of the settling time (or stabilization
time) although the actuator exhibits a very low rise time,
degradation of the stability and of the general performances
of the tasks. The nonlinearities and the oscillating dynamics
have therefore to be controlled in a proper way.

The experimental setup employed in the sequel is com-
posed of the piezoelectric actuator. In this paper, we consider
the motion in y axis. A displacement sensor that measures
the deflection along y axis considered as output. The sensor
is an optical sensor with triangulation principle and from
Keyence company (LC2420). This sensor is tuned to have a
measurement resolution of 10nm and a bandwidth of 5kHz
which is sufficient for the experimental study in the paper.
A computer with MATLAB-Simulink software is used for
the acquisition of the measurement y, the generation of
the driving voltage u = uy as well as to implement the
controller. Finally, a dSPACE acquisition board serves as
interface between the computer and the rest. The sampling
frequency of the whole acquisition system is set to 20 kHz.
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Fig. 1. (a) The experimental setup with piezocantilever, measured nonlinear
dynamics of the piezocantilever: (b) hysteresis nonlinearity, and (c) creep
nonlinearity.

B. Creep-Hammerstein model

In this section, we consider a dynamic structure that
simultaneously accounts for the creep, hysteresis, and dy-
namics of the piezoelectric actuator. This structure is called

as creep-Hammerstein model for the piezoelectric actuator.
Analytically, the output of the model is expressed as [4], [5]

y(s) = P [u(s)]D(s) + Cr(s)u(s), (1)

where P [u(s)] is a hysteresis operator that characterizes the
hysteresis nonlinearity of the piezocantilever, D(s) is a linear
dynamics that describes the mechanical structure behavior,
and Cr(s) is a linear dynamic that accounts for the creep
nonlinearity. Fig.2 depicts the block diagram corresponding
to the model in Eq.1. Since the static gain is nonlinear and
encompassed in the hysteresis term P , the dynamics D(s)
is normalized such that D(s = 0) = 1.
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+
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Fig. 2. Creep-Hammerstein dynamic representation for the piezoelectric
actuator, where P [u(s)] is a hysteresis operator, D(s) is a linear dynamics,
and Cr(s) is a linear dynamics for the creep nonlinearity.

C. Model parameters identification

The characterization of the actuator and the identification
of the hysteresis model P̂ , the creep model Ĉr(s) and the
dynamics D̂(s) are given in this subsection. Note that P̂ ,
Ĉr(s) and D̂(s) are approximate models characterize P ,
Cr(s) and D(s).

1) The hysteresis model: Prandtl-Ishlinskii model is used
in this section to describe the hysteresis nonlinearities of
the actuator. This model has been employed widely in the
literature to represent the hysteresis of smart material-based
actuators [11]. The model can characterize the symmetric
hysteresis in piezoactuators, and its inverse is exact and can
be obtained analytically to compensate for the hysteresis
effects in real-time system [21]. The Prandtl-Ishlinskii model
P is a summation of weighted play operators Qρj of thresh-
olds ρj and input voltage u(t) as

P(t) =
J∑
j=1

gjQρj [u](t), (2)

where J is an integer represents the number of the play
operators that can be used to formulate the model, and
gj are the weights which govern the slope of the play
operators. In this paper, we consider the threshold function
ρj = αj and the weighting function gj = βe−γρj , where
α, β, and γ are positive constants. The parameters of the
model were identified via MATLAB Optimization Toolbox
with least square nonlinear method under the constrains of
α > 0, β > 0, and γ > 0, and J = 10. More details
about the model and its properties are presented in [11].



Fig.3(a) shows comparison between the output of model P̂
and the measured hysteresis nonlinearities of a sinusoidal
input voltage of u under 0.1Hz excitation frequency and
10V amplitude. The percentage of the hysteresis nonlinearity
is h

H ≈
8µm

2×28µm ≈ 14.3%.
2) linear dynamic model: This section presents identifi-

cation of the linear dynamics D̂(s). A step driving voltage of
10V was applied to excite the piezoactuator. Then, using the
measured step response and the ARMAX (Autoregressive-
Moving Average with Exogenous) model of MATLAB Sys-
tems Identification Toolbox [22], the linear dynamics D̂(s)
is obtained. The model D̂(s) is derived by normalizing the
identified dynamics such that D̂(s = 0) = 1. Eq. 3 presents
the identified model. Fig.3(b) shows comparison between
the identified model D̂(s) and the measured displacement
step response. The figure shows an overshoot of 35%. The
identified model is

