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Abstract In test generation, when computing a reachable concrete
under-approximation of an event system’s predicate abstraction, we aim
at covering each reachable abstract transition with at least one reachable
concrete instance. As this is in general undecidable, an algorithm must
finitely instantiate the abstract transitions for it to terminate. The ap-
proach defended in this paper is to first concretely explore the abstract
graph, while concretizing the abstract transitions met at most once. How-
ever, some abstract transitions would require that loops were taken pre-
viously for them to become reached. To this end, in a second phase, a
test engineer guides the exploration by describing a relevance predicate
able to travel such loops. We give hints on how to design and express a
relevance predicate, and provide a method for automatically extracting
a variant out of it. A relevance guided concretization algorithm is given,
whose termination is ensured by using this variant. Experimental results
are provided that show the interest of the approach.

Keywords: Predicate Abstraction, Under-Approximation Generation,
Loop Variant, Relevance Predicate

1 Introduction

In model-based testing [1,2], the user wants to derive a test suite from a model,
that achieves a given coverage (e.g. all states, all transitions, etc.) of it. Some-
times the infinite or very large size of the explicit state space of the model makes
its coverage impossible, and an abstraction of the model can be used instead:
the possibly infinitely many explicit states are grouped into finitely many ab-
stract super-states. In predicate abstraction [3], explicit states are mapped onto
abstract ones by means of a set of predicates that characterizes each abstract
state. These predicates can for example automatically derive from a formalized
test intention [4]. An abstract transition links two abstract states when it has at
least one explicit instantiation. Such transitions are called may transitions [5],
meaning that they may be instantiated.

The general framework of our work is to generate tests from predicate ab-
stractions of event systems, that are a special kind of action systems. Contrarily
to programs, event systems have no explicit control flow that could be preserved
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in an abstraction for guaranteeing abstract paths to be explicitly instantiable
as reachable and connected sequences. To this end, [6] introduces an algorithm
that widens a frontier of reached states by systematically trying to prolong the
existing concrete sequences with instantiating some yet unexplored abstract tran-
sition. The approach is called concrete exploration (CXP). It aims at covering
each abstract transition, but only once for avoiding the concrete state space
blow-up. Experiments in [6] have shown that, despite covering most of the ab-
stract transitions, this approach fails at covering some of them whose enabling
would require that previous transitions were taken repeatedly in loops.

In this paper we propose that selected loops are allowed to be traversed by
designing an adequate relevance predicate. It is domain specific, and relies on
the knowledge owned by a test engineer of the model that (s)he has written. We
revisit the relevance function of Grieskamp et al. [7], that achieves a similar goal
in the context of deriving a Finite State Machine from an Abstract State Ma-
chine. Our solution is to observe the coverage achieved by CXP, in order to drive
the loop executions towards a test goal, i.e. reaching one or more concrete states
in which the non-covered abstract transitions become enabled. Our relevance
predicate expresses a condition over two consecutive concrete states, telling for
the target concrete state if it is relevant or not to continue the exploration from
it. It has to make the exploration go through cycles. To achieve termination of
this process, we propose to deduce –from a relevance predicate exhibited by the
test engineer– a variant that strictly decreases until it reaches a minimal value.

Summarized, our contributions are to: (1) propose a method for designing a
relevance predicate, as well as a simple language for its expression, (2) automati-
cally deduce a loop variant from a relevance predicate expressed in this language,
(3) exhibit an algorithm that implements the approach by completing, with a
relevance predicate as input, an existing under-approximation, (4) experimen-
tally assess the method. The formal background required for reading the paper
is given in Sec. 2. We illustrate our approach in Sec. 3 through the example of a
simple coffee vending machine. Computing of a concrete under-approximation,
designing a relevance predicate and deducing a loop variant from it are explained
in Sec. 4. The algorithm that implements the method is given in Sec. 5. The ex-
perimental results of applying the method to five case studies are in Sec. 6. In
Sec. 7 we position our approach w.r.t. related work, and we conclude the paper
in Sec. 8.

2 Background

In this paper, systems are specified by event systems (ES) described in the B
syntax [8,9]1. Notice however that our proposals and results are general enough
since event system semantics is given by labelled transition systems (LTS).

This section first provides the syntax and the semantics of B event systems.
Then we present a predicate abstraction and formalize it for event systems by

1 Our experimental models are written in B, but could alternatively be translated into
a syntax with guarded commands [10], such as Abstract State Machines [11,12].
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means of May Transition Systems (MTS). Finally, we recall the notion of variant,
usually used to prove the termination of iterative programs and systems. It will
serve as the support to terminate the exploration from a relevance predicate.

2.1 Model Syntax and Semantics

Let us first introduce B event systems. They are composed of events specified
by means of guarded actions [10]. Once the system is in a state satisfying the
guard of an event, the latter is spontaneously fired.

Definition 1 (Event System). Let EvName be a set of event names. A B
event system is a tuple 〈X, I, Init,Ev〉, where X is a set of state variables, I
is a state invariant, Init is an initialization action such that I holds in any

initial state, and Ev is a set of event definitions, each of the form e
def
= a where

e ∈ EvName is the name of the event and a the action it performs. Note that
every application of an event must preserve I.

Definition 2 ((Concrete) State of an Event System). A (concrete) state
of an event system 〈X, I, Init,Ev〉 is a predicate preserving I and defined as a
conjunction of valuations of all state variables in X.

