BitSimulator, an electromagnetic nanonetwork simulator

Dominique Dhoutaut
dominique.dhoutaut@univ-fcomte.fr
FEMTO-ST Institute, Univ. Bourgogne

Franche-Comté, CNRS
Montbéliard, France

ABSTRACT

Electromagnetic nanonetworks form an exciting new field of in-
vestigation. The frequency band and the channel access methods
impose peculiar constraints on upper layer protocols. Given that
research is impaired by the unavailability of ready to use hardware,
simulation tools are needed to evaluate protocols and applications.
This paper presents BitSimulator, a network simulator specifically
targeting wireless nanonetworks. It is designed to accurately simu-
late collisions up to the bit level, allowing studies on coding, channel
access, routing or congestion control. Being dedicated to this spe-
cific environment, it is highly optimized for speed and supports a
large number of nodes.

CCS CONCEPTS

« Networks — Network simulations; - Computing method-
ologies — Simulation tools;

ACM Reference Format:

Dominique Dhoutaut, Thierry Arrabal, and Eugen Dedu. 2018. BitSimulator,
an electromagnetic nanonetwork simulator. In NANOCOM ’18: NANOCOM
’18: ACM The Fifth Annual International Conference on Nanoscale Computing
and Communication, September 5-7, 2018, Reykjavik, Iceland. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3233188.3233205

1 INTRODUCTION

Electromagnetic nanonetworks represent a new field of research,
where thousands or millions of tiny and simple devices communi-
cate and interact. Many challenges exist in this field, especially as
the nanometric scale imposes strong hardware restrictions. To cope
with the physical and environmental specificities of nanonetworks
(CPU, memory and energy are extremely limited), a refoundation
of the whole network stack is required, from channel access and
coding to routing and applications. On one hand, progress has al-
ready been made on electromagnetic channel modeling and access.
In [5], Time Spread On-Off Keying (TS-OOK) has been proposed.
It allows communications using extremely short electromagnetic
pulses, as they can be generated by tiny antennas, and can be de-
tected and processed with limited computation power. On the other
hand, much has yet to be done at the higher network levels.

As complete implementations of nanonetworking devices are not
yet available, work on network protocols, coding and applications
has to be conducted either analytically or by simulation.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
NANOCOM 18, September 5-7, 2018, Reykjavik, Iceland

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5711-1/18/09...$15.00
https://doi.org/10.1145/3233188.3233205

Thierry Arrabal
thierry.arrabal@univ-fcomte.fr
FEMTO-ST Institute, Univ. Bourgogne
Franche-Comté, CNRS
Montbéliard, France

Eugen Dedu
eugen.dedu@univ-fcomte.fr
FEMTO-ST Institute, Univ. Bourgogne
Franche-Comté, CNRS
Montbéliard, France

Ts time

| »

R

1 0 1

Figure 1: Modulating “0” and “1” in TS-OOK.

In this paper we present BitSimulator!, a simulation software
dedicated to electromagnetic nanonetworks. It has been developed
for and is especially suited to help researchers experiment with and
better understand wireless nanonetworks protocols.

2 CONTEXT AND DESIRABLE FEATURES

2.1 Electromagnetic nanonetworks specificities

Due to the tiny energy available and to the very small antennas,
modulations from usual wireless networks, such as 802.11, cannot
be used. A simple scheme has therefore been proposed, TS-OOK [5],
which envisions extremely short radio pulses, as short as 100 fs
(femtoseconds), guided by a very precise clock. Upon reception, a
pulse is then simply interpreted as a binary “1” and its absence as
a binary “0”. Only a few values are required to communicate: The
duration of a pulse Ty, a power reception threshold above which
a “1” bit is considered received, and the symbol duration T (the
time between two consecutive bits). The spreading ratio § = Ts /T,
directly influences communication speed. The transmission of four
consecutive bits is given as an example on Figure 1. Please note
that the scale and the shape on this figure and the following ones
is altered for readability reasons. Pulses are represented here as
simple “peaks” and the delay between two consecutive pulses is
expected to be much greater than shown (f ranging from a few
hundreds to many thousands).

