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Abstract

Many approaches have been proposed in the literature to reduce energy consumption in
Wireless Sensor Networks (WSNs). Influenced by the fact that radio communication and
sensing are considered to be the most energy consuming activities in such networks. Most
of these approaches focused on either reducing the number of collected data using adaptive
sampling techniques or on reducing the number of data transmitted over the network us-
ing prediction models. In this article, we propose a novel prediction-based data reduction
method. furthermore, we combine it with an adaptive sampling rate technique, allowing
us to significantly decrease energy consumption and extend the whole network lifetime. To
validate our work, we tested our approach on real sensor data collected at our offices. The
final results were promising and confirmed our theoretical claims.

Keywords: Wireless Sensor Networks; Data estimation; Data reduction; Data prediction;
Adaptive Sampling; Energy saving.

1. Introduction

A Wireless Sensor Network (WSN) consists of a base station (Sink) and a number of
small, wireless electronic devices called sensor nodes. These nodes react to inputs from both
the physical or environmental conditions of a monitored area, such as pressure, temperature,
humidity, motion, light, etc [1], and they cooperatively pass data through the network to
the Sink for further processing. In recent years, efficient design of Wireless Sensor Networks
has become a leading area of research for scientists. Several challenges needed to be ad-
dressed for a realistic implementation of WSNs, such as localization, deployment, coverage,
data integrity, reliability, etc. All of these challenges are subject to many constraints that
sometimes might be incompatible. However, the most important constraint is the limitation
in energy resources.
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Generally, wireless sensors are not connected to an electrical circuit that feeds them
power. Instead, due to design constraints they rely on small, low powered batteries. There-
fore, the optimal use of energy is the key solution for other challenges and to an extended
operational lifetime of these networks.

In WSN, sensing and radio communication are considered to be the most expensive
activities in term of energy consumption. Therefore, many approaches have been proposed
in the literature to reduce the number of sampled data and the transmitted ones.

Due to the nature of WSNs, sensor data tend to change smoothly over time and it
contains a significant chunk of redundant information. Therefore, to reduce the number of
sampled data some researchers proposed several adaptive sampling techniques [2, 3, 4, 5, 6, 7]
that dynamically increase or decrease the sampling rate of a sensor according to the level of
variance between collected data over a certain period of time. This approach prevents the
sensor from collecting redundant information. Thus, the sensing activity is reduced which
in turn leads to a reduction in the transmission activity. Hence, less energy is consumed.

Instead of relying on adapted sampling rate to produce less transmissions, other ap-
proaches preferred to tackle the problem differently through a direct reduction of radio
communication, since it consumes more energy than sensing. One of the most commonly
used technique to limit data transmission is the dual prediction mechanism [8, 9, 10, 11, 12].
An identical prediction model is shared between each node and the Sink. This model is
used to forecast future values. Thus, instead of transmitting all the collected data, a sen-
sor transmits only the measurements that deviate from the predicted value by a threshold
predefined by the user. Therefore, if the Sink does not receive any measurement at a given
time, it acknowledges that the model’s prediction is within the error budget.

Merging both adaptive sampling and dual prediction based transmission reduction into
a single mechanism, can reduce energy consumption significantly compared with the ap-
proaches relying on either one of them.

In this paper we present an approach combining an adaptive sampling and a novel trans-
mission reduction technique into a single energy efficient algorithm. Thus, our main contri-
butions in this work can be summarized as follows:

• Proposing a new data transmission reduction algorithm that reduces the amount of
data reported to the sink using a dual prediction model. In contrast to other similar
techniques our model is light in term of computational cost and requires a very small
memory footprint, yet it is robust and efficient.

• Coupling our novel transmission reduction algorithm with an adaptive sampling tech-
nique. Enabling the sensor to collect fewer measurements which in turn increase the
efficiency of the transmission reduction algorithm and reduces the amount of energy
consumed by the sensing activity.

