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Abstract: A simple lumped port-Hamiltonian model for an actuated flexible beam is proposed.
The flexible beam is modelled as a n-DOF actuated beam, and the port-Hamiltonian model is
constructed by a systematic interconnection of the links of the beam. The proposed model
is then instrumental to derive a stabilizing controller using interconnection and damping
assignment - passivity based control considering an underactuated scenario. The work has
been developed motivated by the practical application to a medical endoscope with distributed
actuation by electro-active polymers. The lumped parameter model offers the possibility of
having input/output ports in every joint between successive links, this permits to easily model
the action of the actuators as an input force applied to a specific joint.
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Fig. 1. Medical endoscope and its simplified model

1. INTRODUCTION

Port-Hamiltonian systems (PHS) (Maschke and van der
Schaft, 1992, 1994; van der Schaft, 2000) have proven to be
powerful for the modelling and control of complex physical
control systems (Duindam et al., 2009), such as multi-
physical (Falaize and Hélie, 2017; Doria-Cerezo et al.,
2010), non-linear (Ramirez et al., 2016), described by par-
tial differential equations (Macchelli et al., 2009; Jacob and
Zwart, 2012; Ramirez et al., 2014) or with irreversible ther-
modynamic behaviour (Ramirez et al., 2013). Modelling
by the PHS approach is based on the characterization of
energy exchanges between components of a system. The
framework permits in a quite straightforward and elegant
manner to interconnect the different parts of a system
through energy exchange ports, hence it is well suited
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for the modelling of the medical endoscope interconnected
with the ionic polymer metal composites (IPMC) actua-
tors. On the other hand, the PHS approach is well adapted
for the application of powerful passivity based control tools
with clear physical interpretation, such as energy shaping
and control by interconnection and damping assignment
(IDA-PBC) (Ortega et al., 2001, 2002; Macchelli et al.,
2017).

In this paper we use the PHS formalism to model a class
of n-degree of freedom (DOF) actuated beam. The class
of actuated beam proposed in this work is a simple but
realistic approximation of an actuated medical endoscope
(Chikhaoui et al., 2014). The principle of the actuated
medical endoscope (Fig. 1) is that the bending of the
main body is achieved with IPMC actuators, which are
a class of electro-active polymer actuators. The main
body of the endoscope is a flexible structure and in this
work we shall consider a lumped model of interconnected
links to represent it. An IDA-PBC for the PHS model
of the endoscope is proposed, assuming an underactuated
scenario, and numerical simulation results provided.

This paper is organized as follows. Section 2 presents
the PH model of the endoscope. A position controller is
proposed in Section 3 by using the IDA-PBC. Simulation
results are shown in Section 4. Finally, Section 5 gives some
final remarks and perspectives of future work.



2. PORT HAMILTONIAN MODEL OF A N -DOF
FLEXIBLE BEAM

The beam is modelled as n different elements connected
through n joints. Between every joint there is an angular
spring and a damper as shown in Figure 2. We shall assume
a planar model, and so all the links are allowed to move
only in the x-y plane.

Fig. 2. Lumped parameters Beam

The parameters of the n-degree of freedom mechanism,
with i = 1, 2, ..., n, are:

• qi the i-th joint angular displacement;
• mi the i-th link’s mass;
• Ii the moment of inertia about the axis passing

through the Center of Mass (CoM) of the i-th link;
• ai length of the i-th link;
• aCi distance between the i-th Joint and the CoM of

the i-th link;
• τi applied torque on the i-th joint;
• Ki stiffness of the i-th joint;
• ci(q̇i) viscous non-linear damping at the i-th joint;
• Pi, Ei Potential and Kinetic energy of the i-th link.
• F0 is the inertial frame.
• Fi is the reference frame attached to the CoM and

with axis parallel to principal axis of inertia of the
i-th link .