When Ty > Tp, this modulation leads to frame multiplexing
over time. This concept is represented on Figure 2, where pulses
from multiple frames are interleaved. Indeed, even if able to send
extremely short pulses, an individual node is not expected to send
them very fast (mainly because of energy and computation con-
straints). Consequently, an individual frame cannot be sent at an
extremely high speed. But in a dense environment, the aggregated
throughput of many multiplexed frames can reach very high val-
ues. This multiplexing ability is very different from traditionnal
wireless networks where frames are sent sequentially. Here, with
large values of §, hundreds of frames could be over the air at the
same time.

!The simulator is available under GPL licence, http://eugen.dedu.free.fr/bitsimulator.

https://doi.org/10.1145/3233188.3233205
https://doi.org/10.1145/3233188.3233205
http://eugen.dedu.free.fr/bitsimulator

NANOCOM ’18, September 5-7, 2018, Reykjavik, Iceland

A A

time

Figure 2: Temporally multiplexing frames in TS-OOK.

Figure 3: In TS-OOK, propagation delay influences packet
arrival order and collisions.

Packet 3 from S3 Signal: JU\—/L

Value: 1 1 0 1

Signal: J \ J \ J \

Packet 4 from S4 Value: 1 0 1 1
Signal received at R2: /| \ J\ J\ / \
Packet 3 value: 1 1 1 1
Packet 4 value: 1 1 . /1 1

Figure 4: Incorrect reception with TS-OOK.

The extremely short duration of pulses brings another pecu-
liarity: radio propagation delay is not negligible anymore, even
over distances as short as a few millimeters. This delay can be
much longer than the duration of a pulse and confuse the reception.
Figure 3 shows a topology where S1 and S2 generate packets at
different times, but they arrive at R1 at the same time. Especially
in dense networks with many transmitters in range but located
at various distances, this means receiving nodes will experiment
differences in the order of the arriving bits. In particular, depending
on the relative positions of the nodes, it will cause bits to overlap
at some neighboring nodes and not at others.

Encoding bits as pulses also brings specificities to the effect of
collisions. We consider a simplified model for pulses here. Indeed,
two overlapping bits do not necessarily cause an error. No error
occurs when the frame currently being tracked contains a “1” bit,
and at the time of its reception a “1” bit from another frame arrives,
since the power level over the channel is above the reception thresh-
old anyway and the receiver considers that it received a “1”. “0” bits
neither do not generate errors, since they are silence. To conclude,
collisions cause errors if a “0” was sent but a “1” arrives at the same
time. This is illustrated on Figure 4, where frames concurrently
transmitted by senders S3 and S4 collide at receiver R2: only “0”
bits of both frames are altered.

Dominique Dhoutaut, Thierry Arrabal, and Eugen Dedu

2.2 Desirable simulator features

Researchers often use in-house simulation software developed as a
side project. However, these tools often have flaws because of the
small amount of time invested. In particular, these tools fail to find
the correct balance between complexity, accuracy and requirements
(CPU and memory). This has implications on simulation correctness.
For our purposes, a simulator needs to have the following primary
features.

Individual node and application instantiation. As stated in the
introduction, one needs a tool to help design, simulate and validate
network protocols and applications. Analytical work considering
the network as a whole is often not practicable (when network
stack or scenario is too complex) or not sufficiently detailed (to cap-
ture subtleties and special cases). An implementation of the whole
network stack is usually needed, with an individual instantiation of
each element. Each node and each piece of code running is treated
separately.

Bit by bit transmission and error computation. As presented in
the previous section, mechanisms affecting the bit error rate but
also the distribution of errors heavily depend on the coding and
the payload itself. Errors need to be correctly simulated, especially
when working on coding schemes.

Radio propagation delay consideration. Small changes in the po-
sition or timing in the simulated nodes significantly affect bits
effectively received and collisions. Channel access control proto-
cols such as [10] use specific binary frame preambles and compute
optimal inter-bits spacing. Those protocols significantly reduce the
risk of collisions but cannot rule them out, especially in very high
density scenarios. Correctly simulating frame’s individual bits (cf.
previous desirable feature), and the timing and scheduling of events
(including the propagation delay) cannot be neglected at this scale.