D̂(s) =
0.35684(s+ 4005)(s2 + 5441s+ 3.4e7)

(s+ 2197)(s2 + 48.93s+ 2.4e7)
. (3)

3) Creep model: The creep model Ĉr(s) is a transfer
function that approximates a nonlinear behavior. Such ap-
proximation has been established in various applications of
piezocantilever actuators. Again, a step voltage u = 10V is
applied to the piezocantilever actuator. Rather than observing
only for tens of milliseconds as for the dynamics, applying
the step response over several minutes contributes a slow
drift. This drift is the creep nonlinearity. We separate the
experimental data corresponding to this drift, the creep
nonlinearity, from the whole step response. Using MATLAB
Systems Identification Toolbox and the experimental data
related to the drift, a linear model is identified. Fig.3(b)
depicts the response of the identified model compared to the
experimental creep. The results reveals a creep in excess of
6.3µm
28µm ≈ 22.5%. The creep model is

Ĉr(s) =
3× 10−4(s+ 25)(s+ 0.01)

(s+ 0.12)(s+ 0.004)
. (4)

The obtained hysteresis, creep, and linear dynamics mod-
els Eqs. (2), (3), and (4) are used to formulate creep-
Hammerstein model for the piezocantilever actuator. This
model is considered in the next section to propose nonlinear
internal- model control that can compensate for the hystere-
sis, rejects disturbances due to the creep nonlinearity, and
stabilize the linear dynamics due to the step input voltage.

III. ROBUST AND NONLINEAR INTERNAL MODEL
CONTROL

In this section we present the proposed nonlinear internal
model control. First, we compensate for hysteresis and creep
nonlinearities with the inverse model P and Ĉ(s). Then, we
demonstrate that we have linear dynamic model D(s) with a
fictive disturbance. Considering that the linear model could
exhibit uncertainties, we afterwards apply a linear internal
model control. This feedback control permits maintaining
some prescribed tracking performance despite of the above
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Fig. 3. Characterization and models responses of: (a) the hysteresis, (b)
the linear dynamic model, and (c) the creep model.

model uncertainties and the fictive disturbance. The nonlinear
and robust internal model controller (NR-IMC) is therefore
composed of the nonlinear compensators and the linear
internal model controller (L-IMC).



A. Hysteresis and creep compensation

In order to compensate for the hysteresis nonlinearities of
P , we use the classical cascade compensation approach as
illustrated in Fig.4(a) where

P−1[us](t) =
J∑
j=1

qjQẑj [us](t), (5)

where qj are the weights of the inverse, and zj are the
thresholds of the inverse model. More details about the
inverse model and its properties are presented in [11].

Regarding the creep, since this latter is an additive term
according to Eq. 1, we suggest a compensation with sub-
traction, as shown in Fig.4(a). Since the identified models of
the hysteresis and of the creep could slightly differ from
the real phenomena and thus represent uncertainties, the
compensators are therefore approximate. We denote them
as: P̂−1 [us(s)] and Ĉr(s). Consequently, the output o(s)
in Fig.4(a) is expressed as

o(s) =
(
Cr(s)− Ĉr(s)

)
u(s)+P

[
P̂−1[us(s)]

]
D(s). (6)

It is however shown that the compensation of a hysteresis P
with a compensator from an approximate model P̂ provides
a linear model with a bounded fictive disturbance [11].
Consequently

P
[
P̂−1[us(s)]

]
D(s) = D(s)us(s) + eP (s), (7)

where eP (s) is a bounded disturbance. On the other hand, if
the creep compensation was exact, i.e. Ĉr(s) = Cr(s), we
would have

(
Cr(s)− Ĉr(s)

)
u(s) = 0. If it is not the case,

which in general is the case in real-time systems, we have(
Cr(s)− Ĉr(s)

)
u(s) = eC(s), (8)

where eC(s) is a positioning error signal and can be consid-
ered as fictive disturbance. Since Cr(s) and Ĉr(s) are stable
transfer functions [18], [19], [20] and the positioning error
signals are ||u(t)||∞ < η and ||eC(t)||∞ < η, where η is a
positive constant, we conclude with Eq. 6, Eq. 7 and Eq. 8
that

o(s) = D(s)us(s) + e(s), (9)

where
e(s) = eP (s) + eC(s), (10)

is a bounded fictive disturbance that embraces the uncertain-
ties due to characterization and compensation of hysteresis
and creep nonlinearities. Thus, Fig.4(a) is equivalent to
Fig.4(b) where the new system to be controlled is a linear
model with an output disturbance.