• Conducting experiments on real sensor data and comparing our proposed method with
a recent data reduction approach [13] based on a combination of a prediction model
and an adaptive sampling technique. The final results demonstrates that our proposal
outperforms the latter in reducing the overall energy consumption.
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The rest of this paper is organized as follows. In section 2 the work related to data trans-
mission reduction, adaptive sampling and approximate replication of sensor data is briefly
presented. In section 3 the Kruskal-Wallis based algorithm that allows the sensor to adapt
its sampling rate is explained. In section 4 our novel dual prediction based transmission
reduction method is introduced. Section 5 explains how the adaptive sampling and trans-
mission reduction techniques can be merged together. The obtained experimental results
are shown in section 6. Finally, the paper is concluded in section 7.

2. Related Work

The elements of energy dissipation in a wireless sensor node that monitors a specific
environment and report the collected information to a central workstation are very dif-
ferent [14, 15]. However, in the monitoring stage, the micro-controller, sensor and radio
components dominate the energy consumption and they are the main optimization targets.

In previous studies, authors studied several energy-saving schemes for wireless moni-
toring operations such as: data aggregation [16, 17], data compression [18, 19], adaptive
sampling [2, 3, 4, 5, 6, 7, 20] and data prediction [8, 9, 10, 11, 12, 13].

2.1. Compression and Aggregation

The authors in [16], present a data reduction method called the Prefix-Frequency Filter-
ing (PFF). In this approach, the first layer of data reduction is done locally on each sensor
node, and a second layer of data reduction is done on a central node collecting data from
neighboring nodes which is also referred to as “Aggregator”. On the latter PFF uses Jac-
card similarity to measure the correlation among reported measures from different nodes in
order to merge and send them to the Sink. In [17] the Dynamical Message List Based Data
Aggregation (DMLDA) technique is presented. This method is based on the data clustering
technique and it provides a real time data aggregation. The backbone of this method is a
special data structure named dynamical list. This list is deployed in every filtering node
to store history messages before transmission. Thus, instead of using period delays, older
messages are used to filter duplicated ones.

In [18] the authors uses raw signal processing and signal reconstruction to develop a
reordering algorithm that resorts the sensor nodes at the Sink. This method enhances the
sparsity of the signal by reducing the number of measurements needed for its reconstruction,
consequently resulting in a low compression sampling rate that in turn scale down irrelevant
communication traffic. The authors in [19] proposed a cluster-based quality-aware adaptive
data compression scheme, which takes into consideration the applications data quality and
it also limits information loss by using adaptive clustering and novel coding algorithm.

2.2. Adaptive Sampling

In [3] the amount of data is reduced by adapting the sampling rate for air pollution
monitoring. The suggested work used the Kalman filter to remove noise from the sensed
data. The algorithm adapts the period sampling based on the similarity between the current
and the previous sensed data.
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In [4] the sampling rate of the sensor node is adapted by taking into consideration both
the system and the application context levels. For instance, the availability of the energy
for harvesting represents the system context. This availability is the criteria used to set the
maximum sampling rate for the node. The application context is represented by the user
request, where feedback from the system executing specific rules of user or field scientist is
used to set the rates of sensor node sampling in optimal way.

In [20] the authors propose three different data collection and adaptive sampling tech-
niques for Industrial Process Monitoring. The first one uses the ANOVA model, while the
second one is based on sets similarity functions, and the third one on the distance functions.

Adaptive sampling techniques are remarkably efficient when the temporal correlation
among collected data is high and the irregularity and sudden changes are low. In opposite
conditions, where correlation is low and irregularity is high, these techniques perform poorly
since the sampling rate will be kept at maximum most of the time. Thus, the computing
cost will overcome the achieved reduction in sampling and transmission cost.

2.3. Prediction-based Data Reduction

In [12] the authors proposed a Derivative Based Prediction model (DBP) that is com-
puted based on a learning window, containing m data points. The model is linear, computed
as the slope d of the segment connecting the average values over the first and last l edge
points at the beginning and end of the learning window.