(Numerous) frames multiplexing over the channel. This is a defin-
ing feature of wireless nanocommunications, where numerous
frames (possibly hundreds or more) can be interleaved in the air.
This implies the ability for nodes to decode multiple frames in
parallel. This is technically possible, but the number of frames con-
currently decoded has to be limited to take into account hardware
or software constraints.

Scaling to large number of nodes. Applications of wireless na-
nocommunications include programmable matter and sensor net-
works, which can have numerous nodes (e.g. millions). The simula-
tor needs to be scalable with respect to the number of nodes.

Simulation speed. To avoid particular cases and unpredictable
variations, a scenario is often run multiple times with different
random number generator (RNG) seeds, which greatly increases
simulation time. An optimized software is therefore desirable. It
should be noted that fine-grained parallelization is often useless
due to the interdependence of the simulated events.

3 COMPARISON WITH OTHER SIMULATORS
3.1 Network Simulator and Nano-Sim

Network simulator has been around for almost thirty years. NS-2
and now NS-3 have been widely used in the literature. NS-3? is a
very versatile tool and can simulate virtually any kind of network

https://www.nsnam.org/

https://www.nsnam.org/

BitSimulator, an electromagnetic nanonetwork simulator

(from satellites to Wi-Fi, Zigbee or wireless nanonetwork). NS-3
implements complete protocol stacks with many physical, link,
routing, control and application layers.

NS-3 includes a nanonetwork layer, Nano-Sim [6], which targets
pulse-based wireless nanonetworks and follows the TS-OOK model
mentioned earlier. Nano-Sim allows packet multiplexing in the
channel (many packets being sent in parallel, as long as their pulses
are interleaved over time and do not overlap). However, the model
implemented is too simple:

e Propagation delay is not taken into account: when a packet
is sent, all nodes in range start receiving it at the same time.

o Collision detection considers that all packets use the same
value. It is an all-or-nothing computation, i.e. if a bit from a
packet collide with a bit from another packet, then all the
other bits collide too.

o Bit overlapping always leads to collision, no matter their
value (“0” or “17).

e Packets are reordered without reason, and jitter does not
vary, which is unrealistic [2].

Moreover, the strong versatility of NS-3 comes with a drawback in
terms of CPU and memory overhead.

3.2 Vouivre

Vouivre [1] is a nanonetwork simulation library that can also be
used in standalone mode. Because of molecular absorption, the
channel tends to produce noise when excited, namely when sending
“1” bits [3]. It allows to simulate extremely dense networks with
millions of nodes. Using a statistical error computation algorithm
from [4], it supports a large number of nodes (tens of thousands of
neighbors) while remaining quite fast. The main drawback of this
statistical approach is the inability to simulate in detail the effect
of the packet payload.

3.3 Physical simulators

Very low level approaches use a very detailed physical model run-
ning in a generic simulator. In [7], COMSOL Multiphysics® is used
to compute the behavior of a graphene-based nanoantenna. [9] uses
AnyLogic* with raytracing.

These tools produce very accurate results, but have two major
drawbacks for our purposes. They involve a complex setup phase
where the environment has to be described in detail. Also, depend-
ing on the compromises (typically, if the actual payload is simulated
or not), the computations can be very heavy and in practice can be
used only in networks with a few nodes.

4 BITSIMULATOR DESIGN

Because of the limitations of the available tools, we choose to de-
velop a dedicated simulator. It aims a good tradeoff between level
of detail, accuracy and execution speed. By targeting only one type
of network, we can simplify the design and get rid of a lot overhead
(found for example in NS-3). Almost all the code is nano-wireless
specific, and this makes developing analysis and visualization tools
equally easier.

3https://www.comsol.com
4https://www.anylogic.com

NANOCOM ’18, September 5-7, 2018, Reykjavik, Iceland

This section gives more insight into the design choices of Bit-
Simulator.