The events are defined by composing the following five primitive actions: skip,
an action with no effect, x := E an action assigning the value of the arithmetic
expression E to the state variable x, P ⇒ a, a guarded action requiring the
event system to be in a state satisfying the predicate P before the action a can
be applied, a1[]a2, a bounded non-deterministic choice between the two actions
a1 and a2 and finally @z.a an action applying the action a which depends on the
bound variable z whose value is chosen non-deterministically. The guard (noted

grd) is defined on the primitive actions by: grd(skip)
def
= true (the skip action can

always be applied), grd(x := E)
def
= true (the single assignment action can always

be applied), grd(P ⇒ a)
def
= P ∧ grd(a) (as defined before, the guarded action

only applies a if the system is in a state satisfying P , and the guard of a (grd(a))

must also be satisfied for a to be applied), grd(a1[]a2)
def
= grd(a1)∨grd(a2) (one of

the actions a1 or a2 whose guard is satisfied is applied), grd(@z.a)
def
= ∃(z).grd(a)

(there must exist some bound variable z satisfying the guard of a (which depends
on z) for a to be applied).

See Fig. 1 in Sec. 3 for an example of a B event system. Following [13], we
define the semantics of event systems by means of a labelled transition system

(LTS). Let e
def
= a be an event. It has a weakest precondition [14] w.r.t. a set

Q′ of target states, denoted wp(a,Q′). It is the largest set of states from which
applying a always leads to a state in Q′. An event also defines a relation between
the values of the state variables before (X) and after (X ′) the application of the

event. It is expressed by the before-after predicate of the event e
def
= a, denoted

prdX(a).
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Let us now formally define wp and prdX following [8]. We associate the sets
of states Q and Q′ with predicates: a set of states Q defines a predicate Q that
holds in any state of Q, but does not hold in any state not in Q.

We define the wp w.r.t. the five primitive actions by: wp(skip,Q′)
def
=

Q′, wp(x := E,Q′)
def
= Q′[E/x] that is the usual substitution of x by E,

wp(P ⇒ a,Q′)
def
= P ⇒ wp(a,Q′), wp(a1[]a2, Q

′)
def
= wp(a1, Q

′) ∨ wp(a2, Q′),
wp(@z.a,Q′)

def
= ∀z.wp(a,Q′), where z is not a free variable in Q′.

Then prdX is defined w.r.t. wp by prdX(a)
def
= ¬wp(a, x′1 6= x1∨. . .∨x′n 6= xn).

It is a predicate over the state variables X = {x1, . . . , xn} in the source state
before a, and the target state variables X ′ = {x′1, . . . , x′n} after a.

2.2 Predicate Abstraction

Predicate abstraction [3] is a special instance of the framework of abstract inter-
pretation [15] that maps the potentially infinite state space C of an LTS onto the

finite state space A of an abstract transition system via a set P def
= {p1, p2, . . . , pn}

of n predicates over the state variables. The set of abstract states A contains 2n

states. Each state is a tuple q
def
= (q1, q2, . . . , qn) with qi being equal either to pi

or to ¬pi, and q is also considered as the predicate
∧n
i=1 qi. We define a total

abstraction function α : C → A such that α(c) is an abstract state q where c
satisfies qi for all i ∈ 1..n. By a misuse of language, we say that c is in q, or that
c is a concrete state of q.

Let us now define abstract may transitions. Consider two abstract states q
and q′, and an event e. There exists a may transition q

e→ q′, if and only if there
exists at least one concrete transition c

e→ c′ such that α(c) = q and α(c′) = q′.
The may transition is reachable if and only if there is at least one such concrete
transition c

e→ c′ whose source state c is reachable from a concrete initial state.
We check predicate satisfiability thanks to SMT solvers. For a predicate P ,

we define the solver invocation SATc(P ) as returning either a model of P , or
unsat if P is unsatisfiable, or unknown if the solver failed to determine the sat-
isfiability of P . We also define SAT (P ) as the predicate that is true iff SATc(P )

returns a model. Let e
def
= a be an event definition, q

e→ q′ is a may transition
iff SAT (¬wp(a,¬q′) ∧ q). We compute a concrete witness c

e→ c′ by using the
before-after predicate: (c, c′) := SATc(prdX(a) ∧ q′[X ′/X] ∧ q) where q′[X ′/X]
is the q′ predicate in which each state variable xi is substituted by x′i.

2.3 May Transition Systems

Definition 3 introduces may transition systems (MTS) having abstract states,
and abstract may transitions. Definition 4 associates an abstraction defined by
an MTS with an ES. The reader will be provided with an example in Sec. 3.

Definition 3 (May Transition System). Let EvName be a finite set of event

names, and P def
= {p1, p2, . . . , pn} be a set of predicates. Let A be a set of 2n

abstract states defined from P. A tuple 〈Q,Q0, ∆〉 is an MTS if it satisfies the
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following conditions: Q(⊆ A) is a finite set of states, Q0(⊆ Q) is a set of abstract
initial states, and ∆(⊆ Q×EvName×Q) is a may transition relation with labels
in EvName.

Definition 4 (MTS from an ES and abstraction predicates). Let ES
def
= 〈X, I, Init,Ev〉 be an ES, and P def

= {p1, p2, ..., pn} be a set of n predicates over
X defining a set of 2n abstract states. A tuple 〈Q,Q0, ∆〉 is an MTS from ES
and P if it satisfies the following conditions:

– Q
def
= {q ∈ A|∃(q′, e).(q e→ q′ ∈ ∆ ∨ q′ e→ q ∈ ∆)},

– Q0
def
= {q|q ∈ A ∧ (SAT (prdX(Init) ∧ q[X ′/X]))[X/X ′]},

– ∆
def
= {q e→ q′|q ∈ A ∧ q′ ∈ A ∧ e def

= a ∈ Ev ∧ SAT (¬wp(a,¬q′) ∧ q)}.

Reachable MTS. The reachable MTS from ES and P is the MTS that contains all
the reachable may transitions, and only those ones. The notion of reachable MTS
is the same as that of true FSM in the context of abstract state machines [7].
As such, and as proved in [7], computing the reachable MTS from an ES and a
set P of abstraction predicates is in general an undecidable problem.

2.4 Variant of Iterative Systems

The notion of variant is usually used to prove the termination of iterative pro-
grams and systems. In this paper variants are associated with relevance predi-
cates, which can be seen as a kind of test goal.

