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a b s t r a c t

The aim of this paper is to propose a reduced order control designmethod for large scale port Hamiltonian
systems. To this end, a structure preserving reduction method and a modified LQG control design are
combined to derive a reduced order model suitable for control purposes. We first recall the structure pre-
serving reduction method for port Hamiltonian systems called effort constraint method and characterize
the error bound associated to this reduction method. We then give sufficient conditions for non-standard
LQG designwhich allow to design a passive controller equivalent to the control by interconnection of port
Hamiltonian systems. This LQG method allows to define an LQG balanced realization by computing the
LQG Gramians, the effort-constraint method is then used to derive a reduced order port Hamiltonian
system and to design a reduced order passive LQG controller. Finally, the method is illustrated in
simulation on a mass–spring–damper system. The performances of the reduced order controller are
compared to the results obtained with a full order passive LQG controller.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The port Hamiltonian framework is well adapted to represent
a large class of passive systems (van der Schaft, 2000) and is
particularly well suited for the compositional modeling of finite
and infinite dimensional physical systems (Duindam, Macchelli,
Stramigioli, & Bruyninckx H. e, 2009; van der Schaft & Maschke,
2013). Some of these models might be high dimensional or even
infinite-dimensional that can be difficult to handle when consid-
ering control design, or lead to very high order controllers. This
usually motivates the reduction (or discretization) of port Hamil-
tonian systems prior to their control, however with the constraint
of preserving their structure in order to apply passivity-based
control techniques for control design (van der Schaft, 2000). Differ-
ent open-loop spatial discretization methods aiming at preserving
the passivity and the Hamiltonian structure of the system have
been proposed (Baaiu, Couenne, Gorrec, Lefèvre, & Tayakout, 2009;

✩ This work was supported by the ANR-DFG (French-German) project INFIDHEM
(contract ‘‘ANR-16-CE92-0028’’), the Labex ACTION project (contract ‘‘ANR-11-
LABX-0001-01’’) and the ENSMMBQRproject (contract ‘‘BQR-ENSMM-N◦ 06.2017’’
). The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Yasuaki Oishi
under the direction of Editor Richard Middleton.

* Corresponding author.
E-mail addresses: yongxin.wu@femto-st.fr (Y. Wu),

boussad.hamroun@univ-lyon1.fr (B. Hamroun), yann.le.gorrec@ens2m.fr
(Y. Le Gorrec), bernhard.maschke@univ-lyon1.fr, maschke@lagep.univ-lyon1.fr
(B. Maschke).

Golo, Talasila, van der Schaft, & Maschke, 2004; Moulla, Lefèvre,
& Maschke, 2011). Other structure preserving reduction meth-
ods have been developed for high-dimensional port Hamiltonian
systems, arising for instance from the discretization of infinite
dimensional systems or the modeling of complex systems defined
on networks, in Polyuga and van der Schaft (2011, 2012), however
without any estimation of the reduction error bounds. The main
drawback of the aforementioned reduced order methods is that
the reduction step is disconnected to the control objectives. It can
lead to spillover effects when the reduction then control design
procedure is applied to slightly damped systems (Balas & Jul, 1978).
The aim of this paper is to combine a modified LQG control design
strategy with a closed loop model reduction method to derive a
reduced order controller able to cope with such weakly damped
systems.

In this paper, we first present in Section 2 the structure pre-
serving reduction method based on effort constraint (Polyuga &
van der Schaft, 2012) and propose an estimate of the reduction er-
ror extending (Wu, Hamroun, Gorrec, & Maschke, 2014). Secondly,
in Section 3 the LQG control design is adapted in such a way the
LQG control is realizable as a control by interconnection of port
Hamiltonian systems. The order reduction is then performed by
writing the system in a balanced basis with respect to the resulting
LQG Gramians and by using the effort-constraint method (Polyuga
& van der Schaft, 2012) that preserves the port Hamiltonian struc-
ture and the passivity of the system.We illustrate and compare the
different LQG controllers on the example of amass–spring–damper
system in Section 4.
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2. Effort constraint method for port Hamiltonian systems and
its reduction error estimation

In this section we first recall the definition of dissipative port
Hamiltonian systems and present the reduction method using the
effort constraint proposed in Polyuga and van der Schaft (2012). In
a second instance we provide an estimation of the error induced
by the use of this method.

