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Abstract: This paper deals with the structure and passivity preserving model reduction and
the reduced order controller design for a class of distributed controlled port Hamiltonian systems
– Timoshenko beam. The boundary conditions of the beam lead to physical constraints which
are hardly considered in the reduction procedure. In this work we propose to use the descriptor
system realization of port Hamiltonian system to conserve the physical constraints. A passive
LQG control design method is proposed for this type of system. This LQG method defines a
balanced coordinate which allows us to reduce the system. Using the obtained reduced model,
a reduced order passive controller which stabilizes the full order system is designed using the
LQG method. At last we give the numerical simulations to show the effectiveness of the proposed
reduced passive controller.
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1. INTRODUCTION

Port Hamiltonian approach is a very powerful framework
for modeling and control of large class of mechanical,
electro-mechanical and multi physical systems (Duindam
et al., 2009). This approach has been generalized to
the distributed parameters systems which are described
by partial differential equations (PDEs). However the
modeling of complex or multi-physical systems leads to the
high dimensional models or even the infinite dimensional
(distributed parameters systems). Thus for the simulation
or control design objective, it is necessary to consider
the reduction of such kind of systems. The reduction
or approximation of the port Hamiltonian systems in
the finite dimensional case (Polyuga and van der Schaft,
2011, 2012) and infinite dimensional case (Golo et al.,
2004; Baaiu et al., 2009; Moulla et al., 2011) have been
proposed. These methods have the advantage to preserve
the passivity and Hamiltonian structure in the reduced
order system. However, all these methods only consider the
open loop behaviors of the system and cannot be applied
on a large class of distributed parameters systems – the
power preserving systems which described by Hyperbolic
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partial differential equations because all the eigenvalues
are on the imaginary axis. Hence the states variables have
the same weight, it is difficult to find a reduction model
for the control design objective. Secondly modeling of the
multi-physical systems often leads to the algebraic physical
constraints. The reduction methods presented before have
not considered this issue.

The model reduction of port Hamiltonian systems con-
sidering the control design problem is firstly introduced
in (Wu et al., 2014b). The authors proposed a modified
LQG balanced reduction method to relate the LQG control
design problem and the balanced reduction problem to-
gether. This method provide a reduction scheme to achieve
the reduced order controller which stabilizes the full order
system. The Hamiltonian structure is also preserved in the
closed loop system. The reduction of the constrained port
Hamiltonian system is introduced in (Wu et al., 2014a).
The descriptor system framework has been used to present
the constrained system and the authors propose a reduc-
tion scheme which not only reduce the system but also
conserve the physical constraints of the original systems.

In this paper, we are interested in the model reduction
and reduced order control design for the distributed con-
trolled infinite dimensional port Hamiltonian systems. We
develop a power preserving closed loop reduction scheme
to derive a reduced order controller. The treated physical



constraints in this paper are mainly due to the boundary
interconnection relations of distributed port Hamiltonian
system. These constraints are preserved in the reduction
scheme using descriptor formulation.

This paper is organized as follows. In Section 2 we in-
troduce port Hamiltonian formulation of the distributed
controlled Timoshenko beam which interconnect with a
finite dimensional mechanical system. Next the model
reduction scheme and the reduced order control design
method is discussed in Section 3. A numerical example is
presented and the simulation results are illustrated to show
the effectiveness of the proposed method in the Section
4. At last, we give some final remarks and introduce the
future work in Section 5.

2. PORT HAMILTONIAN MODELING OF
TIMOSHENKO BEAM

In this section, we introduce the modeling of the mechan-
ical system shown in Figure 1. The beam is actuated by
the distributed actuators cling on the beam. One side is
clamped and other side is interconnected with the manip-
ulated object which can be simplified to a mass-spring-
damper system. The modeling can be separated to two
parts. The distributed actuated mechanical beam and the
mass-spring-damper system.
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Fig. 1. Distributed controlled Timoshenko beam

2.1 Timoshenko beam with boundary and distributed ports

Let first consider Timoshenko beam described as a bound-
ary controlled port Hamiltonian system (Macchelli and
Melchiorri, 2004; Jacob and Zwart, 2012):