2.1 The Hamiltonian function

In this subsection we derive the Hamiltonian function of
the system with respect to the coordinate frame in which
the system has been set up. The Hamiltonian corresponds
to the total physical energy of the system which is the sum
of the kinetic and potential energy. The kinetic energy of
the i-th link has the form

Ei =
1

2
miv

T
CivCi +

1

2
wTi RiĨiR

T
i wi,

where vCi is the speed of the center of mass (CoM) of the i-
th link, wi is the angular speed of the i-th link with respect
to F0, Ĩi is the inertia matrix of the i-th link with respect to
Fi and Ri is the Rotational matrix between Fi and F0. The
goal is to express the kinetic energy of every link only with
respect to the derivatives of the angular displacements.
Thanks to the rigidity of the links, it is possible to relate
both the speed of the CoM and the angular speeds to
the derivative of the angular displacement of every joint.
The relation that links angular displacements derivative
to angular speeds is trivial

wi = q̇1 + q̇2 + ...+ q̇i.

Then, this relation can be expressed through the use of
the so called angular Jacobian,

wi = J iw q̇,

where q is the vector containing all the angular displace-
ment and q̇ is the one containing all the derived angular
displacement. In this case it can be seen that the angular
velocity Jacobian does not depend on the angular displace-
ments. This is not the case for the Jacobian related to the
velocities of the center of mass. The velocity Jacobian of
the i-th link can be found differentiating with respect to
time the position of the i-th center of mass in the F0 frame,

qCi =

[
xCi
yCi

]
=

[
fxi(q)
fyi(q)

]
= fi(q),

where,

fxi(q) =

i−1∑
k=1

ak cos(

k∑
j=1

qj) + aCi cos(

i∑
k=1

qk),

fyi(q) =

i−1∑
k=1

ak sin(

k∑
j=1

qj) + aCi sin(

i∑
k=1

qk).

Differentiating qCi with respect to time, we obtain q̇Ci =

vCi = dfi(q)
dq q̇, hence the velocity Jacobian is

J iv =
dfi(q)

dq
.

Now it is possible to express the kinetic energy of every link
with respect to the derivative of the displacement vector

Ei =
1

2
q̇T (miJ

iT
v (q)J iv(q) + J iTw (q)RiĨiR

T
i J

i
w(q))q̇.

The total kinetic energy of the beam is then

E =
1

2
q̇TM(q)q̇,

where M(q) is the mass matrix of the system, given by

M(q) =

n∑
i=1

[miJ
iT
v (q)J iv(q) + J iTw (q)RiIiR

T
i J

i
w(q)].

The mass matrix allows to relate the generalized speed
with momentum of the mechanical system

p = M(q)q̇,

where p = [p1 p2 · · · pn]
T

. The kinetic energy expressed
as a function of the momentum is then

E(q, p) = pTM−1(q)p.

In our framework we are supposing that the work plane is
parallel to the ground, therefore we ignore the effect of the
gravity on the dynamic of the system. Then, the potential
energy is only due to the springs deformation. To find the
potential energy we first define the stiffness matrix of the
system

K = diag [K1, K2, · · · , Kn] .

The constitutive relation between elastic torques and
springs deformation is given by τe = Kq, hence the total
potential energy can be trivially expressed as

P (q) =
1

2
qTKq.

Finally, define the Hamiltonian as the total energy of the
system, i.e., the sum of the total kinetic and total potential
energy of the system

H(q, p) = E(q, p) + P (q) = pTM−1(q)p+
1

2
qTKq. (1)



2.2 The input matrix

In this case study the beam is force actuated. Hence, it is
necessary to find the input matrix which maps the normal
forces at every joint into torques at each joint. Define
by u ∈ Rm the vector of magnitudes of the input forces
applied to the beam, where m is the number of actuated
joints. Define an arbitrary point of the lumped beam as δi.
The velocity of point δi is mapped to the joint’s velocity
using the Jacobian matrix as follow

δ̇i = Jδiv q̇,

where Jδiv is the Jacobian matrix related toan arbitrary

point δi. By conservation of energy, we have that FT δ̇i =
τT q̇, where F is the vector containing the x and y compo-
nents of every applied force

F = [F1x F1y · · · Fmx Fmy]
T
.

The velocity Jacobian matrix is constructed as the compo-
sition of all the Jacobian of every force application point

Jv =
[
Jδ1v Jδ2v · · · Jδmv

]T
,

and it is direct to show that

τ = JTv F (q),

where τ is the vector of torque applied to the n different
joints. Since the direction of every application force is
assumed to be always perpendicular to the joint itself, the
Fix and Fiy components of every force can be written with
respect to the force magnitude and the joint configuration.
For this reason we define

fFxi(q) = − sin(

lapp(i)∑
k=1

qi), fFyi(q) = + cos(

lapp(i)∑
k=1

qi)

where lapp(i) gives the link in which is applied the i-th
force. Then one has that

Fxi(q) = −|Fi(t)|fFxi(q),
Fyi(q) = +|Fi(t)|fFyi(q).