For example in the deductive verification tools Frama-C [16] and KeY [17],
in order to prove the termination of program loops, the engineer must provide
for each loop a variant annotation that defines a natural integer arithmetic ex-
pression. This expression must be non-negative before each iteration of the loop,
and must strictly decrease at each iteration. For example, in a binary search
algorithm in the array interval L..R, the variant is the expression R − L that
defines the length of the search interval. It has to strictly decrease at each exe-
cution of the body of the following loop: while L < R do M := (L+R + 1)/2;
if T [M ] ≤ X then L := M else R := M − 1 fi od. So, the algorithm termi-
nates when the interval is such that L = R.

The contributions of this paper provide means, for a test engineer, to cover by
tests the transitions whose enabling require that a loop of events have previously
been executed. We mainly propose that the test engineer provides a test goal
described by means of a relevance predicate, from which we deduce a variant such
that any event satisfying the relevance predicate strictly decreases this variant.

3 Running Example

Our illustrative example is a simplified coffee vending machine (see the ES in
Fig. 1). It has a Balance, which can be augmented by putting coins of value
either 50 or 100 (events insert50 and insert100 in Fig. 1). Balance may not
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exceed an arbitrary fixed constant named MAX Bal. There are arbitrary con-
stants for the maximal number of coffees stored in the machine (MAX Cof ),
and the maximal value (MAX Pot+50) of the Pot (the money kept by the
machine). Notice that Balance and Pot are multiples of 50 (specified in the
invariant). The machine has a Status which indicates if it is switched on (1)
or off (0), or out of order (2). When switched on, the machine can serve cof-
fees, after a request by the user (event cofReq that corresponds to pressing the
“request coffee” button), at the price of 50 each (event serveCof): this price
is retrieved from the Balance and sent to the Pot. The number of available
coffees is modelled by the CofLeft variable. The user can ask for its change
(event changeReq corresponds to pressing the “give change” button). The events
changeReq and cofReq are mutually exclusive. The user can then get its un-
used balance back (event backBalance). When switched off, the machine can
be refilled with coffee (event addCof), and its Pot retrieved (event takePot).
The events powerUp and powerDown are for switching the machine respectively
on or off. Finally, a special event (autoOut) sets the machine out of order: it
models the unexpected occurrence of a failure while the machine is in use. It
also occurs when either there is no more coffee, or the Pot is full (see serve-
Cof). Figure 2 represents the MTS of the ES of Fig. 1 for the three following

predicates: p0
def
= Status = 0 ∧ Pot ≥ MAX Pot − 50, p1

def
= Status = 1 and

p2
def
= (Status = 1 ∧AskChange = 0 ∧AskCof = 0 ∧Balance = 0) ∨ Status = 2

that are respectively the guards of the events takePot, autoOut and powerDown.

The test generation method presented in [6] generates a concrete LTS that
is an under-approximation of the semantics of the specification in Fig. 1. The
method concretizes all the may transitions but some instances are not connected
to the initial state of the under-approximation, due to the choice of traversing
each may transition only once. Sometimes previous transitions should have been
taken in loop for reaching a connected concrete state in which the targeted tran-

sition is enabled. This is for example the case with the transition q2
serveCof−−−−−→ q1.

It serves the machine’s last coffee in stock. Its enabling requires to previously
execute a loop which serves all coffees until emptying the stock. The idea pre-
sented in this paper for covering such transitions is to trigger a second step,
for completing a posteriori the LTS computed at the first step by the algorithm
of [6]. This second step is allowed to loop through some cycles of the abstract
graph, by generating new concrete states from the existing ones as long as they
are relevant. For guaranteeing this looping to terminate, we propose a state to
be relevant as long as it decreases a variant of the loop.

Relevance Predicate Example: In the coffee machine, transition q2
serveCof−−−−−→ q1

can only be triggered once the coffee stock is empty (CofLeft = 0). This requires
having previously looped between states q3 and q2 through the events insert50,
insert100, cofReq and serveCof. The progress conditions along that loop are that
either the variable Balance increases, or the variable CofLeft decreases, or the
variable AskCof passes from zero to one. In terms of the before and after values
of the variables, this is expressed as the following relevance predicate (RP):
Balance′ > Balance ∨ CofLeft’ < CofLeft ∨ (AskCof = 0 ∧AskCof’ = 1).
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X
def
= {Balance, Pot, Status, CofLeft, AskCof,AskChange}

I
def
= Pot ∈ 0..MAX Pot+ 50 ∧ Balance ∈ 0..MAX Bal∧
CofLeft ∈ 0..MAX Cof ∧ Pot mod 50 = 0 ∧ Balance mod 50 = 0 ∧
Status ∈ 0..2 ∧ AskCof ∈ 0..1 ∧ AskChange ∈ 0..1 ∧
AskChange = 1⇒ (Balance > 0 ∧ AskCof = 0) ∧
AskCof = 1⇒ (Balance ≥ 50 ∧ AskChange = 0) ∧
Balance = 0⇒ (AskCof = 0 ∧ AskChange = 0)