ẋ = (P1
∂

∂z
+ P0)︸ ︷︷ ︸
J

Lx (1)

with the operator and matrices:

L =


K 0 0 0

0
1

ρ
0 0

0 0 EI 0

0 0 0
1

Iρ

 , P1 =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P0 =

 0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


(2)

with the state (energy) variables: the shear displace-
ment x1 = ∂w

∂z (z, t) − φ(z, t), the transverse momentum

distribution x2 = ρ(z)∂w∂t (z, t), the angular displacement

x3 = ∂φ
∂z (z, t) and the angular momentum distribution

x4 = Iρ
∂φ
∂t (z, t) for z ∈ (a, b), t ≥ 0, where w(z, t) is the

transverse displacement and φ(z, t) is the rotation angle
of the beam. The coefficients ρ, Iρ, E, I and K are the
mass per unit length, the angular moment of inertia of a
cross section, Young’s modulus of elasticity, the moment
of inertia of a cross section, and the shear modulus respec-
tively, and the state space X = L2(a; b;R4). The operator
J = P1

∂
∂z + P0 defined by the matrices P1 = PT1 and

P0 = −PT0 is a first order skew symmetric differential
operator acting on the state space X. The energy of the
beam is expressed in terms of the energy variables,

H =
1

2

∫ b

a

(Kx21 +
1

ρ
x22 + EIx23 +

1

Iρ
x24)dz

=
1

2

∫ b

a

x(z)T (Lx)(z)dz =
1

2
‖ x ‖2L

(3)

In order to define an extended Dirac structure including
the boundary (Le Gorrec et al., 2005), the boundary
variables are desired by using integration by part:

[
f∂,Lx
e∂,Lx

]
=



(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1ρ x4)(b)− (I−1ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)

(Kx1)(b) + (Kx1)(a)
(I−1ρ x4)(b) + (I−1ρ x4)(a)
(EIx3)(b) + (EIx3)(a)


=



v(b)− v(a)
F (b)− F (a)
w(b)− w(a)
T (b)− T (a)
v(b) + v(a)
F (b) + F (a)
w(b) + w(a)
T (b) + T (a)


(4)

where F (z), T (z), v(z), w(z) are the force, torque, velocity
and angular velocity at z point respectively. In additional,
we consider some distributed port defined by distributed
torques acting on the beam. With the distributed port(
fd,Lx
ed,Lx

)
, the system becomes:

ẋ = JLx+ Bed,Lx
fd,Lx = B∗Lx (5)

where the B : Ci 7→ X is the distributed input map,
ed,Lx ∈ Ci are the distributed torques applied on the
beam, fd,Lx ∈ Ci are the power conjugated variables of
ed,Lx, i.e. the angular velocities.

The control objective of system is to control the translation
and angular positions of the object connected at the b
side of the beam. The beam and the object that we
want to manipulate are interconnected by the power
conserved manner at the side b. The translation and
angular velocity at the side a of the beam are zero because
we assume that the beam is clamped at this side. It can
be considered as a physical constraints of the system,
their power conjugated variables are the reaction force and
torque. In order to define the interconnection of the beam
and the manipulated object at b side we define the input
and output variables by the boundary ports as following:

ub = W

[
f∂,Lx
e∂,Lx

]
, yb = W̃

[
f∂,Lx
e∂,Lx

]
, (6)

where

W =

 1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 −1 0 0 0 1 0 0
0 0 0 −1 0 0 0 1

 ,
W̃ =

 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 0 1 0 0 0 −1 0

 .
(7)

Using this partition the input and output boundary port
variables are explicitly given as follows:

ub = [ v(b) w(b) F (a) T (a) ]
T

= [ ub1 ub2 ]
T
,

yb = [ F (b) T (b) −v(a) −w(a) ]
T

= [ yb1 yb2 ]
T
.

(8)



As the beam is clamped an the side a, then the velocity
and the angular velocity are zero.