In [13] the authors proposed a technique named Dual Prediction with Cubic adaptive
sampling (DPCAS) that combines an exponential time series predictive model with a TCP
CUBIC congestion adaptive sampling technique. Enabling the sensor node to reduce its
sampling rate based on the produced prediction error. Moreover, measurements are trans-
mitted to the sink only when a significant change in readings occur. The whole data set is
then reproduced on the sink by interpolating the received measurements.

The authors in [8] proposed a prediction model that is based on the Kalman filter. The
same instance of this model is built by the Sink using historical data reported by the sensor
and then is shared with the latter. The same model on both ends simultaneously performs
linear predictions for future readings, enabling the sensor to transmit a measurement to the
Sink only when the prediction is not accurate.

The dual Kalman filter method requires a priory knowledge and statistical data on the
environment being monitored, in order to build the model. Therefore, the authors in [9]
proposed a dual prediction mechanism that is based on Least Mean Square (LMS) adaptive
filter. LMS lends itself to be compact, light and requires no priory statistical knowledge of
the data. Thus, it makes the prediction model more stable and adaptable with changes.

The authors in [10] proposed to combine the LMS and Recursive Least Squares (RLS)
adaptive filters in a single prediction model. Since the latter is able to achieve faster con-
vergence and produces a prediction model that is more stable, RLS is used to build the
prediction model. Once this model is built, the parameters are then passed to an LMS
adaptive filter to perform predictions. The reason for this switch is that LMS has lower
complexity, thus it suits the energy constraints of the sensor better than RLS.
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In [11] the authors proposed a dual prediction model that is based on the Hierarchical
Least Mean Squares (HLMS) adaptive filter. The HLMS is a multi-level LMS filter, that
makes a trade-off between increasing the complexity of LMS filter and having a better
prediction filter.

The speed and the success of convergence of the adaptive filters is conditioned by some
predefined parameters such as the “step size”. A small alteration in these parameters can
heavily affect the performance of these filters, and choosing an optimal value is not feasible
most of the time, since it requires a training phase.

We propose in this paper to combine our adaptive sampling technique [5] with our novel
dual prediction based forecasting model that is free from any parameters limiting its perfor-
mance and which only requires two measurements to be built and one measurement to be
updated. Targeting at the same time the two most energy consuming activities in WSNs,
in order to preserve as much energy as possible.

In the following sections, adaptive sampling and data transmission reduction techniques
are explained. Then an algorithm merging these two approaches together is presented.

3. Adaptive Sampling

First of all let us begin by explaining the Kruskal-Wallis statistic model. It forms the
skeleton of the adaptive sampling algorithm aiming to reduce the number of data sampled
by each sensor.

3.1. The Kruskal-Wallis Statistic Model

The Kruskal-Wallis test [21] takes as input a group of data sets to identify whether there
is a difference between at least two of these sets. To understand how this test works and how
it could help us to reduce the sampling rate of a sensor, we give the following illustrative
example that explains its functionality and applicability in WSNs.

3.1.1. Illustrative example

Let us consider that a sensor operates in rounds, where each round consists of p periods.
To simplify the example, let us assume that p is equal to two. Table 1 shows a set of
measurements collected by a sensor during two consecutive periods.

The first step is to order the measurements in both periods by increasing order of their
values and assign a rank denoted r to each one of them, representing its position in the
ordered list. However, two or more measurements could have the same value. In this case
the mean value of their ranks is calculated and assigned to each one of them. For instance,
in Table 1 the value 7.0 is repeated twice, both in period 1 and 2 with ranks 5 and 6
respectively. The mean value of both ranks is 5.5. Thus, the ranks of both measurements
holding the value 7.0 are replaced by 5.5.