B. Internal model control

The principle of an internal model control (IMC) consists
of incorporating a model of the process in control design
[23]. There are several applications of IMC, and one of
the most used is the Smith predictor, which is used to
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Fig. 4. (a) hysteresis and creep compensation, and (b) equivalent scheme
of (a).

control linear systems with delay [24]. For linear systems,
IMC is particularly an efficient and simple to implement
method to control considering bounded uncertainties and
output disturbance. This is the case for the system displayed
in Fig.4(b).

Consider the linear IMC feedback control in Fig.5(a). In
this, D̂(s) is the approximate model of the dynamics D(s)
of the piezocantilever actuator as we identified in Eq. 3,
κ(s) is the feedback controller to be designed, while yr(s) is
the reference displacement input. Considering D̂(s) slightly
different from the real dynamics D(s) is worthy. Thus,
similar to the cases of hysteresis and creep, the real dynamic
behavior is complex. Then, an exact model would be hard
to obtain. From Fig.5(a), we have

y =
κD(

1 + κ
(
D − D̂

))yr +
(
1− κD̂

)
(
1 + κ

(
D − D̂

))e. (11)

We choose the controller κ(s) as

κ(s) =
1

D̂(s)
W (s), (12)

where W (s) is a gabarit, also called filter, that transcripts
the specification related to the desired tracking performance.
The most simple but meaningful desired specifications for the
closed-loop include a small settling time of tr, no oscillation
(full damping), and no static error. From these specifications,
the following gabarit is suggested

W (s) =
1(

1 + tr
3 s
) . (13)

If we have an exact model D̂(s) = D(s), the closed-loop
equation in Eq. 11 becomes

y(s) =W (s)yr(s) + (1−W (s)) e(s). (14)



From Eq. 14, we conclude that the specified tracking per-
formance is satisfied (y(s) = W (s)yr(s)) and the distur-
bance is rejected with a complementary dynamics y(s) =
(1−W (s)) e(s). At steady-state conditions, the static error
is zero and the disturbance is fully rejected as

y(0) = yr(0) + 0 · e(0). (15)

Notice that the obtained performance in Eq. 15 is valid even
if the hysteresis and creep models and compensations were
not exact. Hence, they are incorporated in the disturbance
term e(s) which is rejected.

In real case, however, the employed dynamic model D̂(s)
could differ from the real dynamics D(s) and thus we have
D̂(s) 6= D(s). Consequently, from Eq. 11 and Eq. 12, the
closed-loop equation is y(s) =

D(s)

D̂(s)
W (s)(

1 +W (s)
(
D(s)

D̂(s)
− 1
))yr(s)+ (1−W (s))(

1 +W (s)
(
D(s)

D̂(s)
− 1
))e(s).
(16)

Because D(s) and D̂(s) are normalized dynamics, at
steady-state condition, Eq. 16 comes back to Eq. 15 and the
tracking performance as well as the disturbance rejection are
satisfied. However, the transient part to reach the reference
and the transient part to reject the disturbance could slightly
differ from the specifications (in terms of settling time and
overshoot) depending on the deviation between D̂(s) and
D(s), which is quantified by D(s)

D̂(s)
.

We also note from Eq. 12 that the suggested controller
κ(s) requires an inverse of the dynamic model D̂(s). Dy-
namics inversion is often a tricky task because it requires an
invertible model, i.e. D̂(s) should be minimum phase (with
stable zero) and bi-causal (its inverse is also causal). Con-
sequently, two possibilities are considered. If the identified
model D̂(s) is invertible, the controller is taken to be that
of Eq. 12. If D̂(s) is not invertible, the following controller
can be applied

κ(s) =
1

D̂(0)
W (s) =W (s). (17)

With this latter controller, the closed-loop equation in (11)
becomes y(s) =

D(s)W (s)

(1 +W (s) (D(s)− 1))
yr(s)+

(1−W (s))

(1 +W (s) (D(s)− 1))
e(s).