4.1 Core design

Like many network simulators handling applications and routing
protocols, BitSimulator is event-driven. At its core lies a discrete
event model where actions are scheduled into a time ordered list.
Events in this queue are processed in order, and may in turn trigger
the insertion of new, subsequent, events. The simulation ends when
there is no more event in the list or a predetermined simulated time
is reached.

The simulator has to cope with both very short durations (such
as the duration of a pulse or the radio propagation delay over a
few millimeters) and relatively longer durations (such as the time
between packets generated by applications). This is done by inter-
nally storing the time as a 64 bits integer number of femtoseconds.
This very high time resolution allows to process both 100 fs long
pulses and long simulated times. Nodes exist in a simulated 2D or
3D world and may change their position and orientation over time.
To be consistent with the very high time resolution, resolution of
the positions has to be equally high, so position and distances are
internally expressed in nanometers.

Reproducibility of the results is ensured by the use of several
seeded RNG. This allows for example two simulations which use the
same random placement of nodes, but different random parameters
of the simulated protocols.

Scenarios are defined in XML files, but many parameters can
be defined or overridden by command line options. This allows to
start simulations in an executable script file.

The scalability in the number of simulated nodes is a main design
goal. It is attained by a careful balance between versatility and
simplicity of the code. A relatively small number of C++ classes are
provided and encapsulate all main features, as explained below.

4.2 Network features

To keep the simulator simple and fast while allowing researcher to
control application and network protocols, an infrastructure with
three main networks layers is provided.

Physical and channel access control layer. It deals with radio prop-
agation and computation of reception errors. Simulated devices
are equipped with a unique nanowireless transceiver, whose range
and orientation are configurable. This layer implements by default
the TS-OOK model with 100 fs pulses and a per frame configurable
J parameter. It can also be easily altered to implement any other
pulse based model.

Because multiple frames can be temporally multiplexed over the
channel, nodes have to track the one (or possibly the ones) they are
interested in. Hardware or software on devices often limit the num-
ber of frames that can be tracked simultaneously. This value is con-
figurable in the simulation through the maxCurrentReceptions
parameter.

This layer is primarily implemented in the Node C++ class (see
Figure 5), with interactions and supporting placement data struc-
tures implemented into the World class.

Routing. Due to the very limited available energy, communication
range of nanodevices is expected to be very short. Multi-hop, ad

https://www.comsol.com
https://www.anylogic.com

NANOCOM ’18, September 5-7, 2018, Reykjavik, Iceland

Server Server - -~
Application Application Application Application
’ Routing Agent ‘
’ Node ‘
[
’ World ‘

Figure 5: Interactions among main C++ classes.

hoc style, networks are expected to be common in nanonetworks.
To this end, the routing layer implements three options: no routing,
flooding and SLR [8]. Custom ones can easily been added.

Application. BitSimulator allows two types of applications: App-
lication, which can only send packets, and ServerApplications,
which can send and receive packets. A Node can host any number
of both. Server applications bound to a logical port that allows
demultiplexing and distribution of incoming packets to the correct
ServerApplication. One just has to derive those classes into his
own, and attach their instances to the nodes.

Data flowing through the network are modeled by the Packet
class. Packets contain a binary payload (that can be defined by
an application, defined statically or defined randomly), along with
various metadata, which help to visualize and understand proto-
cols involved. They include source, destination, packet and flow
identifiers, along with a few others. They can be easily extended to
match further requirements.

Upon correct reception, Packets are handed to ServerApplica-
tion instances running on Nodes. It is possible to set the maximum
number of erroneous bits for which the packet is still considered
correct. Packets, even damaged, can be passed to the upper layer,
allowing to implement a coding or redundancy scheme.

5 ANALYSIS AND VISUALIZATION TOOLS

VisualTracer is an efficient tool to display trace files generated
by the simulator. It currently supports two display modes: global
and individual. The global one shows a map and allows interactive
highlighting of actives nodes (transmitting, receiving, experiencing
a collision, ...). The user can choose a time interval to display and
can interactively navigate over the time axis.