To control the angular position of the beam, we use
an active material such as electric active polymer cling
on surface of the beam as shown in Fig 1. The port
Hamiltonian formulation of the distributed actuator, elec-
tric active polymer, can be found in (Nishida et al.,
2011). In this paper, we don’t consider the physical model
of the distributed actuator and apply directly the dis-
tributed torques given by actuator over the domain of the
beam. The distributed input variables are the distributed
torques: bi(z)udi(t) on the i−th small intervals Ibi = [ai, bi]
of the spatial space [a, b], i.e. bi(z) = 1 if z ∈ Ibi and
bi(z) = 0 elsewhere. As output, we consider the angular
velocity mean values in the same intervals fdi = ydi =∫ b
a
bi(z)

1
Iρ
x4dz. As consequence the distributed input is:

Bed,Lx =
∑
i

 0
0
0

bi(z)

udi(t) =

 0
0
0
b(z)

ud(t) (9)

where B : Ci 7→ X, b(z) = [b1(z), · · · , bi(z), · · · ] and
ud(z) = [ud1(z), · · · , udi(z), · · · ]. The output is the power
conjugated variable of the input, i.e.,

yd = B∗Lx (10)

The energy balance equation is defined as:

∂H

∂t
= yTb ub + yTd ud. (11)

2.2 Mechanical model of mass-spring-damper system

In this work, we first simplify the manipulated object to
an ideal mass-spring-damper system and thus admits a
port Hamiltonian presentation. We use the sub-index o to
present the manipulated object. Then we can write:

ẋo = (Jo −Ro)
∂Ho

∂xo
+Bouo

yo = BTo
∂Ho

∂xo

(12)

where the state variables xo = [qo1, qo2, po1, po2] are traver-
sal and angular displacements and momentum respec-
tively. JTo = −Jo ∈ R4×4, RTo = Ro ≥ 0 ∈ R4×4 are
the interconnection and dissipation matrices defined as,

Jo =

[
0 I
−I 0

]
, Ro =

[
0 0
0 r

]
(13)

with I is the identity matrix with appropriate dimension

and r =

[
r1 0
0 r2

]
∈ R2×2, where r1, r2 ∈ R+ are the scalars

the traversal and angular translation damping coefficients
respectively. The Hamiltonian of the system is given by
the kinetic and potential energy:

Ho =
1

2

(
k1q

2
o1 + k2q

2
o2 +

p2o1
mo

+
p2o2
mI

)
(14)

where k1, k2 are the translational and rotational spring
coefficients respectively and mo , mI are the mass and
moment of inertia respectively. To manipulate the object,
we can only apply the transversal force and torque on the
contact point with beam, i.e. point b. Hence the input
matrix is Bo = [0, I]T ∈ R4×2 and input uo ∈ R2 can
be identified by the boundary variables of the beam on
the point b:

uo = −

 ∂H

∂x1
(b)

∂H

∂x3
(b)

 = −
[
F (b)
T (b)

]
(15)

The outputs are the transversal and angular velocity of
the mass on the point b which correspond to the input of
the beam on the same point b. Thus the port Hamiltonian
representation of this finite dimensional system is given as:

ẋo =

[
0 I
−I −r

]
∂Ho

∂xo
+

[
0
I

]
uo

yo = [ 0 I ]
∂Ho

∂xo

. (16)

3. REDUCTION AND CONTROL DESIGN

In this part, we shall consider a closed loop reduction of
the system for the control design. To do so, we propose
to use the LQG method because this method can relate
reduction problem and the control design problem together
by balanced method. However, the LQG problem of dis-
tributed paramaters systems let us write two operator
Riccati equations (filter and control) , which are difficult
to solve in the infinite dimensional case. Hence we shall
use a spatial discretization of the infinite dimensional port
Hamiltonian system of Timoshenko beam in the power
conserving way to get a finite dimensional port Hamilto-
nian approximation in order to solve two operator Riccati
equations.

3.1 Power preserving discretization of Timoshenko beam

We use the mixed-finite element discretization method
proposed in (Golo et al., 2004). The idea of this method
is to approximate flows and efforts with differential forms
related to their physical (geometrical) natural. In the case
of the Timoshenko beam, defined on a one-dimensional
spatial domain, The efforts (torque) correspond to the
zero forms (functions) and the flows (angular velocities)
correspond to the one forms respectively. This spatial
discretization method has been used on the different phys-
ical models, the reader can read (Hamroun et al., 2009;
Baaiu et al., 2009) for more details and particularly in the
Timoshenko beam case can be find in (Macchelli et al.,
2009). The explicit finite dimensional port Hamiltonian
discretization of the Timoshenko beam is given as follow:

ẋd = Jd
∂Hd

∂xd
+Bdu ; y = BTd

∂Hd

∂xd
(17)

where Jd = −JTd ∈ R4N with N infinitesimal subsections
for the discretization, Hd is the Hamiltonian function.
The following matrices presents the discretized structure
operator of the infinite dimensional model :

Jd =

 0 M 0 0

MT 0 0 0
0 0 0 M

0 0 MT 0


︸ ︷︷ ︸

P̄1

+

 0 0 0 −Φ
0 0 0 0
0 0 0 0

ΦT 0 0 0


︸ ︷︷ ︸

P̄2

Bd =

 0 0 B1 0
B2 0 0 0
0 0 0 B1

0 B2 0 0


(18)

where the sub-matrices are:



M =


−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 1
0 · · · 0 0 −1

 with M ∈ RN×N (19)

Φ = diag(β, · · · , β) with Φ ∈ RN×N (20)

B1 =

[
0

0N−2
1

]
and B2 =

[ −1
0N−2

0

]
(21)

where β is the distance of the infinitesimal section.

The inputs and outputs of the system are the velocities in
translation v and rotation ω as well as the forces F and
torques T at the boundaries a and b shown in the equation
(8).

The Timoshenko beam model and the manipulated object
presented in the last section are interconnected by the
boundary port at the point b using the following power
conserving interconnection relations:

uo = −yb1 = −
[
F (b)
T (b)

]
and ub1 = yo =

[
v(b)
ω(b)

]
(22)

At the other side of the beam, i.e. point a, the beam is
clamped, thus the translation and angular velocities are
zero, i.e.

0 = yb2 = [−v(a), −w(a) ]
T

(23)

Thus the ensemble of sub-systems can be represented as:

˙̃x =

[
Jd −Bd1BTo

BoB
T
d1 Jo −Ro

]
︸ ︷︷ ︸

(J−R)

∂H̃

∂x̃
+

[
Bd2

0

]
ub2 +

[
B
0

]
ud (24)

yb2 =
[
BTd2 0

] ∂H̃
∂x̃

= 0 (25)

yd =
[
BT 0

] ∂H̃
∂x̃

(26)

where x̃ = [xd, xo]
T ∈ RN and H̃ = Hd + Ho are the

state variables and the total energy of the ensemble of two
systems respectively.

One can observe that the system given by (24)-(26) is
a port Hamiltonian systems with the constraints defined
on Dirac structures (van der Schaft and Maschke, 1995;
Dalsmo and van der Schaft, 1999; Duindam et al., 2009,
chap.2) which shows explicitly the constraint equations
as well as the associated Lagrangian multipliers. In this
system, the output yb2 which are the translation and
anglar velocities are the physical constraints, and their
power conjugated input b2 are the Lagrangian multipliers.
In the linear case, the reduction of this type of system
has been considered in (Wu et al., 2014a) by using the
Lyapunov balanced reduction of the descriptor system
where the system is reformulated as a descriptor system
using particular coordinate transform. Then the reduction
model is achieved by the Lyapunov balanced reduction
method.

Now we will consider another reduction scheme which can
take the control design problem into account during the
reduction procedure. The first study of this method for
port Hamiltonian system can be found in (Wu et al.,
2014b). The authors introduced a model reduction and

the reduced order passive control design method for the
high order port Hamiltonian systems by using the LQG
balanced method. Now we will discuss how to reduce the
system given in (24)-(26) for the control design objective.

As the system is linear, thus the Hamiltonian of the system
H has a quadratic presentation, i.e.

H̃ =
1

2
x̃TQx̃.

We can transform the system (24)-(26) to its canonical
Weierstrass form of descriptor system by using the scheme
proposed by (Wu et al., 2014a, Eq. 16). To do so, we shall
first eliminate the Lagranger multipliers (ub2 in our case)
Then the system becomes: Ŝż = Ê Q̂ z +

[
B̂1

0

]
u

y = B̂T Q̂ z

(27)

where

Ŝ =

[
IN−k 0

0 0

]
; Ê =

[
J̄11 − R̄11 0

0 Ik

]
; Q̂ =

[
Qs 0
0 Ik

]
(28)

Because the system (24)-(26) has two output constraints,
that means k = 2.