(18)
Then, the tracking performance specification and the distur-
bance rejection at steady-state condition in Eq. 15 are always
satisfied. Regarding the transient parts, this case has more
deviation than that of Eq. 16, the perfect transient parts being
that expressed in Eq. 14.

IV. EXPERIMENTAL RESULTS

While the calculation of the previous section dealt with
the calculation of a linear IMC controller, as displayed
in Fig. 5(a), the final controller to be implemented and
applied to the piezoactuator is a nonlinear IMC. Indeed, it is
composed of:

- the hysteresis compensator P̂−1 which is nonlinear,
- the creep compensator Ĉr(s),
- the dynamics D̂(s),
- and the feedback controller κ(s) = 1

D̂(s)
W (s) or κ(s) =

W (s) according if D̂(s) is invertible or not.
As we demonstrated in the precedent section, the whole

controller is robust in the sense that steady-state tracking
performances and disturbance rejection are always satisfied,
despite of the deviation between the used models P̂ , Ĉr(s)
and D̂(s) from the real behavior P , Cr(s) and D(s) re-
spectively. Fig.5(b) depicts the implementation of the full
nonlinear and robust IMC (NR-IMC) controller.
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Fig. 5. (a) the IMC controller, and (b) the implemented nonlinear IMC
controller.

The NR-IMC described in the previous subsection was
implemented following the diagram in Fig. 5-b. The models
P̂ , Ĉr(s) and D̂(s) identified in section. II-C have been used
for that. The gabarit W (s) was derived using Eq. 13 a desired
settling time of tr = 15ms which is well-suited to precise
positioning tasks and characterization at the micro/nanoscale.

First a step input reference of 23µm was applied to the
closed-loop. Fig.6(a) shows that the specified performance
for the transient part is satisfied. The settling time is about
15ms and the initial overshoot of 35% (see Fig.3(b)) is
completely damped. Then, the harmonic response of the
closed-loop was carried out. Fig.6(b) depicts the result which
confirms the non-presence of resonance with the proposed
RN-IMC controller. From the harmonic response, the 3dB-
bandwidth is evaluated at 113Hz which is useful in micro-
robotic based precise positioning tasks and in micro-scale
characterization task [4].
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V. CONCLUSIONS

A creep-Hammerstein model that can characterize the
hysteresis, creep, and linear dynamics of a piezocantilever
actuator has been used to propose a nonlinear robust inter-
nal model control. The experimental results show that the
proposed control system compensates for the hysteresis and
creep nonlinearities and stabilizes the linear dynamics of the
actuator. The future research will focus on: (i) internal model
control for multi-axial piezoceramic stages, and (ii) exact
mathematical formulation for the compensation errors of the
proposed internal model control.

ACKNOWLEDGMENT

This work has been supported by the Labex ACTION
project (contract ANR-11-LABX-0001-01).

REFERENCES

[1] F. Stefanski, B. Minorowicz, J. Persson, A. Plummer, and C. Bowen,
“Non-linear control of a hydraulic piezo-valve using a generalised
PrandtlIshlinskii hysteresis model,” Mechanical Systems and Signal
Processing, vol. 82, pp. 412–431, 2017.

[2] X. Liu, m. Kojima, Q. Shi, H. Wang, T. Sun, Y. Mae, Q. Huang, T.
Arai, and T. Fukuda, “Non-contact transportation and rotation of micro
objects by vibrating glass needle circularly under water,” Proceedings
of IEEE International Conference on Robotics and Automation, Sin-
gapore, pp. 5996-6001, 2017.

[3] J. Kim, S. Jeong, S. Han, and J. Lee, “Effects of different piezo-acting
mechanism on two-stage fuel injection and CI combustion in a CRDi
engine,” Journal of Mechanical Science and Technology, vol. 30, pp.
5727–5737, 2016.

[4] M. Rakotondrabe, “Smart materials-based actuators at the micro/nano-
scale: characterization, control and applications,” Springer - Verlag,
New York, ISBN 978-1-4614-6683-3, 2013.

[5] M. Rakotondrabe, “Piezoelectric systems for precise and high dynamic
positioning: design, modeling, estimation and control,” HDR, Univer-
sity of Franche-Comt / FEMTO-ST, November 10, 2014.

[6] L. Ryba, J. Dokoupil, A. Voda, and G. Besanon, “Adaptive hysteresis
compensation on an experimental nanopositioning platform,” Interna-
tional Journal of Control, vol. 90, pp. 765-778, 2017.