On Figure 6, a scenario with 30 000 nodes (all in the same com-
munication range) and 4 senders was used. All senders started their
transmissions almost at the same time. Figure 6 shows screenshots
of the map part of the interface at 4 different times. We can see
nodes finishing to receive a packet from image to image. Even if
not really visible on these particular pictures because of display
parameters, some nodes experience collisions, following the model
presented earlier.

The full interface of VisualTracer in global mode is shown on
figure 7. The same scenario as in Figure 6 is represented, but the time
interval to display is much larger in Subfigure 7a. In this subfigure,
nodes getting corrupted packets are easily identified (the dotted
lines). On the right part of the screenshot, graphs show the activity
over the selected time interval. Here we can see the 4 packets being
sent and the neighbors gradually receiving them depending on their

Dominique Dhoutaut, Thierry Arrabal, and Eugen Dedu

Figure 6: 30 000 neighbors receiving a few packets over time
(4 very small time steps).

(a) Large time interval. (b) Medium time interval.

Figure 7: Propagation delay causing deferred reception as
seen in VisualTracer.

Figure 8: Multiple collisions between 2 flows in a 4 flows sce-
nario.

distance to the sources. Subfigure 7b represents the same scenario
again, but with a smaller time interval, helping to better understand
where and why collisions occur.

The second visualisation mode is individual, it represents the
point of view of a given node as a chronogram. It displays bits and
packets over a timeline and is especially useful to detect repetitions
and bursts in the collisions. Figure 8 shows collisions occurring in
a 4 flows scenario. In this case only 2 of the 4 flows are affected by
collisions. Figure 9 gives an example of various (interactive) zoom
levels in another scenario with 4 active transmitters sending 10 bits
packets and a few collisions occurring.

6 CASE STUDIES

A simulation tool is meant to be used to search for new protocols
and applications. In this section we briefly present some of the sim-
ulations we have already conducted and we highlight the benefits
from using BitSimulator.

6.1 Collision accuracy

We developed a scenario with 5000 nodes in communication range.
Among them, a few tens independently broadcast constant bit rate
flows of 8000 bits packets. Packet generation rate is chosen so that
there is just enough time to completely send a packet with § = 1000
before generating the next packet. If a smaller value of f is used,

BitSimulator, an electromagnetic nanonetwork simulator

NANOCOM ’18, September 5-7, 2018, Reykjavik, Iceland

(a) Concurrent 10 bits packets.

(b) Zooming on colliding packets. (c) Bits coll.

Figure 9: Chronogram mode in VisualTracer.

Figure 10: Time spacing of constant bit rate packets for f =
1000 (up), B = 500 (middle) and § = 50 (bottom).

this means a packet would just take less time to be sent, and that
the node has to wait for a new packet to be generated. However,
all nodes are configured to use the same f value (50, 500 or 1000
respectively in the three runs described below). Figure 10 shows
graphically how those flows occupy the channel over time.

To prevent collisions occuring because all transmitters start at the
same time, an additional random backoff is used, with a maximum
duration in the order of Ts (i.e. the duration of a pulse multiplied
by p). The payload of those packets is randomly chosen and all are
unique.

This scenario can be considered an all-or-nothing for packets
collisions. Between two concurrently received packets, bits are
either all aligned (because of the respective backoffs of those packets
and their propagation time), or none of them. But even if all bits
of a packet are aligned (i.e. received at the same time) with those
of another flow, it does not mean that all of them will be altered
(cf. Figure 4). In fact, if two 8000 bits packets collide, only “0” bits
received are overridden by “1” bits from the other. For random
payload, this occurs about 1/4 of the time. This is exactly what is
shown on Figure 11, which counts packets having a given number
of altered bits. Most packets observed in the scenario have around
2000 erroneous bits over their 8000 total.

However, with smaller values of f3, additional groups of packets
tend to be more common, having around 3000 and 3750 errors
(and higher spread). This is explained by a higher contention and
collision not with other packets, but 2 or even 3 others at the same
time. The observed values can be analytically computed, but we do
not present them here because of space constraints.