2.1. Port Hamiltonian systems and effort constraint method

Let us first recall the definition of dissipative port Hamiltonian
systems.

Definition 1. A linear dissipative port Hamiltonian system (PHS)
with state variable x (t) ∈ Rn, input variable u (t) ∈ Rm, output
variable y (t) ∈ Rm is defined in his explicit form as follows:

ΣPHS

{
ẋ = (J − R)Qx + Bu
y = BTQx (1)

where J = −JT ∈ Rn×n is the skew-symmetric interconnection
structure matrix, R = RT

∈ Rn×n is the symmetric positive
dissipation matrix, Q = Q T

∈ Rn×n is the symmetric and positive
definite energy matrix and B ∈ Rn×m is the input matrix. The
total energy of the system is given by H =

1
2x

TQx. The dissipation
inequality which implies the passivity of the system is naturally
derived from this Hamiltonian structure:
dH
dt

= −xTQRQx + yTu ≤ yTu. (2)

The systems we consider stemming from the modeling of in-
terconnected systems need to be reduced in order to derive a
model suitable for control purposes. The effort-constraint reduc-
tion method has the advantage of preserving the port Hamiltonian
structure and the passivity of the system. It is based on the alter-
native definition of implicit port Hamiltonian systems (Duindam
et al., 2009; van der Schaft & Maschke, 1995, chap. 2) derived from
Dirac structures (Dalsmo & van der Schaft, 1999).

Definition 2. A Dirac structure on Rn is a linear subspaceD ⊂ B =

Rn
× Rn defined by

D = {(f , e) ∈ Rn
× Rn

|F f + E e = 0} (3)

with respect to the two structure matrices E and F in Rn×n which
satisfies

EF T
+ FET

= 0, rank[E : F ] = n. (4)

Implicit dissipative port Hamiltonian systems are defined with
respect to these Dirac structures.

Definition 3. An implicit linear dissipative port Hamiltonian sys-
tem (PHS) with state variable x (t) ∈ Rn, flow and effort variables
(f , e) =

(
−

dx
dt ,Qx

)
∈ Rn

× Rn, input and output port variables
(y, u) =

(
fp, ep

)
∈ Rm

× Rm , dissipation port variables (fR, eR) ∈

RmR × RmR is defined with respect to a Dirac structure of the form
(3) as follows

F

⎡⎢⎣
dx
dt
fp
fR

⎤⎥⎦ + E

[Qx
ep
eR

]
= 0

with the dissipative closure relation eR = −R̂ fR , R̂ = R̂T
≥ 0 ∈

RmR×mR .

We now assume that the system is given in a specific balanced
realization (balancing techniques) such that the state variables
of the port Hamiltonian system can be separated into two parts
xT = (xT1, x

T
2), x1 ∈ Rr and x2 ∈ Rn−r where x2 is the vector of

less important state variables with regard to input–output behav-
ior (balanced properties) of the system. Using this separation of
state variables, port Hamiltonian system (1) can be expressed as
an implicit port Hamiltonian system with the following structure
matrices:

F =

⎡⎢⎣Ir 0 0 0
0 In−r 0 0
0 0 −Im 0
0 0 0 −ImR

⎤⎥⎦ , E =

⎡⎢⎢⎣
J11 J12 B1 gr1
J21 J22 B2 gr2
BT
1 BT

2 0 0
gT
r1 gT

r2 0 0

⎤⎥⎥⎦
and closure relation eR = −R̂fR with R = gr R̂gT

r . Following the
effort constraint method (Polyuga & van der Schaft, 2012), the
reduced model is obtained by imposing the constraint e2 = 0.