The second step is to pass the ranked measurements as input to the Kruskal-Wallis test
in order to find which one of the following assumptions is correct:
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Table 1: Example of collected measures

Raw Measures Measures Rankings
Period 1 Period 2 Period 1 Period 2

3.4 4.6 1 2
6.2 5.8 4 3
7.0 7.0 �5 5.5 �6 5.5
7.3 7.5 7 8
7.6 8.0 9 10
10.3 10.2 ��12 12.5 11

10.3 ��13 12.5
Number of Measures Sum of Rankings

6 7 39 52

• Assumption 1: the two groups of data (measurements in period 1 and 2) are signifi-
cantly different.

• Assumption 2: the difference between the two groups of data is not significant.

The test is conducted by calculating the following formula :

H =
12

N × (N + 1)

p∑
i=1

r2i
ni

− 3× (N + 1) (1)

where:

• N is the total number of measurements in all periods.

• ni is the number of measurements inside the ith period.

• ri is the sum of all ranks in the ith period.

Using the data in Table 1 and based on equation (1), H is calculated as follows:

H =
12

13× (13 + 1)
(
392

6
+

522

7
)− 3× (13 + 1) = 0.183

Finally, to check which assumption is the correct one, the result of this formula is com-
pared with a “difference value” denoted Ht. Ht varies according to the false rejection prob-
ability predefined by the user, denoted α. The relation between α and Ht can be found in
the chi− square Table. The risk α is defined in a statistical test as the risk of rejecting the
Null hypothesis when in fact it is true, it is also known as Type I error. This risk is stated
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Figure 1: Sampling rate adaptation using the Behavior function.

in terms of probability (such as 0.05 or 5%). It corresponds to the confidence level of a sta-
tistical test, so a level of significance α = 0.05 corresponds to a 95% confidence level. In our
approach it is the probability that a sensor node find a high variance between its collected
data while in reality there is no variances and it should adapt the sampling rate. Therefore,
when α decreases the value of Ht increases and then the condition H < Ht becomes more
difficult to be satisfied. Consequently, the sampling rate increases when α decreases.

Let us assume α = 0.05, for this value of α, Ht is equal to 5.991. Comparing the
results of the previous equation we notice that H < Ht (0.183 < 5.991). Therefore, the first
assumption is accepted. Hence, the sampling rate must be adapted.

3.2. The Behavior curve function

Based on the Kruskal-Wallis test, when a node notices high variance differences, it in-
creases its sampling rate in order to prevent missing important measurements and decreases
its sampling rate when the variance is less than the threshold Ht. Following the example
above low variance was detected, since H < Ht.

To compute the sampling rate of the sensor a behavior function (BV) is used, taking as
input the risk of the application denoted R, or in other words, how important the quality of
data is to the end user. This BV function is expressed by a Bezier curve that passes through
three points as shown in Figure 1: (0,0), (Ht, Maximum Sampling Rate), and R.

4. Transmission reduction

To transmit the collected data to the base station, the network involves a large number of
radio operations, including listening to the channels, receiving and transmitting data. Since
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the main part of energy dissipation in wireless sensors is indeed the radio components, the
lifetime of the network can be extended significantly if we optimize the radio communication
operations.

The data in WSN are defined as time series, since they are sequential data points collected
over successive time. Such data is generally affected by three main factors: Trend, Cyclical
and Irregular factors. As brief description of these factors, time series in general tend to
increase, decrease or stand still over a long period of time, this tendency is usually called
“a Trend”. For example, the temperature of a room tend to have an increasing trend, from
when the sun rises until it starts to set. Cyclic variations can be seen during a longer period
of monitoring. For instance, the same cycle of increase and decrease in the temperature takes
place every day. Finally, irregular factors are variations caused by unpredictable influences,
such as clouds covering the skies during the day and suddenly reducing the temperature or
dimming the light.

Therefore, since time series data follows a specific trend and tend to change smoothly
over time, one can forecast future measurements by observing past patterns. In the light
of this, we propose a dual prediction based reporting mechanism to conserve energy and
maximize the lifetime of the network. Let us first begin by explaining the concept of the
dual-prediction mechanism.