Init
def
= Balance := 0 || Status := 0 || Pot := 0 ||
CofLeft := 10 || AskCof := 0 || AskChange := 0

insert50
def
= Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧
Balance+ 50 ≤MAX Bal⇒ Balance := Balance+ 50

insert100
def
= Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧
Balance+ 100 ≤MAX Bal⇒ Balance := Balance+ 100

powerUp
def
= Status = 0 ∧ CofLeft > 0 ∧ Pot ≤MAX Pot⇒
Status := 1 || Balance := 0 || AskCof := 0 || AskChange := 0

powerDown
def
= (Status = 1 ∧ AskChange = 0 ∧ AskCof = 0 ∧ Balance = 0)
∨Status = 2⇒ Status := 0

autoOut
def
= Status = 1⇒ Status := 2

takePot
def
= Status = 0 ∧ Pot ≥MAX Pot− 50⇒ Pot := 0

cofReq
def
= Status = 1 ∧ Balance ≥ 50 ∧ AskCof = 0 ∧
AskChange = 0⇒ AskCof := 1

changeReq
def
= Status = 1 ∧ Balance > 0 ∧ AskCof = 0 ∧
AskChange = 0⇒ AskChange := 1

addCof
def
= ∃x.(x ∈ 1..MAX Cof ∧ CofLeft+ x ≤MAX Cof
∧Status = 0⇒ CofLeft := CofLeft+ x)

serveCof
def
= Status = 1 ∧ Balance ≥ 50 ∧ AskCof = 1 ∧ CofLeft > 0 ∧
Pot ≤MAX Pot⇒
AskCof := 0 || Balance := Balance− 50
|| CofLeft := CofLeft− 1 || Pot := Pot+ 50
|| (Pot ≥MAX Pot ∨ CofLeft = 1⇒ Status := 2

[] Pot+ 50 ≤MAX Pot ∧ CofLeft 6= 1⇒ skip)
|| (Balance > 50⇒ AskChange := 1 [] Balance = 50⇒ skip)

backBalance
def
= Status = 1 ∧ Balance > 0 ∧ AskChange = 1⇒
Balance := 0 || AskChange := 0

Figure 1. ES Specification of a Coffee Machine

4 Test Generation Based On Relevance Predicates

We first define the concept of Approximated Transition System (ATS) which
brings together an MTS and one of its under-approximations. Section 4.1 gives
an overview of the process in two phases of under-approximation that we propose
for computing an ATS. Then Sec. 4.2 explains how to design an RP on which the
second phase (detailed in Sec. 5) is based. Finally Sec. 4.3 gives the relationship
between an RP and a variant that guarantees the termination of the method.

We call Approximated Transition System (ATS, see Def. 5) the reunion of
an abstraction with one of its under-approximations that is a concrete part of
the LTS, which is the semantics of the event system from which the MTS is
deduced.

Definition 5 (Approximated Transition System). Let 〈Q,Q0, ∆〉 be an
MTS. A tuple 〈Q,Q0, ∆,C,C0, ∆

c, α〉 is an ATS whose 〈C,C0, ∆
c, α〉 is a con-

cretization of the MTS where C,C0 are sets of respectively concrete states and
concrete initial states, ∆c(⊆ C × EvName× C) is a concrete labelled transition
relation, and α is a total abstraction function from C to Q.

4.1 Process Overview

We sketch our process in Fig. 3. We propose to compute an ATS in two steps.
We get a first version (ATS (1) in Fig. 3) by an approach [6] called CXP for
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addCof

q0 q3 q2 q1 q4

powerUp insert100 autoOut

addCof
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cofReq,

changeReq,
serveCof

insert50,

autoOut

insert50 serveCof

takePot

powerDown serveCof

backBalance

powerDown

powerUp

powerDown

powerDown

Figure 2. MTS of the Coffee Machine w.r.t. Predicates p0, p1 and p2.

Transition Coverage
Analysis

ES MTS

P

ATS(1)

CXP RCXP

Under−app.

RP

Under−app.
extension

ATS(2)Abstraction

Figure 3. ATS Computation Process

concrete exploration, that traverses and concretizes each abstract transition only
once. Then, thanks to a relevance predicate RP provided by the test engineer,
selected loops of abstract transitions are additionally traversed and concretized
by RCXP, in order to connect to new concrete transitions. As a result, ATS (1)
is extended to ATS (2).

The CXP approach is fully described in [6]. The two operations Abstraction
and Under-app. are summarized as follows.

1. Abstraction. The test engineer designs a set of abstraction predicates P
related to the behaviour of the system ES (s)he wishes to observe. It is pro-
posed in [4] that these predicates are extracted from a test purpose, which is
a test intention formalized by a pattern a la Dwyer et al. [18]. Using algo-
rithm in [6] provides the test engineer with an MTS that over-approximates
the reachable MTS.

2. Under-app. The under-approximation is computed by concretizing on the
fly each may transition once, as it is discovered. The principle is to com-
pute an instance that prolongs, whenever possible, some existing sequence
connected to a concrete initial state. For CXP’s efficiency, each abstract
transition is concretized only once and thus cannot be applied repeatedly.
The ATS obtained is called ATS (1) in Fig. 3.

In general, not all the instances of abstract transitions built by ATS (1) are
reached, even though they are possibly reachable. It is always the case in par-
ticular, when repeating some transitions in a cycle would have been necessary
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for enabling another transition. In case ATS (1) fails at building a connected
instance of a may transition, the transition is concretized anyway but as a
“hanging” instance, i.e. disconnected from the previously reached part of the
under-approximation.

The second step, called RCXP for relevant concrete exploration, requires
human interaction. The test engineer analyses, for each abstract transition of
the MTS unreached in ATS (1), if (s)he thinks it could have been reached. If so
(s)he identifies which transitions taken in loop it would require for reaching it.
For that (s)he can observe in the MTS which cycles lead to enabling the target
transitions. As this looping may not terminate, (s)he has to provide an RP telling
whether or not it is relevant to pursue in the loop. The operation Under-app.
extension consists of adding to ATS (1) the concrete transitions obtained by this
RP guided exploration. It results in ATS (2), in which the transitions originally
targeted by RP are possibly reached. An algorithmic implementation of RCXP
is given in Sec. 5. Let us for now illustrate the process and RP design through
the coffee machine example.