6.2 Multi-hop broadcasting and reachability

Given that nodes have a small individual communication range,
multi-hop nanonetworks are expected to be common. Information
and control packets will have to be propagated through parts or
even to the whole network. Many strategies exist already, and more

100000 ¢ T T T
r beta =50 1
L beta = 500
n 10000 beta = 1000 mxzzzd |
o [
o
o L
2 1000 | El
Q b
o
“6 L
o 100
fe) L
S
5 L
= 10
1 I I I I 1

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of collided bits

Figure 11: The number of collided bits is either around 2000,
when two packets collide, or around 3000, when three pack-
ets collide, or around 3750, when four packets collide.

will be proposed; but all have to be evaluated in the context of
wireless nanonetworks.

BitSimulator allows to analyze such protocols, even in the case
of dense or large networks (hundreds of thousands of nodes, thou-
sands or more direct neighbors for each node). Moreover, through
the interactivity of VisualTracer, it becomes easy to pinpoint be-
haviors and threshold values below which an evaluated protocol
starts to crumble. Figure 13b shows the nodes reached by a multi-
hop propagation. Parts of the network obviously were not reached
(black holes, especially top-right area). Such as map (that can be
interactively animated in VisualTracer) is a useful complement to
traditional metrics. For example reachability percentage or copies
received (shown on Figure 13a) do not capture distribution over
time and space.

6.3 Routing and optimization

Broadcasting and propagating information over the whole multi-
hop network is not always desirable. Routing protocols are con-
sequently required. BitSimulator implements the SLR routing pro-
tocol [8]. In SLR, nodes have a position expressed in number of
hops to a few chosen and immobile nodes called anchors. In the
original SLR protocol, positions of all nodes are computed by flood-
ing beacons from the anchors. Multiple nodes can share the same
coordinates and form zones. Routing of data packets then works
with nodes determining if they are on the path of an incoming
unicast packet, and if so, simply forwarding it. Figure 12a gives an

NANOCOM ’18, September 5-7, 2018, Reykjavik, Iceland

Dominique Dhoutaut, Thierry Arrabal, and Eugen Dedu

(a) Default SLR zones and an example(b) SLR zones when few nodes partici-(c) Optimizing the number of for-

of unicast route.

pate in the initial beacon flooding.

warders per zone.

Figure 12: Simulation with the SLR routing protocol.

3000
2500
2000
1500
1000
500
0

Number of nodes

0 2 4 6 8 10 12 14
Packets received

(a) Distribution of the number o
copies received.

(b) Incomplete propagation
area.

Figure 13: Reachability in a multi-hop network.

example of zones produced by SLR, and shows all the nodes that
consider themselves as forwarders along a unicast route.

As the initial flooding used to propagate the beacons can be very
costly, strategies to reduce its impact can be of interest. Figure 12b
shows the impact of such a strategy. In this case, we started by
running DeDen, a neighboring cardinality estimation protocol. By
knowing the local density of the network, we can then strongly limit
the number of nodes participating in the propagation of the beacons,
while preserving the connectivity of the network.. Retransmitting
nodes are however chosen randomly, and, as seen on the figure,
this has a visible impact on the regularity and shape of the zones.

In the original SLR protocol, all nodes of a zone that consider
themselves on the path of a data packet will forward it. This can
be costly in dense environments. Figure 12c shows the effect of a
strategy that strongly reduces the number of retransmits per zone.
To this end, nodes use an independently computed estimation of
their number of neighbors.

It should be noted that an easy to use infrastructure is provided
to implement new routing protocols. One only has to derive the
RoutingAgent class and attach it to the Nodes.

7 CONCLUSION

This paper presents BitSimulator, an open source network simula-
tor targeting electromagnetic nanonetworks. It takes into account
the specificites of the channel and channel access, especially by
allowing many parallel communications (packets being sent simul-
taneously). It allows low level studies by effectively computing

collisions at the bit level. As such, it enables work on the coding
itself, and is also very useful for designing new channel access
or channel sharing schemes. It is highly optimized for speed and
supports numerous nodes (hundreds of thousands nodes, each hav-
ing tens of thousands neighbors have been tested). BitSimulator
is accompanied by VisualTracer, an interactive visualization and
analysis tool that greatly helps in dense and complex scenarios.