4.1. Dual-Prediction Mechanism (DPM)

The Dual-Prediction Mechanism is a model that analyzes the history of previously col-
lected information, extract the moving trend of data in order to approximately estimate
future readings. In the DPM, the same prediction model is deployed at both the sensor
nodes and the base station. Using the same historical data, sensor nodes and the base sta-
tion regularly make the same prediction of any future observation. This technique allows
the sensor nodes to avoid transmitting its sensed data to the base station, as long as the
predictions match the readings.

Meanwhile, the base station always presume that its prediction reflects the real observa-
tion, unless it receives the corrections from the sensor node (since the sensor can compare
the prediction with the real sensed measurement). Figure 2. illustrates in a simplified way
how this mechanism work.

4.2. Transmission reduction method based on DPM

As mentioned previously, the prediction model is built using historical measurements
collected by the concerned sensor. The number of these measurements depends on the type
of the chosen prediction model. Different types of prediction models has been proposed in
the literature [8, 9, 10, 11, 12], where the number of data needed to train the model can vary
from tens to hundred even thousands of reading depending on its learning capacity. In our
method, only two measurements are sufficient to build the prediction model, and a single
measurement to correct it.

At the beginning, the sensor collects and sends to the Sink the two first measurements
x[0] and x[1] at time t0 and t1. Each time the sink receives a new measurements it stores in its
memory the value of this measurement and the time when it was received. Let us denote the
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Figure 2: The concept of DPM

newly received value as NR and the time when it is received as tnr. Subsequently, both the
sensor and the sink calculate simultaneously the difference between these two measurements
denoted d, as shown in the equation (2).

d[0] = x[1]− x[0] (2)

Once the difference is calculated, the sensor and the Sink switches to the prediction phase,
where they both assume that the difference between any two successive measurements will
always be equal to d[0]. Based on the fact that time series data tend to change smoothly over
time and the values of measurements at neighboring time ticks, are usually very close to each
other. Therefore, as shown in equation (3), to predict x̂[k], the value of the measurement
x[k] at time tk, both the sensor and the sink adds d[0] to x̂[k-1] which is the predicted
measurement at time t(k−1).

x̂[k] = x̂[k − 1] + d[0] (3)

Afterward, the sensor compares the predicted value x̂[k] to the real sensed measurement
x[k]. If the difference between them does not exceed an error threshold emax predefined by
the user, the real reading is discarded and not transmitted to the Sink. Meanwhile, when the
Sink does not receive anything, it assumes that its prediction is within the error threshold.

Oppositely, if the prediction does not respect the error budget, the sensor discards it and
transmits to the Sink the real reading, which we will refer to as “correction packet”. Once
the Sink receives the packet, they both update the value of d, by subtracting NR from the
correction value x[k] and dividing the result by the time difference between the reception
of these tow measurements, as shown in the equation (4). And once again to keep track of
the last received value for potential future update, the old value of NR is replaced in the
memory by the newly received measurement x[k].
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d[k] =
x[k]−NR
tk − tnr

(4)

In other words, d represents an estimated linear change rate of future readings, for a
certain period of time. Moreover, as mentioned earlier, time series data usually have an
increase, stand still and decrease cycle, especially when measuring environmental features,
such as temperature, humidity, light etc. Thus, to harmonize the prediction line with the
real data curve, d is multiplied by a rectification value denoted β ∈ [0, 1].

Accordingly, the predicted value is calculated using equation (5) instead of equation (3).

x̂[k] = x̂[k − 1] + d[k]× β (5)

The algorithm 1 illustrates the functioning of our method.

Algorithm 1 Transmission reduction.