By using this canonical form, the constrained port Hamil-
tonian system can be separated to two part, slow and fast
dynamical sub-systems (Dai, 1989). The fast dynamical
part is only the physical constraints of the system, hence
we consider only the reduction of the slow dynamical
part while conserving the constraints (fast dynamical part)
along the reduction.

3.2 LQG control design and reduction

In this part we will use the LQG balancing reduction
method (Wu et al., 2014b) to get a reduced order system
also a reduced order controller. To do so, we recall the
LQG control design method for the beam which is the
combination of a Kalman filter and a static state feedback
shown in Figure 2.

Kalman

   filter

Beam

y

u

yc

K

LQG controller

Angular velocity

Distributed

torques -+

Fig. 2. LQG control design for beam

The LQG controller can be reformulated as:{
˙̂z = [(J̄11 − R̄11)Qs − B̄1K − FB̄T1 Qs]ẑ + Fuc
yc = Kẑ

(29)

with ẑ is the state variables of the LQG controller and

K = R̃−1B̄T1 Pc and F = PfQsB̄1R
−1
w (30)

The filter and static state feedback gains are obtained by
the solutions of the following filter and control Riccati
equations:



(J̄11 − R̄11)Q̄sPf + Pf Q̄s(J̄11 − R̄11)T

−Pf Q̄sB̄1R
−1
w B̄T1 QsPf +Qv = 0

(31)

Qs(J̄11 − R̄11)TPc + Pc(J̄11 − R̄11)Qs
−PcB̄1R̃

−1B̄T1 Pc + Q̃ = 0
(32)

where Qv and Rw are the covariance matrices of the state
and output measurement white noises, Pf = PTf > 0 is
the unique solution of the Riccati equation. The matrices
Q̃ = Q̃T > 0 and R̃ = R̃T > 0 are the weighting matrices
of optimal control problem consisting the following cost
function:

Jc = lim
T→∞

[∫ T

0

(zT1 Q̃z1 + uT R̃u)dt

]
. (33)

However, the LQG controller (29) is not passive and the
Hamiltonian structure can not preserved in the closed loop
system in general. But we can always reformulate the LQG
controller under the port Hamiltonian realization if the
weighting matrices and the covariance matrices are chosen
in the following way:

Theorem 1. (Q-conjugated LQG control design). (Wu et al.,
2014b) Denote the LQG Gramians Pf , solution of the
filter Riccati equation (31) and Pc, solution of the control
Riccati equation (32). Consider the LQG problem with the
following relation between the covariance matrix Rw and
the weighting matrix R̃

Rw = R̃. (34)

and the relation between the covariance matrix Qv and
weighting matrix Q̃ is given by :

Qv = Q−1s (2QS J̄
T
11Pc + 2PcJ̄11Qs + Q̃)Q−1s (35)

Then the LQG Gramians satisfy the following relation:

PcQ
−1 = QPf . (36)

Furthermore, assuming that the port Hamiltonian system
is stable, the control Riccati equation (32) and the filter
Riccati equation (31) admit a unique solution, the LQG
controller is passive and the closed loop system can be
written as the feedback interconnection of the port Hamil-
tonian system (27) with the port Hamiltonian realization
of the LQG controller.

This theorem can be used to design a passive LQG con-
troller and derive a port hamiltonian closed loop system.
It is not the only way to get a passive LQG controller,
see (Wu et al., 2014b), but this LQG theorem provides
a balanced reduction coordinate which consider the the
reduction and control design (LQG) problem in the same
time. We define the balanced reduction coordinate for the
port Hamiltonian system as follow:

Definition 2. The port Hamiltonian system (27) admits a
Q-conjugated balanced realization if the Grammians Pf
and Pc of the Q-conjugated LQG problem of Theorem 1,
are diagonal:

Pc = Pf = M = diag(µ1, µ2, · · · , µn) (37)

where, denoting by λi (P ) the i-th eigenvalue of a matrix
P ,

µi =
√
λi(PcPf ) and µ1 > µ2 > · · · > µn > 0 (38)

Denoting by T the transformation matrix that diagonalizes
the Grammians Pf and Pc of the Q-conjugated LQG
problem:

TPcT
T = T−TPfT

−1 = M (39)

The Q-conjugated LQG balanced realization of the slow
dynamical part of port Hamiltonian system (28) shall be
denoted as follows{

żb1 = (Jb −Rb)Qbzb1 +Bbu
y = BTb Qbzb1

(40)

where Jb = T J̄11T
T , Rb = TR̄11T

T , Qb = T−TQsT
−1

and Bb = TB̄1.