Since the vector of input is composed by the magnitude of

every applied force u = |F | = [|F1(t)| · · · |Fm(t)|]T , the
vector of applied forces can be written as

F (q) = LF (q)u

where,

LF (q) = diag

[[
Fx1(q)
Fy1(q)

]
,

[
Fx2(q)
Fy2(q)

]
, · · · ,

[
Fxm(q)
Fym(q)

]]
.

Finally, the input matrix of the system is

g(x) =

[
0n×m

JTv (q)LF (q)

]
.

The upper part of the g(x) matrix is null because the
torques don’t affect the first n equations which correspond
to the displacement dynamics.

2.3 The port-Hamiltonian model

Define as state vector x = [q p]
>

, then it is straightforward
to define the following port-Hamiltonian representation of
the system

ẋ = (J −R)
∂H(x)

∂x
+ g(x)u

y = g(x)T
∂H(x)

∂x

(2)

with

J =

[
0 In
−In 0

]
, R =

[
0 0
0 Cn

]
,

with Cn = diag [c1(q̇1), c2(q̇2), · · · , cn(q̇n)], a positive
diagonal matrix containing the viscous friction coefficients
of the dampers between every joint. The structural matrix
J = −J> represent how the energy is internally exchanged
within the system while the damping matrix R = R> > 0
captures the internal dissipation of the system. It is direct
to verify that the system is passive, indeed noticing that
H > 0 and H(0) = 0, and taking the time derivative of
the Hamiltonian

Ḣ = −∂H
∂x

>
R
∂H

∂x
+ y>u ≤ y>u.

For further details and considerations concerning stability
and stabilization properties the reader is referred for
instance to van der Schaft (2000); Duindam et al. (2009)

3. IDA-PBC DESIGN

In this section we design a controller for the system
which allows to change configurations in an stable fashion.
To this end we employ interconnection and damping
assignement passivity based control (IDA-PBC) Ortega
et al. (2001, 2002). The main idea is to match the open-
loop dynamic of the system with the one defined by a
target system and solve the resulting PDE. Define an
asymptotically stable PHS target system

ẋ = (Jd −Rd)
∂Hd

∂x
(3)

with Hd a positive definite Hamiltonian function with
strict minimum at the desired equilibrium. Then the
feedback law

β(x) = g>
(
gg>

)−1(
(Jd −Rd)

∂Hd

∂x
− (J −R)

∂H

∂x

)
asymptotically stabilizes the closed-loop system provided
that the matching condition

g⊥ (Jd −Rd)
∂Hd

∂x
= g⊥ (J −R)

∂H

∂x
, (4)

with g⊥ a full rank left annihilator of g, i..e, g⊥g = 0, is
satisfied. The closed-loop dynamic will then behave as (3).
We shall consider that the beam is of degree n = 3, i.e.,

Fig. 3. Three elements force actuated beam

that it contains three links, and that two of the links are
actuated. The inputs the force magnitudes applied to the
first and third links at a distance of af from respectively
the first and third joint. The direction of the forces is



supposed to be always perpendicular to the respective
link as can be seen in the Figure (3). It is important to
underline that the springs and the dampers are considered
as torsional, i.e., they act punctually at each joint. The
input matrix is in this case

g(x) =


0 0
0 0
0 0
af af + acos(q3) + acos(q2 + q3)
0 af + acos(q3)
0 af


Lets assume the desired Hamiltonian Hd in the form

Hd(x) = H(x) +Ha(x).