It may be shown that the reduced order system with state
variable x1 (t), can be written as an implicit port Hamiltonian
system with respect to the Dirac structure defined by the reduced
matrices Fr = LeFMe and Er = LeEMe given by:

Fr =

[Ir 0 0
0 −Im 0
0 0 −ImR

]
, Er =

⎡⎣J11 B1 gr1
BT
1 0 0

gT
r1 0 0

⎤⎦ (5)

where the matrix Me ∈ R(n+m+mR)×(r+m+mR) and the projector
matrix Le ∈ R(r+m+mR)×(n+m+mR) are defined by:

Me =

⎡⎢⎣ Ir 0r×m 0r×mR
0(n−r)×r 0(n−r)×m 0(n−r)×mR
0m×r Im 0m×mR
0mR×r 0mR×m ImR

⎤⎥⎦ ;

Le =

[Ir 0 0 0
0 0 Im 0
0 0 0 ImR

] (6)

with Hr =
1
2x

T
1Qsx1, Qs = Q11 − Q12Q−1

22 Q21 representing the
Schur complement of Q . The explicit form of the reduced port
Hamiltonian system is given by:{
ẋ1 = (J11 − R11)Qsx1 + B1u
y = BT

1Qsx1
(7)

with R11 = gr1R̂gT
r1. Thus the effort constraint based reduction

methods preserve the Hamiltonian structure of the original sys-
tem.

2.2. Error bound estimation of the effort constraint method

In this subsection, we provide an error bound for the effort
constraint reduction method. For that purpose we use a result of
Antoulas (2005) proposed in the context of Lyapunov balance
truncation methods.

Consider the Lyapunov balanced realization1 (where the index
b stand for balanced coordinates) of the port Hamiltonian system
(1) :⎧⎨⎩

ẋb = (Jb − Rb)  
Fb

Qbxb + Bbu

y = BT
bQbxb

(8)

associatedwith the following controllability and observability Lya-
punov equations:

AbΣ +ΣAT
b + BbBT

b = 0
AT
bΣ +ΣAb + QbBbBT

bQb = 0
(9)

1 through the change of variables xb = Tbx.
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where Ab = (Jb − Rb)Qb , Σ = diag (σ1, σ2, . . . , σn) and σ1 ≥

σ2 ≥ · · · ≥ σn ≥ 0 are the Hankel singular values of the
system (Antoulas, 2005). By applying the effort constraint method
to (8) we obtain a reduced order system of the form (7){
ẋb1 = F11Qsxb1 + B1u
y = BT

1Qsxb1
(10)

with F11 = Jb11 − Rb11 and Qs = Qb11 − Qb12Q−1
b22Qb21.

Lemma 4. Consider the Lyapunov balanced realization of the port
Hamiltonian system (8) and its representation in the new coordinates{

˙̃x = F̃ x̃ + B̃u
y = B̃T x̃

(11)

where F̃ = SFbST , B̃ = SBb and x̃ = Sxb with

S =

⎡⎣ Q
1
2
s 0

Q
−

1
2

b22 Qb21 Q
1
2
b22

⎤⎦ =

[
S11 0
S21 S22

]
(12)

a decomposition of Qb such that: Qb = ST S. Then the reduced order
system derived from (8) by using the effort constraint and the reduced
order system derived from (11) by using the truncation method, given
by:{

˙̃x1 = F̃11x̃1 + B̃1u
y = B̃T

1 x̃
(13)

are input–output equivalent through the change of coordinate x̃1 =

S11xb1.

Proof. Toprove this lemma,we first compute the portHamiltonian
system in the coordinate (11) from the Lyapunov balanced realiza-
tion by x̃ = Sxb. Then we reduce this port Hamiltonian system to
system (13) by truncation reduction method. At last we can verify
the input–output equivalence of two reduced order systems (10)

and (13) by coordinate change x̃1 = Q
1
2
s xb1. □

From Lemma 4, one can relate the error estimation of the
reduced order system (10) obtained by using the effort constraint
method to the one obtained by the truncation method (13) by

∥∆(s)∥H∞
= ∥G (s)− GE

r (s) ∥H∞
= ∥G (s)− GT

r (s) ∥H∞
(14)

where G (s) is the transfer function of the full order system:

G (s) = BT
bQb (sI − FbQb) Bb = B̃T

(
sI − F̃

)
B̃, (15)

GE
r (s) is the transfer function of the reduced order system derived

by the effort constraint method:

GE
r (s) = BT

1Qs (sI − Fb11Qs) B1, (16)

and GT
r (s) is the transfer function of the reduced order system

derived by truncation:

GT
r (s) = B̃T

1

(
sI − F̃11

)
B̃1 = GE

r (s). (17)

To characterize the error bound and simplify the demonstra-
tion, we introduce the following notation in (11):

F̃ = A =

[
A11 A12
A21 A22

]
and B̃ = B =

[
B1
B2

]
. (18)

The transfer function of system (11) and the one of the reduced
order system (13) can be written as follows:

G (s) = BT (sI − A)−1B (19)

and

GT
r (s) = BT

1(sI − A11)
−1B1 (20)

respectively. Their controllability and observability Lyapunov
equations are:

APc + PcAT
+ BBT

= 0
ATPf + Pf A + BBT

= 0.
(21)

The solutions Pc and Pf can be related to the Hankel matrix Σ
through the change of coordinate i.e. the matrix S (given in (12))
as follows:{
Pc = SΣST

Pf = S−TΣS−1.
(22)

Let us introduce the following notations:⎧⎪⎪⎨⎪⎪⎩
φ (s) := (sI − A11)

−1

ψ (s) := sI − A22 − A21φ (s) A12

B̄ (s) := A21φ (s) B1 + B2

C̄ (s) := BT
1φ (s) A12 + BT

2 .

(23)

Proposition 5 (Error Bound of the Effort Constraint Reduction
Method). Consider the port Hamiltonian system (8) with transfer
function G (s) and its reduced order form by using the effort constraint
method (10) with transfer function GE

r (s), then the maximum of the
error ∥∆(s)∥H∞

satisfies2

∥∆(s)∥H∞
≤ λ1/2max

([
L + ψ−1 (jω) L∗ψ∗ (jω)

]
·
[
M + ψ−∗ (jω)M∗ψ (jω)

])
(24)

with

L = S22Σ2S22 + S21Σ1
[
ST21 + S11φ∗ (jω) AT

21

]
(25)

and

M = S−1
22 Σ2S−1

22

[
I − S21S−1

11 φ (jω) A12
]

(26)

where λ1/2max means the square of the maximal frequency eigenvalue.

Proof. See the details in Wu (2015, Chapter 3, Section 4). □

Proposition 5 shows a clear difference between the error bound
of the balanced truncation method which depends only on the
neglected singular eigenvalues Σ2 and the error bound related to
the effort constraint method which depends on bothΣ1 andΣ2.

3. LQG control design and structure preserving reduction for
port Hamiltonian systems

In this section we first recast the standard LQG control design
method in the portHamiltonian framework. Thenwe show that the
passivity of the controller can be guaranteed by properly choosing
theweightingmatrices of the LQG problem. Among all the possible
choices, we choose the one inspired from the work of Jonckheere
and Silverman (1983) that allows to separate the closed loop spec-
trum before reducing the system.

3.1. LQG control design to port Hamiltonian systems

We apply the LQG control design method (Hespanha, 2009) to
the linear port Hamiltonian system defined by (1) to derive the
dynamic observer based controller:{

˙̂x = [(J − R)Q − BK − FBTQ ]x̂ + Fuc
yc = Kx̂

(27)

2 M∗ is the Hermitian transpose of M .
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where the state of the controller x̂ represents the estimation of the
state x of the system. The feedback gains are:

F = PfQBR−1
w , K = R̃−1BTPc (28)

where Pf = PT
f > 0 and Pc = PT

c > 0 are the solutions of the
following Riccati equations:

(J − R)QPf + PfQ (J − R)T − PfQBR−1
w BTQPf + Qv = 0 (29)

Q (J − R)TPc + Pc(J − R)Q − PcBR̃−1BTPc + Q̃ = 0 (30)

with Qv = Q T
v > 0 and Rw = RT

w ≥ 0 the covariance matrices
and Q̃ = Q̃ T > 0, R̃ = R̃T

≥ 0 the optimal control weight-
ing matrices. The cost function of the optimal control is Jc =∫

∞

0

(
xT Q̃ x + uT R̃u

)
dt .

Remark 6. Following Möckel, Reis, and Stykel (2011), we call Pf
and Pc the LQG Gramians of the port Hamiltonian system (1).