4.2 Design of a Relevance Predicate and Illustration of the Method

For illustrating the application of the method, we consider the coffee machine
example, and a requirement stating that it must not break down after being
powered off, so that collecting the pot remains possible. Using the temporal logic
patterns of Dwyer et al. [18], this can be expressed as: Never autoOut Between
powerDown and takePot. As proposed in [4], the tester can use the guards of the
events invoked in this test purpose as abstraction predicates for computing the
MTS. Here, this gives the predicates p0, p1 and p2 defined in Sec. 3, from which
the abstraction of Fig. 2 has been computed. The tester executes CXP [6] with
these predicates as input, and observes the resulting MTS coverage. In the case

of the coffee machine, the two transitions q2
serveCof−−−−−→ q1 and q1

powerDown−−−−−−→ q4 and
the state q4 are not covered. Having designed the model, the tester is able to

understand that the transition q2
serveCof−−−−−→ q1 serves the last coffee in stock, so

that its coverage would have required that previously all the coffees were served.
By looking at the MTS, it is easy to see that covering this transition would
require looping between states q3 and q2. (S)He identifies as illustrated in Sec. 3
the set of events to loop through in order to reach his (her) goal. In our case, the
goal is serving the last coffee and the set of events to loop through is insert50,
insert100, cofReq and serveCof. After this step (s)he has to express by means of
a before-after predicate how it is relevant that the variables assigned in these
events evolve. The RP is then the disjunction of these before-after predicates.
For the coffee machine example, this gives the RP described in Sec. 3, paragraph
Relevance Predicate Example. The variables have to decrease a variant for the
looping to terminate. Let us now explain in Sec. 4.3 how to deduce this variant
from the RP.
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4.3 Variant Deduced from a Relevance Predicate

Given an RP, this section shows how to derive a variant that guarantees the
termination of the computation of relevant concrete states. We assume that
the test engineer uses a simple language defined as follows to express the RP,
where x, x′ denote the state variable x respectively before and after an event
application:

rel p ::= rp1 ∨ . . . ∨ rpn
rp ::= ap | cp
ap ::= x′ < x | x′ > x | x = v ∧ x′ = v′

cp ::= b1 ⇒ ap1 ∧ . . . ∧ bm ⇒ apm

An RP is a disjunction of before-after predicates, each of which being ei-
ther an atomic predicate ap or a conditional predicate cp. We consider these
predicates to only use the following three variable types: intervals of integer
MIN x..MAX x, booleans, and finite enumerated sets of labels. We assume
that the atomic predicates ap over a state variable x expresses that an integer
variable either strictly decreases (x′ < x) or increases (x′ > x), or the value of
an enumerated variable (including the boolean type) passes from v to v′. We
assume that v 6= v′. We also consider that in the conditional predicate pattern
cp, each bi is a boolean condition on the source state. For any concrete state c,
we finally assume that there exists one and only one i such that the predicate bi
is satisfied in the concrete state c, denoted as: c |= bi.

Let c, c′ denote respectively the state c before and after an event execution.
The first following three rules associate an initial variant, denoted Vinit(rp, c),
with the concrete state c depending on the RP rp. The next five rules associate
the next value of the variant, denoted V (rp, c′), with an RP rp in a target state

c′ reached from a source state c. Notice that in rules 4, 5, 6 and 8, V (rp, c)
def
=

Vinit(rp, c) when c is an initial state:

1. Vinit(ap, c)
def
= Card(Type(x)),

2. Vinit(b1 ⇒ ap1 ∧ . . . ∧ bm ⇒ apm, c)
def
=

if c |= b1 then Vinit(ap1, c)
else if . . . else if c |= bm then Vinit(apm, c),

3. Vinit(rp1 ∨ . . . ∨ rpn, c)
def
= Vinit(rp1, c) + . . .+ Vinit(rpn, c),

4. V (x′ < x, c′)
def
= V (x′ < x, c)− (x− x′),

5. V (x′ > x, c′)
def
= V (x′ > x, c)− (x′ − x),

6. V (x = v ∧ x′ = v′, c′)
def
= V (x = v ∧ x′ = v′, c)− 1,

7. V (b1 ⇒ ap1 ∧ . . . bm ⇒ apm, c
′)

def
=

if c′ |= b1 then V (ap1, c
′)

else if . . . else if c′ |= bm then V (apm, c
′).

8. V (rp1∨ . . .∨rpn, c
′)

def
=

∑
{i|i∈1..n∧(c,c′)|=¬rpi}

V (rpi, c)+
∑

{i|i∈1..n∧(c,c′)|=rpi}

V (rpi, c
′).
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Rule 1 allows applying as many operations as the size of the enumerated
sets or of the integer intervals (MAX x − MIN x + 1). Rule 2 applies the
previous rule according to the condition that holds in the initial state. Rule 3
defines the initial variant value as the sum of the variant values of each of the
disjunction members. Rules 4 and 5 define that the next variant value decreases
of the difference between the two successive values of x. Rule 6 defines that
the next variant value for a modification of an enumerated variable decreases
of one. Rule 7 defines that the next variant value for a conditional predicate
decreases as much as the atomic predicate that is satisfied in the state c′. Last,
with rule 8, the variant in the target state of a relevant predicate is unchanged
for the disjunction member that are not satisfied, and varies according to the
rules that apply for the ones that are satisfied.

Property 1. If an RP is satisfied, then the associated variant decreases.

Proof. For a transition c
e−→ c′ in an ATS and for an RP rp, the variant decreases

if V (rp, c′) < V (rp, c). We prove that for the three predicate cases: ap, cp and
rel p. For an atomic predicate, the variant decreases respectively of |x − x′|
and one respectively according to rules 4, 5 and 6. For a conditional predicate,
the variant decreases as much as the atomic predicate that is true according
to rule 7. For a disjunctive predicate rel p the variant decreases, according to
rule 8. Indeed, (1) the variant is not modified for the disjunction members that
are not satisfied in the consecutive states c, c′, and (2) the variant decreases for
the disjunction members that are satisfied in the states c, c′ because they are
either ap or cp, for which the decrease has already been shown.