In order to guarantee that it is strictly positive with a strict
minimum at the desired equilibrium x∗ it should satisfy

∂Hd

∂x
(x∗) = 0, (5)

∂2Hd

∂x2
(x∗) > 0. (6)

We shall not modify the closed-loop interconnection and
damping matrices, hence Jd = J and Rd = R. The
matching condition then becomes

g⊥(J −R)
∂Ha

∂x
= 0

A possible annihilator of g is

g⊥(x) =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 −af af + acos(q3)


which leads to the following matching equations

∂Ha

∂p1
=
∂Ha

∂p2
=
∂Ha

∂p3
= 0

af
∂Ha

∂q2
− (af + a cos(q3))

∂Ha

∂q3
= 0

(7)

The first line of (7) implies that Ha cannot depend on the
momentum variables, while the last is a partial differen-
tial equation imposes a relation between the displacement
variables q2 and q3. Since Ha cannot depend on momen-
tum variables, the only part of the total energy that we
can modify is the one depending only on displacement
variables, i.e. the potential energy. From (1), we define
the desired Hamiltonian as the composition of the desired
potential energy and the desired kinetic energy

Hd(q, p) = Ed(q, p) + Pd(q)

From the first equation of (7) we obtain

Ed(q, p) = E(q, p).

Since the only part of the energy that can be modified is
Pd(q), (5) and (6) become

∂Pd
∂q

(q∗) = 0, (8)

∂2Pd
∂q2

(q∗) > 0. (9)

The general solution of (7) is

Ha = Ha

q1,−q2 − 2af tanh−1
(

(a−af ) tan(
q3
2 )√

a2−a2
f

)
√
a2 − a2f


(10)

A simple form of (10) leads to the following solution

∂Ha

∂q2
= κq∗2

∂Ha

∂q3
=

af
af + a cos(q3)

κq∗2

(11)

The part of Ha which depends on q1, i.e., Ha(q1), can be
freely chosen, since there is no condition on ∂Ha

∂q1
. Then,

Ha(q1, q2, q3) can be found by direct integration of (11).
Once Ha has been chosen it remains to check that Pd is
a Lyapunov function for the closed-loop system. This is
achieved verifying that (8) and (9) are satisfied. The forced
equilibrium position, and the corresponding steady state
input, is computed from the dynamic model of the system
(2). Since the system has two inputs we shall impose q∗1
and q∗2 , such that q∗3 is a function of q∗1 and q∗2 . Choosing

Ha such that ∂Pd

∂q1
= K1(q1 − q1∗), and making κ = −K2

we obtain

∂Pd
∂q

=

 K1(q1 − q∗1)
K2(q2 − q∗2)

K3q3 −
afK2q

∗
2

af + acos(q3)


It is straightforward to verify (8),

∂Pd
∂q

(q∗) = 0 ∀q∗1 , q∗2 ∈ [0, 2π].

On the other hand, condition (9) leads to

∂2Pd
∂q2

(q∗) =


K1 0 0
0 K2 0

0 0
∂2Pd
∂q23

(q∗)


where

∂2Pd
∂q23

(q∗) = K3 −K2
afq
∗
2asin(q3)

(af + acos(q3))2

Numerically, using the parameters in Table 1, we obtain
that

∂2Pd
∂q23
|x∗ > 0 ∀q∗1 ∈ R, q∗2 ∈ [−0.75π, 0.75π].

The stable configuration of q∗3 is computed by q∗1 and q∗2 .
Hence, we obtain that the stable configuration space that
can be reached with the proposed controller is given by[

q∗1
q∗2
q∗3

]
∈

[ −π, π
−0.75π, 0.75π
−0.33π, 0.33π

]
.

The controlled beam with proposed method cannot move
over all the x − y plane. However, from a practical point
of view, this stable configuration space is large enough for
the clamped medical endoscope beam.

4. SIMULATION RESULTS

In this section, simulation results are shown using a beam
modelled with 3 elements. The parameters used in the
simulation are resumed in Table 1.

4.1 Open-loop response

The free oscillations of the beam starting from an initial
condition q0 = [+π

8 , −
π
8 , +π

6 ]> and p0 = [0, 0, 0]> are



m1 = m2 = m3 = 0, 0017 [kg]
I1 = I2 = I3 = 1, 3801x10− 6 [kg ∗m2]
a1 = a2 = a3 = 0, 1 [m]
aC1 = aC2 = aC3 = 0, 05 [m]

Ki = 10 i = 1, 2, 3 [N
m

]

ci(q̇i) = 0.05| tan−1(q̇i ∗ 4)|+ 0.03 i = 1, 2, 3 [Pa ∗ s]

Table 1. Actuated beam parameters
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Fig. 4. Free Beam oscillations

illustrated in Figure 4. The beam goes back to its natural
equilibrium position q = [0, 0, 0]T with external forces
equal to zero. We can observe that the beam is badly
damped and the presence of large oscillations.