1: Read x0 and x1
2: Transmit x0 and x1 to Sink
3: d[0] ← x1 − x0
4: NR ← x1
5: tnr = t1
6: while Energy 6= 0 do
7: Read xt at time tx
8: x̂t ← x̂t−1 + d× β
9: if |xt − x̂t| ≥ emax then

10: Send xt to Sink
11: d[t]← xt−NR

tx−tnr

12: NR← xt
13: tnr ← tx
14: x̂t ← xt
15: end if
16: end while

5. Merging Adaptive Sampling and DPM based Transmission reduction

The Adaptive Sampling algorithm (AS) reduces the sampling rate of a sensor when the
difference between collected measurements is not significant. Thus, enabling the sensor node
to avoid collecting redundant and superfluous information. The Transmission Reduction
algorithm (TR) reduces the number of data transmitted to the Sink, using a prediction
model that can forecast future measurements within a narrow error range. The efficiency of
the prediction model is at peak when data is smoothly changing with low variance between
measurements.
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Thus, one can notice that these two techniques are compatible. First their work does not
overlap and they do not affect each other’s results. Secondly, the prediction model is capable
of filling the gap of “non collected data”, since as mentioned before these measurements are
mostly redundant or roughly similar to closely collected ones, and the prediction model
efficiency is at maximum when the change in values is smooth and slow. Therefore, on one
hand the sampling rate is reduced and on the other hand, the end user will still have access
to the complete set of data. Finally the complexity of the transmission reduction algorithm
is extremely low. Thus, when combined with the adaptive sampling algorithm the overall
complexity will remain unchanged. Therefore, we propose to combine these two techniques
into a single algorithm, enabling us to achieve lower energy consumption compared to each
one of them when implemented solely.

Let us begin by explaining how to combine these two techniques together, and how the
algorithm works as a whole. As mentioned earlier, the operations conducted by AS and TR
does not overlap, and they do not affect the results of each others. Therefore, since they are
totally compatible they can be implemented as they are originally without any changes in
the way of working.

The only difference is, instead of having a single sampling rate, the sensor has two: a real
one and a hypothetical one. The real sampling rate is the rate defined by the AS algorithm
after each round. The hypothetical one is a fixed rate that is always equal to the maximum
sampling rate. The sensor collects measurements at the real rate speed returned by AS.
However, it uses the hypothetical rate while applying the TR algorithm. In other words, let
us suppose for a round ro, the real rate is RR measures/period and the hypothetical rate is
HR measures/period. In this case, during this period, on one hand the sensor collects RR
measurements, on the other hand it predicts HR measurements. Note that RR is always
less than HR, as HR is equal to the maximum sampling rate allowed for the sensor. Thus,
the sensor is able to predict the “non collected” measurements caused by a slowed down
sampling rate forced by AS.

Figure 3 gives an illustrative example on how this algorithm behave.

X1, X2, X3, X4, X5   X6, X7, X8, X9, X10, X11, X12  X13, X14, X15   X16, X17, X18, …..Raw Data

X1, X2, X3, X4, X5
Sampled 

Data
X6,              X9,                   X12 X13 X16, X17, X18, …..

 𝑥1 ,  𝑥2,  𝑥3,  𝑥4  𝑥5   𝑥6,  𝑥7  𝑥8 ,  𝑥9,  𝑥10,  𝑥11,  𝑥12,  𝑥13,  𝑥14  𝑥15  𝑥16,  𝑥17,  𝑥18, …..

Round 1 Round 2 Round 3 Round 4

Estimated
Data

| 𝑥𝑖- 𝑥𝑖|> emax

Time

Send Xi to Sink Discard Xi

Figure 3: Illustrative example of our method (AS+TR)
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We have explained in section 4.2 that every time a sensor predicts a new measurement
it must compare it with the real sensed value in order to decide whether it should send it
to the Sink or not. However, when adding AS to the equation, if RR is ≤ HR some predic-
tions might not have a matching sensed measurements to validate its accuracy. Therefore,
these predictions are considered to be within the error budget automatically. Since the
“non collected” measurements are assumed to be redundant or already similar to collected
neighboring measures. This assumption should not affect the accuracy of replicated data.
However, we discuss this issue in the Experimental Results section below.