5 RCXP Algorithm

In this section we present the main contribution of this paper. The RCXP (for
relevant concrete exploration) algorithm implements the second step of the pro-
cess presented in Sec. 4.1.

5.1 Under-Approximation Extension Using Relevance Predicates

To extend the ATS computed in the first place by CXP, we propose an algorithm
called RCXP which aims at covering the non-covered transitions. It is driven by
an RP designed as explained in Sec. 4.2. RCXP is designed from the concepts
of relevant state and goal state. A goal state is a state in which an non-covered
abstract transition is triggerable. Informally a state is relevant when it gets closer
to a goal state. Formally we say that a target state c′ by a transition t is relevant
w.r.t. the source state c of t when (c, c′) satisfies an RP (see Sec. 4.3).

Algorithm RCXP launches its execution from each state c built by CXP that
is evaluated as relevant, assuming that the variant expression Vinit(rp, c) is non-
negative (line 1). The algorithm tries to reach a new relevant target concrete
state (line 10) for each target abstract state (line 7) and for each event (line 8)
such that the corresponding transition is may (line 9). If such a state c′ is found
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Algorithm RCXP: Concretization Algorithm using Relevance Predi-
cate

Inputs : 〈Q,Q0, ∆,C,C0, α,∆
c〉: an ATS; A: the set of all abstract states

relevance predX : a relevance predicate
Output : 〈Q,Q0, ∆,C,C0, α,∆

c〉: the ATS enriched
Variables : RCS(resp. PRCS): the set of relevant concrete states to process

(resp. processed)

1 RCS := {c | c ∈ C ∧ Vinit(relevance predX , c) ≥ 0}; PRCS := ∅;
2 /* the reachable concrete states computed by CXP */
3 while RCS 6= ∅ do
4 choose c ∈ RCS;
5 RCS := RCS − {c}; PRCS := PRCS ∪ {c};
6 q := α(c);

7 foreach q′ ∈ A do

8 foreach e
def
= a ∈ Ev do

9 if q
e→ q′ ∈ ∆ then

10 (c, c′) := SATc(c ∧ prdX(a) ∧ q′[X′/X] ∧ relevant predX);

11 if (c, c′) 6∈ {unknown, unsat} then
12 if V (relevance predX , c

′) ≥ 0 ∧ c′ /∈ PRCS then
13 RCS := RCS ∪ {c′};
14 end

15 α(c′) := q′; C := C ∪ {c′}; ∆c := ∆c ∪ {c e→ c′};
16 else
17 /* a goal state is reached, we try to apply the transition from it */

18 (c, c′) := SATc(c ∧ prdX(a) ∧ q′[X′/X]);

19 if (c, c′) 6∈ {unknown, unsat} then

20 α(c′) := q′; C := C ∪ {c′}; ∆c := ∆c ∪ {c e→ c′};
21 end

22 end

23 end

24 end

25 end

26 end

(lines 12-15), it is added (line 15) to the under-approximation. Additionally in
case c′ is new and has a non-negative variant value (line 12), it is added to the
set of relevant states to be processed (line 13). When no more relevant state is
found (else statement in line 16), a goal state has been reached. The algorithm
tries to finally apply the event e from it (lines 18-21) because it might correspond
to a non-covered transition. The algorithm’s result is the input ATS enriched
with new concrete states and transitions.

5.2 Soundness, Complexity and Termination

This section discusses the soundness, complexity and gives the termination proof
for the RCXP algorithm.

Soundness. RCXP computes an under-approximation of the reachable MTS.
Indeed, as our method only keeps transition instances that are connected to an
initial concrete state, all the may transitions that we cover are reachable, and
thus are part of the reachable MTS.
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Complexity. Let us denote by Cin the set C of concrete states of the input
ATS. For each state c ∈ Cin, RCXP computes a concrete instance of each may
transition whose source state is α(c) (there are at most |Ev| × |A| of them).
From every state reached from these concrete transitions (at most |Cin|× |Ev|×
|A| states), RCXP launches a search for relevant successors. The number of
computed successors is bounded by the maximum number of steps allowed by
the variant, which equals maxc∈Cin

(Vinit(rp, c)). Thus, our algorithm runs in
O(|Cin| × |Ev| × |A| × maxc∈Cin

(Vinit(rp, c))). Notice that |Cin|, |Ev| and |A|
depend on the size of the abstract graph and that in practice the number of
“relevant events” is likely to be lower than |Ev|. This means that for an abstract
graph of reasonable size, the complexity is dominated by the number of steps of
the variant.

Termination. Our algorithm computes new concrete states only from concrete
states for which the variant on the one hand is non-negative, and on the other
hand strictly decreases (see property 1). Thus our algorithm terminates. In addi-
tion, as the number of relevant states may explode, RCXP has been implemented
with a timeout option modifiable by the tester.

6 Implementation and Experiments

The tool used to generate the results presented in this section, as well as the
complete set of examples, along with their corresponding sets of abstraction and
relevance predicates, can be downloaded, compiled and used by following the
instructions at https://github.com/stratosphr/stratestx/wiki.