4.2 Closed-loop response

In this sub-section the IDA-PBC feedback law is illus-
trated. In a first instance a controller that doesn’t modify
the closed-loop stiffness of the first spring is employed,
while in a second instance a controller which modifies this
stiffness is used.

Unmodified stiffness The controller is defined setting

Ha = +
1

2
K1q

∗2
1 − q∗1q1K1 +

1

2
K2q

∗2
2 − q∗2q2K2

−
2afq

∗
2K2 tanh−1(

(a−af ) tan(
q3
2 )√

a2−a2
f

)√
a2 − a2f

(12)

where one has the possibility of choosing q∗1 and q∗2 , begin
q∗3 a function of the other equilibria. This leads to

∂Ha

∂x
=



−K1q
∗
1

−K2q
∗
2

− af
af + acos(q3)

K2q
∗
2

0
0
0

 .
The time responses of the controlled three element beam
with different initial positions are presented. In the first
simulation we set the natural equilibrium position as the
initial condition, i.e. all the angular displacements equal
to zero and the final equilibrium position set as q∗ =
[q∗1 q

∗
2 q
∗
3 ] = [0.5 0.52 0.15]. The initial position and the

final position are shown in Fig. 5 and Fig. 6 respectively.
The time responses of the angular displacement of every

joint is shown in the Fig. 7. We observe that the response
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Fig. 5. Initial position with q0 = [0, 0, 0]>
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Fig. 7. Beam time response, zero initial position.

time is faster than the for the open-loop system and with
less oscillations. The angle of every joint converges to the
desired equilibrium position as expected.

In the second simulation, we consider a “non-natural”
initial condition, q0 = [−0.4 −0.8 0.7], shown in Fig. 8.
The desired equilibrium position is always the same as in
Fig. 6. The time responses of the angular displacement

0 0.1 0.2 0.3

-0.2

-0.15

-0.1

-0.05

0

0.05

Fig. 8. Initial position with q0 = [−0.4,−0.8, 0.7]>



of every joint is shown in the Fig. 9. In this case we can
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Fig. 9. Beam time response with worse initial condition

appreciate from Fig. 9 that every joint reach the desired
equilibrium position. Moreover, compare to the previous
simulation, the response time is the same, however, one
can see that the overshoot of the response is larger. That
is because in this case, the equilibrium position is further
away to the initial position than in the previous case.

Modified Stiffness Now we define the controller Hamil-
tonian such that

Ha = −1

2
K1q

2
1 +

1

2
K ′1(q1 − q∗1)2 +

1

2
K2q

∗2
2 − q∗2q2K2

−
2afq

∗
2K2 tanh−1(

(a−af ) tan(
q3
2 )√

a2−a2
f

)√
a2 − a2f

where the stiffness of the first link in the closed-loop
system has been modified to

K ′1 = 50 [
N

m
].

This lead to

∂Ha

∂x
=



−K1q1 +K ′1(q1 − q∗1)
−K2q

∗
2

− af
af + acos(q3)

K2q
∗
2

0
0
0

 .
The initial and final configurations are the same as before.
The time response of the angular displacement can be seen
in Fig. 10. Comparing Fig. 9 with Fig.10, it is possible
to notice that the response time has been significantly
decreased in this case. This is due to the augmentation
of the stiffness of the first joint.
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Fig. 10. Beam time response with modified stiffness.

5. CONCLUSION

The PHS framework has been used to model and control
an actuated medical endoscope system. The endoscope
is modelled as a lumped parameter flexible beam. A
position control, that uses forces as inputs, has been
proposed for this model using the IDA-PBC. The proposed
model and control law have been illustrated by means
of numerical simulations. The closed-loop system behaves
in a satisfactory manner using the quite simple approach
proposed in this work. One of the interesting aspect of
the stability analysis is that it is possible to characterize
the stable configuration space a priori. Ongoing work
deals with potential non-linearity of the stiffness of the
beam, the robustness of the proposed control and the
experimental implementation of the controller.
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