The LQG controller (27) may be expressed as follows{
˙̂x = [(J − Rc)Q ]x̂ + PfQBR−1

w uc

yc = R̃−1BTPc x̂
(31)

with

Rc = R + BR̃−1BTPcQ−1
+ PfQBR−1

w BT . (32)

This expression resembles the one of a port Hamiltonian system
(1). However the matrix Rc in (32) is in general neither symmetric
nor positive. Furthermore the input and output matrices in (31)
are not adjoined. There is no reason that the controller admits a
passive port-Hamiltonian realization as it is well-known that LQG
controllers are in general neither passive nor stable (Halevi, 1994).

3.2. Equivalence to control by interconnection of port Hamiltonian
systems

To make sure that the port Hamiltonian structure and the pas-
sivity are preserved in closed loop by using LQG control design,
we shall require that the LQG controller is a port Hamiltonian
system. In this case the controller and the system can be consid-
ered as coupled by a power-preserving feedback interconnection
and the closed loop system is still a port Hamiltonian system. A
similar result holds for the feedback interconnection of passive
systems (Duindam et al., 2009).

To do so, we consider particular choices of the weighting and
covariance matrices of the LQG problem, as stated in the following
theorems.

Theorem 7. Denote the LQG Gramians Pf , solution of the filter Riccati
equation (29) and Pc , solution of the control Riccati equation (30).
Consider the LQG problem with the following relation between the
covariance matrix Rw and the weighting matrix R̃

Rw = R̃ (33)

and with the following relation between the covariance matrix Qv and
the weighting matrix Q̃ :

Qv = Q−1(2QJTPc + 2Pc JQ + Q̃ )Q−1. (34)

In this case the LQG Gramians satisfy the following relation:

PcQ−1
= QPf . (35)

Furthermore, assuming that the port Hamiltonian system is stable,
the control Riccati equation (30) and the filter Riccati equation (29)
admit a unique solution, the LQG controller is passive and the closed
loop system can be written as the feedback interconnection of the port
Hamiltonian system (1) with the port Hamiltonian realization of the
LQG controller.

Proof. Assume Q is invertible since it is symmetric and positive
definite. The filter Riccati equation (29) can be written as:

Q (J − R)QPfQ + QPfQ (J − R)TQ
−QPfQBR−1

w BTQPfQ + QQvQ = 0.
(36)

By using condition (34), the above equation becomes

Q (J − R)QPfQ + QPfQ (J − R)TQ
−QPfQBR−1

w BTQPfQ + 2QJTPc + 2Pc JQ + Q̃ = 0.
(37)

Then subtracting (37) to the control Riccati equation (30) and
considering Rw = R̃, we can get

QJ
(
QPfQ − Pc

)
+

(
QPfQ − Pc

)
JTQ

−
(
QPfQ − Pc

)
BR−1

w BT (
Pc − QPfQ

)
= 0

(38)

which is satisfied for

PcQ−1
= QPf . (39)

One can check that this choice allows to satisfy the two Riccati
equations (29) and (30).

For an asymptotically stable port Hamiltonian system, the de-
tectability conditions aremet for anymatrix Q̃ andQv and both the
filter and control Riccati equations admit a unique solution.

Finally, we show the LQG controller is passive and can be
formulated as an interconnected port Hamiltonian system. First by
using condition (35) and condition (33), the output of controller
(31) becomes:

yc = (R̃−1BTPcQ−1)Qxc ⇔ yc = (R−1
w BTQPf )Qxc (40)

which means that the output yc of controller (31) is port-
conjugated to the input uc . Secondly, considering condition (35)
and condition (33), one can check that the matrix Rc defined in
Eq. (32) is symmetric. The controller (31) is designed by the LQG
design method then the closed loop system is stable and Rc is
positive. □

Theorem7provides a passive LQG control designmethodwhich
is equivalent to the control by interconnection of port Hamiltonian
systems. We shall call this LQG method the Q-conjugated LQG
problem since the two LQG Gramians Pc and Pf are related through
the energy matrix Q according to (39).