6.1 Experimental Results

We have experimented with five different case studies: a multiple battery-
powered electrical system (EL [19]), the coffee machine CM presented in this
paper, two explorations of an automatic subway line (L14, as yet unpublished),
an elevator (ELV, as yet unpublished) and a subpart of the GSM 11.11 standard
(GSM [20]). The subway modelled by L14 in our experimentation has three sta-
tions and three trains that circulate in ring around them. The test goal is to
observe half a revolution of a train around the ring. Two different relevance
predicates have been experimented with: in L14-1 the half-lap can be that of
any train, whereas it is for a fixed train in L14-2. The GSM system considered
corresponds to the exploration and reading of files on a SIM (Subscriber Identity
Module) card with different access rights. Some files can only be read when a
correct PIN (Personal Identification Number) is entered by the user. After three
unsuccessful attempts with the wrong PIN, the card is locked and can only be
unlocked if the user enters the correct PUK (PIN Unlock Key). After ten un-
successful attempts with the wrong PUK, the protected files can never be read
again.
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Table 1. ATS computation results
Sys. #Ev #AP #ASrchbl #ATrchbl Alg. #ASrchd %AS #ASrel %ASrel #ATrchd %AT #ATrel %ATrel #CS #CSrchd #CT #CTrchd Time

EL 4 2 4 11
CXP 2 50 - - 6 54.55 - - 28 6 17 6 00:00:01

RCXP 4 100 2 100 11 100 2 100 58 42 53 45 00:00:05
FULL 4 100 - - 11 100 - - 896 896 9856 9856 00:02:10

CM 11 3 5 21
CXP 4 80 - - 12 57.14 - - 46 11 33 12 00:00:01

RCXP 5 100 1 100 19 90.48 1 100 149 117 179 158 00:00:04
FULL 5 100 - - 21 100 - - 1742 1742 4503 4503 00:00:49

L14-1 15 3 4 49
CXP 2 50 - - 4 8.16 - - 99 5 57 4 00:00:04

RCXP 4 100 2 100 49 100 45 100 2897 2840 7533 7498 00:59:08
FULL 4 100 - - 49 100 - - 2982 2982 7950 7950 00:14:39

L14-2 15 3 4 49
CXP 2 50 - - 4 8.16 - - 103 5 57 4 00:00:05

RCXP 4 100 2 100 11 22.45 5 100 136 40 93 41 00:00:16
FULL 4 100 - - 49 100 - - 2982 2982 7950 7950 00:13:47

ELV 11 3 4 27
CXP 3 75 - - 9 33.33 - - 49 10 36 9 00:00:02

RCXP 4 100 1 100 23 85.19 3 100 255 240 401 390 00:01:38
FULL 4 100 - - 27 100 - - 1656 1656 6556 6556 00:05:27

GSM 5 2 4 25
CXP 1 25 - - 5 20 - - 45 5 30 5 00:00:01

RCXP 4 100 3 100 16 64 8 100 155 115 208 183 00:00:16
FULL 4 100 - - 25 100 - - > 100000 > 100000 > 1000000 > 1000000 > 48:00:00

The results are given in Table 1. Columns #Ev, #AP, #ASrchbl and
#ATrchbl give respectively per model the numbers of: events, abstraction pred-
icates, reachable abstract states and reachable abstract transitions in the MTS.
Then the results per model are spread over three lines for comparing: the CXP
approach (1st line), the RCXP approach (2nd line) and a full exploration of the
reachable concrete space (FULL, on 3rd line). Notice that we have chosen the
problem sizes in this table for making the full exploration possible.

Table 1 gives the number of: abstract states and transitions reached (#ASrchd
and #ATrchd), target abstract states and transitions of RCXP (#ASrel and
#ATrel) and concrete states and transitions either built (#CS and #CT) or
reached from an initial state (#CSrchd and #CTrchd). The other columns indi-
cate the percentage of abstract states and transitions reached (%AS = #ASrchd

#AS

and %AT = #ATrchd

#AT ) and target abstract states and transitions of RCXP

reached (%ASrel =
#ASrel

rchd

#ASrel and %AT rel =
#AT rel

rchd

#AT rel where #ASrelrchd and

#AT relrchd are respectively the number of target abstract states and transitions
of RCXP reached). The Time column gives the computation times in hours,
minutes and seconds.

6.2 Results Analysis

Table 1 shows that RCXP succeeds at reaching all the RP targeted transitions in
all of the five case studies (see that all the percentages equal 100 in the %ATrel

column). Moreover RCXP even succeeds in two out of the five case studies at
reaching all the reachable abstract transitions (see the three percentages that
equal 100 in the %AT column). RCXP generates far less concrete transitions
than FULL. The most spectacular example is EL where RCXP only builds 53
concrete transitions among the 9836 built by FULL. The ratio between RCXP
and FULL depends on RP. In EL, only one action is allowed by RP so that the
number of concrete transitions (#CT) explored by RCXP is very small w.r.t that
explored by FULL. By contrast in L14-1, all actions are allowed by RP, which
makes #CT for RCXP and FULL very close. In L14-2, as RP restricts the actions
allowed to that of a single chosen train, RCXP reduces #CT in large proportion:
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Figure 4. #CT growth for FULL and RCXP against the system’s size

93 out of the 7950 of FULL. But only 22.45% coverage of the abstract transitions
is achieved, due to the other trains’ actions being unexplored. The ELV case is
similar, with an RP allowing only the actions on the inside lift buttons. RCXP
builds 401 concrete transitions out of the 6556 of FULL, but covers 85.19% of the
abstract transitions. Note that the ELV case has necessitated several RP design
attempts before covering 100% of the targeted transitions. As many smartcard
like systems, the GSM allows everything to happen but returns error status words
in case of unauthorized events occuring (this is called defensive programming).
Therefore, its events are in practice very weakly guarded. For this reason, and
because the GSM system has a lot of state variables, the FULL exploration is not
feasible in reasonable time due to the huge state space (more than 100,000 states
and more than a million transitions). However, the height targeted transitions
(leading to states where the SIM card was definitely locked) were all successfully
covered in less than 20 seconds by RCXP by only instanciating 155 states and
208 transitions. The design of the relevance predicate was also easy since it only
had to decrease the number of attempts remaining for the PIN and the PUK.
This shows that the method can be applied to systems of industrial size and
that designing relevance predicates for such systems is not necessarily harder.