Future work includes the enhancement of the physical model
by taking into account the noise generated by an excited medium,
along with more computation speed improvements.

ACKNOWLEDGMENTS
This work has been funded by Pays de Montbéliard Agglomération.

REFERENCES

[1] Nicolas Boillot, Dominique Dhoutaut, and Julien Bourgeois. 2015. Going for large

scale with nano-wireless simulations. In 2nd ACM International Conference on

Nanoscale Computing and Communication (NanoCom). ACM, Boston, MA, USA,

1-2.

Eugen Dedu, Julien Bourgeois, and Muhammad Agus Zainuddin. 2014. A first

study on video transmission over a nanowireless network. In ACM International

Conference on Nanoscale Computing and Communication (1). ACM, Atlanta, Geor-

gia, USA, 1-6.

[3] J.M. Jornet and LF. Akyildiz. 2011. Low-Weight Channel Coding for Interfer-
ence Mitigation in Electromagnetic Nanonetworks in the Terahertz Band. In
Communications (ICC), 2011 IEEE International Conference on. IEE, Kyoto, Japan,
1-6.

[4] Josep Miquel Jornet and Ian F Akyildiz. 2011. Information capacity of pulse-

based wireless nanosensor networks. In 8th Annual IEEE Communications Society

Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).

IEEE, Salt Lake City, UT, USA, 80-88.

Josep Miquel Jornet and Ian F. Akyildiz. 2014. Femtosecond-Long Pulse-Based

Modulation for Terahertz Band Communication in Nanonetworks. IEEE Transac-

tions on Communications 62, 5 (May 2014), 1742-1753.

Giuseppe Piro, Luigi Alfredo Grieco, Gennaro Boggia, and Pietro Camarda. 2013.

Nano-Sim: simulating electromagnetic-based nanonetworks in the network sim-

ulator 3. In 6th International ICST Conference on Simulation Tools and Techniques

(SimuTools). ACM, Cannes, France, 203-210.

[7] Prateek K. Singh, Gregory Aizin, Ngwe Thawdar, Michael Medley, and Miquel
Jornet. 2016. Graphene-based Plasmonic Phase Modulator for Graphene-based
Plasmonic Phase Modulator for Terahertz-band Communication. In Proc. 10th
European Conference on Antennas and Propagation (EuCAP). IEEE, Davos, Switzer-
land, 1-6.

[8] Ageliki Tsioliaridou, Christos Liaskos, Eugen Dedu, and Sotiris Ioannidis. 2017.
Packet routing in 3D nanonetworks: A lightweight, linear-path scheme. Nano
Communication Networks 12 (June 2017), 63-71.

[9] A. Tsioliaridou, C. Liaskos, S. Ioannidis, and A. Pitsillides. 2016. Lightweight,

self-tuning data dissemination for dense nanonetworks. Nano Communication

Networks (Special Issue on EM Nanonetworks) 8 (2016), 2—15.

Hang Yu, Bryan Ng, and Winston K.G. Seah. 2017. Pulse Arrival Scheduling for

Nanonetworks Under Limited IoT Access Bandwidth. In 42nd IEEE Conference on

Local Computer Networks (LCN). IEEE, Singapore, Singapore, 18-26.

=

[5

G

[10

	Abstract
	1 Introduction
	2 Context and desirable features
	2.1 Electromagnetic nanonetworks specificities
	2.2 Desirable simulator features

	3 Comparison with other simulators
	3.1 Network Simulator and Nano-Sim
	3.2 Vouivre
	3.3 Physical simulators

	4 BitSimulator design
	4.1 Core design
	4.2 Network features

	5 Analysis and visualization tools
	6 Case studies
	6.1 Collision accuracy
	6.2 Multi-hop broadcasting and reachability
	6.3 Routing and optimization

	7 Conclusion
	References