6. Experimental Results

In this section, we present the experimentation we have conducted on real wireless sensor
readings, collected by twenty Crossbow TesloB nodes deployed in our laboratory as shown
in Figure 4. The walls separating the rooms of the lab are of a thickness of 8 cm. Each
one of the twenty nodes collects five environmental features: temperature, humidity, light,
infrared and voltage. The collected measurements are directly transmitted to a central node
(Sink) called SG1000 [22], connected to a laptop machine, through a star topology.
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Figure 4: Deployment of the sensor network

We have chosen to test our approach on temperature, humidity, and infrared data since
the variation in measured values for each one of them is different. For instance, the variation
in temperature data is low, medium for humidity, and high for infrared. Thus, we can assess
the efficiency of our approach on different scenarios. The simulation was conducted on twenty
sets of 300,000 readings each (100,000 temperature, 100,000 humidity, and 100,000 infrared
readings), which is equivalent to approximately 35 days of non-stop data collection. Since
the effectiveness of these algorithms depends on the variation of the data being collected and
can greatly differ from one node to another. The setup parameters for this experimentation
are shown in table 2.

6.1. Transmission reduction

To test the effectiveness of our transmission reduction method compared to DPCAS. We
have simulated both methods on the same sets of data using Matlab. The error threshold
“emax” was set to ±0.1 for temperature and humidity, and ±1 for infrared.
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Table 2: setup parameters

DPCAS AS+TR
Smin 310 sec Smin 310 sec
Smax 31 sec Smax 31 sec

smoothing coefficient α
& multiplicative reduction factor β

0.2 Risk R 0.6

cubic parameter C 0.4 Rejection Probability α 0.05

Figures 5, 6 and 7 shows a comparison between the amount of temperature, humidity,
and infrared data that have been transmitted to the sink when both DPCAS and AS+TR
were implemented. For instance, On average, only 193 temperature readings or 0.193% were
transmitted when our algorithm was implemented. When DPCAS is used, the number of
data transmitted increased slightly to 714 (0.714%).

For humidity and infrared, the results were identical, our method outperformed DPCAS
in reducing the number transmissions. The average amount of transmitted humidity and
infrared data for AS+TR is 6148 and 5528 respectively. As for DPCAS the numbers increase
to 13964 and 15848 respectively. Hence, these results show that our transmission reduction
method is better at reducing radio communication, which enables the node to preserve more
of its energy resources.
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Figure 6: Amount of humidity data trans-
mitted to the Sink

6.2. Adaptive Sampling

By looking at figure 8, 9 and 10, it is clear that DPCAS has the upper hand when it comes
to reducing the sensing activity. Since the latter decreases gradually the sampling rate after
each sample. However, AS decreases it only at the end of each period (after 50 samples in
this experiment). The average amount of temperature, humidity and infrared data sampled
by DPCAS are 16688, 26643 and 15847 respectively. As for AS+TR the numbers increase
to 77731, 83873 and 46247 respectively. Hence, DPCAS outperforms our adaptive sampling
algorithm in reducing the amount of sampled data and the energy consumed by the sensor
board.

13



2 4 6 8 10 12 14 16 18 20
Node ID

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
m

o
u

n
t

o
f

tr
a
n

sm
it

te
d

d
a
ta

#104

DPCAS

AS+TR

Figure 7: Amount of infrared data transmit-
ted to the Sink
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Figure 8: Amount of sampled temperature
data
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Figure 9: Amount of sampled humidity data
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Figure 10: Amount of sampled infrared data

6.3. Energy consumption

It was shown that about 3000 instructions could be executed for the same energy cost
as sending a bit for 100 meters by radio [23]. Therefore, to compare the amount of energy
consumed by each method, we neglected the cost of computing operations by considering
that both algorithms have the same computation complexity. We focused only on the cost of
radio transmission and data sensing. In order to calculate the energy consumed by a sensor
node we used the energy consumption model in [24]. The previous results demonstrated that
on one hand, our method transmits less data to the sink. Therefore, the energy consumed
by the radio component is less when compared to DPCAS. On the other hand, the latter
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samples fewer data. Therefore, the energy consumed by the sensor board is lower when
compared to ours.