RCXP succeeds at reaching as many targeted abstract transitions as FULL
with, except for L14-1, a much smaller number of concrete transitions generated,
which results in smaller RCXP generation times w.r.t. FULL. Table 1 shows that
in four cases (EL, CM, L14-2, GSM), the time taken by RCXP is much closer to
CXP than it is to FULL. This is less spectacular with ELV, but RCXP remains
faster than FULL by roughly 70%. L14-1 is the exception where RCXP lasts
four times as long as FULL. This is an extreme case because in that experiment
any action on any train is considered as relevant if it helps moving a train in a
privileged direction. Here computing the relevant states amounts to enumerate
about half of them, which is more costly with RCXP than a full enumeration
with FULL, due to the RP evaluation at each step. This example shows that
when RP allows too many actions to occur, the RCXP exploration gets close to
the FULL one.

We have measured the concrete graph’s growth w.r.t. to the problem size
of our case studies. For the two of them (EL and CM) for which the FULL
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exploration time took less than two hours despite its growth, we have drawn
curves in Fig. 4 to compare RCXP and FULL’s respective growth. As expected
the curves show that FULL grows exponentially. These curves show by contrast
a linear growth of RCXP. In EL the RP only allows battery fail actions, thus
the sequences explored by RCXP grow linearly with the number of batteries.
In CM the RP aims at serving all the coffees, thus RCXP’s linear growth with
the number of coffees. For the other cases, we have observed that L14-2 RCXP’s
exploration doesn’t grow with the number of trains as only one of them is ob-
served, but grows linearly with the number of stations, for the reason that the
observed train has to move as many times as there are stations. The ELV case is
similar with the number of lift moves growing linearly with the number of storeys
to serve. Finally the L14-1 case showed not a linear but exponential growth of
RCXP. Indeed all the trains are observed in this experiment. Thus adding one
train leads to explore all of its actions, as well as their interleavings with the
actions of all the other trains.

As a general conclusion of these experiments we observe that RCXP provides
a means for covering the reachable part of the abstraction, and that it behaves
efficiently provided that the growth of the ATS resulting of CXP is controlled,
and that the number of events involved in the relevance predicate is small.

7 Related Work

The closest methods to ours are those proposed in [7], where a relevance function
is introduced, in [21] that extends [7] and in [22] that implements the process
of [7] in Spec Explorer (SE). These methods are for generating tests. They gener-
ate a Finite State Machine (FSM) that is an under-approximated concretization
of an Abstract State Machine (ASM) may predicate abstraction. Ideally, the
methods seek for building the true FSM of the ASM, which contains only reach-
able links, but all of them. SE [22] proposes five techniques to implement the
defined relevance function and to prune the search space: state grouping, directed
search, parameter selection, state filtering and action restriction that are closely
related to our approach, though with many differences. Our method begins by
computing an abstraction in which the abstract states group the concrete states
defined from a set of state predicates automatically extracted from a test pur-
pose. In SE, the tester must give a state-based grouping expression. Then our
method computes a concrete under approximation by directed search (CXP). As
in SE, the tester selects for that the values of many parameters, e.g. the initial
number of coffees in the CM. In SE, the directed search is applied after all the
pruning parameters have been given. For us, the covering of each abstract state
and transition only once by CXP leads to a very strong state filtering. To relax
this filtering, the tester designs a relevance predicate by observing which abstract
states and transitions are not covered, in order to fix a new coverage goal. Then
(s)he executes a new directed search (RCXP), that filters the states that satisfy
the relevance predicate. The tester does not provide an execution’s maximum
length as in SE, but termination is ensured thanks to a variant automatically
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computed from the relevance predicate. Last, our method allows action filtering
by defining the RP, whereas in SE the tester strengthens some actions’ guards.

In [23] and [24], the set of abstraction predicates is iteratively refined in
order to compute a bisimulation of the model’s semantics when it exists. Ex-
cept by arbitrary limiting the number of refinement step (as suggested in [23]),
none of these two methods is guaranteed to terminate, because the refinement
step may would be repeated infinitely if no bisimulation quotient exists for the
system. SYNERGY [25] and DASH [26] combine under-approximation and over-
approximation for checking safety properties on programs. As we aim at propos-
ing an efficient method for building a reachable under-approximation that covers
all the abstract states and transitions w.r.t. a specification and a set of pred-
icates, our algorithm does not refine the approximation but refines the under-
approximation thanks to a relevance predicate associated to a variant, which
guarantees the refinement process to terminate.

Some other work under-approximate an abstraction for generating tests. The
tools Agatha [27], DART [28], CUTE [29], EXE [30] and PEX [31] also compute
abstractions from models or programs, but only by means of symbolic execu-
tions [32]. This data abstraction approach computes an execution graph. Its set
of abstract states is possibly infinite whereas it is finite with our method.

Another approach [33] for computing an under-approximation of a pred-
icate abstraction is to characterize the abstract transitions not only as may
ones, but also as must+ and must−. Indeed, abstract sequences in the shape
of must−∗ ·may ·must+∗ can necessarily be instantiated as connected concrete
sequences. An attempt to prolong an existing under-approximation thanks to
these additional modalities is experimentally tested in [34].

8 Conclusion And Further Work

We have proposed a method for computing (or rather completing) a concrete
under-approximation of a may abstraction. Building a new concrete transition is
conditioned by the fact that it prolongs an existing reachable concrete sequence
while satisfying a user defined relevance predicate. To ensure termination this
predicate has to decrease a variant, and we propose a method for automatically
extracting a variant out of the relevance predicate. We have experimented with
five case studies, for which we have achieved 100% coverage of the abstract
transitions targeted by the relevance predicate, but with far less transitions than
with the full exploration (except for one case as discussed in Sec. 6.2).

This work shows that the efficiency and success of RCXP depends on how
the system is abstracted and the relevance predicate are chosen. Our results
suggest that targeting a few transitions at a time with RCXP is preferable even
if repeating the process is necessary. This corresponds to performing several test
campaigns with different test objectives. We intend to experiment with various
ways of abstracting and writing relevance predicates so as to investigate these
methodological aspects. Also a more expressive relevance predicate language and
a more semantic estimation of the variant’s initial value are to be proposed.
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