Thus the Q-conjugated LQG balanced realization of the
port Hamiltonian descriptor systems is

[
IN−k 0

0 0

]
żb =

[
Jb −Rb 0

0 Ik

] [
Qb 0
0 Ik

]
zb +

[
Bb
0

]
u

y =
[
Bb B̂2

] [Qb 0
0 Ik

]
zb

(41)

Then we will use the effort constraint reduction method
to reduce this balanced system (41) with preserving the
passivity and Hamiltonian structure. The readers can find
the detailed technics in (Polyuga and van der Schaft,
2012). By using this structure preserving method we can
get the reduced port Hamiltonian descriptor system as
follow:

[
Ir−k 0

0 0

]
żr =

[
Jb11 −Rb11 0

0 Ik

] [
Qbs 0

0 Ik

]
zr +

[
Bb1

0

]
u

y =
[
Bb1 B̂2

] [Qbs 0
0 Ik

]
zr

(42)

We can use the above reduced system and the Theorem 1
to design a reduced order LQG controller for the system.
We can apply this reduced order LQG controller to the
full stable system (27).

4. SIMULATION RESULTS

In this section, we will consider the Timoshenko Beam
model shown on Figure 3. This Timoshenko beam is
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Fig. 3. Distributed controlled Timoshenko beam by three
actuators

actuated by the distributed torques in three intervals as
the distributed input variables: bi(z)udi(t) with i = 1, 2, 3
on the small intervals Ib1 = [0, 0.1], Ib2 = [0.7, 0.8] and
Ib3 = [0.9, 1]. Thus b1(z) = 1 if z ∈ Ib1 and b1(z) = 0
elsewhere, as same as b2(z), b3(z). As consequence the
distributed inputs and the input operator are:

ud(t) =

[
Td1(t)
Td2(t)
Td3(t)

]
and B =

 0 0 0
0 0 0
0 0 0

b1(z) b2(z) b3(z)

 (43)

where Tdi is the distributed torque applied on the i-
th interval. Before the closed loop reduction procedure,
we take the 10 infinitesimal subsections of the infinite



dimensional Timoshenko beam (44 state variables). By
using the LQG reduction method, we achieve a low order
LQG controller (4 state variables for the controller) which
can stabilize the full order system. We apply the unitary
step signals as the input and we measure the angular
position at the manipulation side of the beam. The Figure
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Fig. 4. Angular positions of point b

4 shows the angular positions of the open loop system
and the closed loop system. One can observe the angular
position of the open loop system is always oscillating over
an equilibrium however the closed loop angular position is
stabilized in this equilibrium.

5. CONCLUSION

The port Hamiltonian framework has been used to study
the model and reduced controller design of the distributed
controlled Timoshenko beam. The beam is clamped on
one side and other side is interconnected with a manipu-
lated object. The boundary ports of this port Hamiltonian
system have been used to connect with the simplified
model of the manipulated object. On the other hand,
the boundary conditions arise the algebraic physical con-
straints to the systems. The descriptor system realization
of the constrained port Hamiltonian system has been used
to describe the system as well as the physical constraints.
The main contribution of this work is proposed a model
and control reduction scheme for the boundary constrained
distributed controlled port Hamiltonian system by using a
passivity and structure preserving LQG balancing method.

The future work will deal with modeling of the Timo-
shenko beam interconnected with the distributed control
actuators. In this work we didn’t consider the physical
model of the actuators. But in practical applications, we
can use the smart materials such as electro active polymer
(Nishida et al., 2011), piezoelectric actuators, to control
the position of the beam. Hence the modeling of the multi-
physical systems (beam interconnected with actuators)
will be studied in the future.
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