The amount of energy consumed by the sensor board is significantly smaller than the
one consumed by the radio component. Therefore, the greater is the difference between the
amount of data transmitted by each algorithm, the harder is for DPCAS to compensate the
energy consumed by transmission with less sampling energy.

Figure 11, 12 and, 13 are a great proof for this assumption. The difference between the
amount of temperature data transmitted by DPCAS and AS+TR is negligible, and large
between the amount of sensed data. Consequently, the energy consumed by the sensor
board will impact greatly the overall energy consumption calculation, which gave DPCAS
the lead. However, when the gap between the number of transmissions grows bigger, as it is
the case for humidity and infrared data. The energy consumed by the sensing activity will
have a minor impact on the overall energy consumption calculation. Therefore, the total
energy consumed by AS+TR for humidity and infrared data is smaller for the majority of
the nodes.
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Figure 11: Energy consumption comparison
for temperature data
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Figure 12: Energy consumption comparison
for humidity data
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Figure 13: Energy consumption comparison
for infrared data

6.4. Quality of replicated data

Data quality is a very important factor in WSNs, since the end user depends on it to make
appropriate decisions. Accuracy, precision, completeness, and consistency are the attributes
that measure the quality of data.
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When we reduce the sampling rate within a certain period, we risk missing sudden
variations in measurements. Thus, the estimation of these irregular non sampled data may
exceed the desired error threshold. To study the impact of the adaptive sampling algorithms
on the integrity of the replicated data we compare the estimated measurements with its
corresponding raw data collected by the sensor node, and we calculate the values of 4
quality metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
Mean Square Error (MSE), Root Mean Square Error (RMSE). The lower the values of these
metrics the better are the results.
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Figure 14: Quality metrics comparison for
replicated temperature data

2 4 6 8 10 12 14 16 18 20
Node ID

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
r
r
o

r

AS+TR (RMSE)
DPCAS (RMSE)
AS+TR (MAE)
DPCAS (MAE)
AS+TR (MAPE)
DPCAS (MAPE)
AS+TR (MSE)
DPCAS (MSE)

Figure 15: Quality metrics comparison for
replicated humidity data
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Figure 16: quality metrics comparison for
replicated Infrared data

Figure 14, 15, and 16 shows a comparison between the quality metrics for each set of
data of the three environmental features. For temperature data, both algorithms are neck
to neck. However, AS+TR has a clear superiority for humidity and Infrared. Since Infrared
contains 0 elements the value of MPAE cannot be computed. As for MSE in order to keep
figure 16 simple an comprehensible, instead of plotting the curve we provide the average
values which are 2.49 and 2.72 for AS+TR and DPCAS respectively.

Adaptive sampling makes a trade-off between data quality and the amount of sampled
measurements, to deliver a minimum amount of readings while satisfying quality require-
ments of the application. Thus, the integrity of data depends on how tolerant is the end user
to the error in replications. The obtained results demonstrated that our method was able
to reproduce the whole data set with less error and better quality compared with DPCAS.
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7. Conclusion

In this research work, we proposed an energy-efficient data reduction method for Wireless
Sensor Networks based on a combination of the adaptive sampling and dual prediction
mechanism techniques. The former, allows the sensor to adapt its sampling rate according
to the variance in data. Thus, the sensor samples relevant data only and avoids the sampling
of redundant and insignificant information. The latter enables the Sink to estimate the
collected data through a prediction mechanism that is shared with the sensor node. Thus,
Instead of transmitting all the readings, the sensor report to the Sink a measurement only
when the estimation exceeds a predefined error threshold. By merging these two techniques
together, we were able to reduce radio communication and data sensing at the same time.
Since these two activities are considered to consume most of the energy resources, we were
able to preserve a great amount of energy and extend the lifetime of the network significantly
compared with another similar technique.

For future work, we plan on improving our adaptive sampling technique in order to
reduce the risk of losing important information and increase the quality of the replicated
data.
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