[7] M. Al Janaideh, M. Rakotondrabe, and X. Tan, “Guest editorial
focused section on Hysteresis in smart mechatronic systems: modeling,
identification, and control,” IEEE/ASME Transactions on Mechatron-
ics, vol. 21, pp. 1-3, 2016.

[8] V. Hassani, T. Tjahjowidodo, and T. Do, “A survey on hysteresis
modeling, identification and control,” Mechanical systems and signal
processing, vol. 49, pp. 209–233, 2014.

[9] M. Al Janaideh, M. Rakotondrabe, I. Al-Darabsah, and O. Aljanaideh,
“Internal model-based feedback control design for inversion-free
feedforward rate-dependent hysteresis compensation of piezoelectric
cantilever actuator,” Control Engineering Practice, vol. 72, pp. 29–41,
2018.

[10] M. Rakotondrabe, ’Multivariable classical Prandtl-Ishlinskii hysteresis
modeling and compensation and sensorless control of a nonlinear 2-dof
piezoactuator’, Springer Nonlinear Dynamics, DOI: 10.1007/s11071-
017-3466-5, March 2017.

[11] M. Al Janaideh, M. Rakotondrabe, and O. Aljanaideh, “Further results
on hysteresis compensation of smart micro-positioning systems with
the inverse Prandtl-Ishlinskii Compensator,” IEEE Transactions on
Control Systems Technology, vol. 24, pp. 428–439, 2016.

[12] O. Aljanaideh, D. Habineza, M. Rakotondrabe, and M. Al Janaideh,
Experimental comparison of rate-dependent hysteresis models in char-
acterizing and compensating hysteresis of piezoelectric tube actuators,
Physica B, vol. 486, pp. 64-68, 2016.

[13] M. Rakotondrabe, O. Aljanaideh, and M. Al Janaideh, “H∞ control
for a smart micro-positioning system with an analytical model for the
output of the inverse compensation,” Proceedings of American Control
Conference, pp. 2643-2648, 2015.

[14] X. Tan and J. Baras, “Modeling and control of hysteresis in magne-
tostrictive actuators,” Automatica, vol. 40, pp. 1469–1480, 2014.

[15] C. Visone and W. Zamboni, “Loop Orientation and Preisach Modeling
in Hysteresis Systems” IEEE Transactions on Magnetics, vol. 51, pp.
1–4, 2015.

[16] A. Radouane, T. Ahmed-Ali, and F. Giri, “Parameter identification of
Hammerstein systems with Bouc-Wen hysteresis input nonlinearity,”
Proceedings of European Control Conference, pp. 684-689, 2014.

[17] D. Habineza, M. Rakotondrabe, and Y. Le Gorrec, “BoucWen model-
ing and feedforward control of multivariable hysteresis in piezoelectric
systems: application to a 3-DoF piezotube scanner,” IEEE Transactions
on Control Systems Technology, vol. 23, pp. 1797-1806, 2015.

[18] B. Mokaberi and G. Requicha, “Compensation of scanner creep
and hysteresis for AFM nanomanipulation,” IEEE Transactions on
Automation Science and Engineering, vol. 5, pp.197-208, 2008.

[19] M. Rakotondrabe, “Modeling and Compensation of Multivariable
Creep in multi-DOF Piezoelectric Actuators,” Proceedings of the
International Conference on Robotics and Automation, pp. 4577–4581,
Minnesota USA, 2012.

[20] D. Croft, G. Shed, and S. Devasia, “Creep, hysteresis and vibration
compensation for piezoactuators: atomic force microscopy applica-
tion,” ASME Journal of Dynamic Systems, Measurement and Control,
vol. 123, pp. 35-43, 2001.

[21] M. Al Janaideh, “About the output of the inverse compensation of
the Prandtl-Ishlinskii model,” Proceedings of the American Control
Conference, Washington, DC, pp. 247-252, 2013.

[22] L. Ljung, System identification toolbox, The Matlab user’s guide, 1988.
[23] R. Conant and W. Ashby, “Every good regulator of a system must

be a model of that system,” International Journal of Systems Science,
vol. 1, pp. 89-97, 1970.

[24] K. Astrom, C. Hang, and B. Lim, “A new Smith predictor for
controlling a process with an integrator and long dead-time,” IEEE
Transactions on Automatic Control, vol. 39, pp. 343–345, 1994.