It may be noticed that when using the weighting matrices Q̃
and R̃ as control design parameters, the covariancematricesQv and
Rw are derived using (34) and the Q -conjugated LQG problem is
completely specified. The covariance matrices are used as design
parameters and have no longer statistical meaning. Such kind
of approach is very similar to the one used for LQG/LTR (Loop
Transfer Recovery) design in which the covariance matrix is used
to recover the good robustness properties of the LQ regulator. A
similar passive LQG control design for positive real systems has
been proposed in Brogliato, Lozano, Maschke, and Egel (2007).

Remark 8. The other advantage of this LQG control designmethod
is that by using this specific choice of weighting and covariance
matrices (34) and (33), the two solutions of (29) and (30) are
related by

PcQ−1
= QPf . (41)

It means that only one Riccati equation has to be solved for the
overall design.

Finally, note that the product of the LQG Gramians obtained
from Theorem 7

Pf Pc = PfQPfQ ̸= I

is not equal to the identity which allows to reduce the system
through its balanced realization .
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3.3. Structure preserving LQG reduction

In the sequel we use the Q -conjugated LQG method in order
to derive, in a first step, a balanced representation of the port
Hamiltonian system (1) and in a second step, a reduced order
model.

Let us first define the balanced realization with respect to the
Q -conjugated LQG Gramians Pf and Pc that we shall call for conve-
nience of writing Q-conjugated balanced realization.

Definition 9. The port Hamiltonian system (1) admits a
Q -conjugated balanced realization if the Gramians Pf and Pc of the
Q -conjugated LQG problem of Theorem 7, are diagonal and equal:

Pc = Pf = M = diag(µ1, µ2, . . . , µn) (42)

where, denoting by λi (P) the ith eigenvalue of a matrix P ,

µi =
√
λi(PcPf ) and µ1 > µ2 > · · · > µn > 0. (43)

Remark 10. Definition 9 proposes a novel balanced realization
which differs from the standard LQG balanced realization (Jonck-
heere & Silverman, 1983) where the covariance matrices are:

Qv = BBT and Rw = I, (44)

and the matrices defining the optimal control criterion are:

Q̃ = CTC and R̃ = I. (45)

Remark 11. Following Proposition 7, we have Pc = QPfQ , then

PcPf = QPfQPf .

Hence the Q -conjugated balanced realization is derived by diago-
nalizing of the matrix QPf .

Let us denote T the transformationmatrix that diagonalizes the
Gramians Pf and Pc of the Q -conjugated LQG problem i.e.:

TPcT T
= T−TPf T−1

= M. (46)

The Q -conjugated LQG balanced realization of the port Hamilto-
nian system (1) is derived as follows{
ẋb = (Jb − Rb)Qbxb + Bbu
y = BT

bQbxb
(47)

where Jb = TJT T , Rb = TRT T , Qb = T−TQT−1 and Bb = TB.
Using this balanced realization, the singular values (43) are

ordered and split into two set (µi)i=1,...,r and (µi)i=r+1,...,n with the
objective of reducing the system in such a way to retain only the
states associated with the first r singular values i.e. the states that
have a significant contribution with respect to the desired closed
loop performances. The state variables are then decomposed as
xTb = [xTb1, x

T
b2]

T where xb1 ∈ Rr and xb2 ∈ Rn−r . Thuswe use the ef-
fort constraint method to reduce this Q -conjugated LQG balanced
realization in order to keep only the first r states while preserving
the Hamiltonian structure. The reduced order port Hamiltonian
system is presented as follows:{
ẋb1 = (Jb11 − Rb11)Qsxb1 + Bb1u
y = BT

b1Qsxb1
(48)

where Qs = Qb11 + Qb12Q−1
b22Qb21.

The reduced order controller is then derived by applying the
Q -conjugated LQG design procedure given in Theorem 7 to the
reduced order system (48). It is important to notice that the
important states of the original system have been selected by
considering the closed loop achievable performances and not the
open loop ones. The overall control design is summarized in

Algorithm 1 Q-conjugated LQG reduced controller design

Input: J ∈ Rn×n, R ∈ Rn×n, Q ∈ Rn×n, B ∈ Rn×m, Q̃ ∈ Rn×n,
R̃ ∈ Rm×m.
Output: Reduced order LQG controller;

1. Choose Rw and Qv accordingly to (33) and (34) respetctively
and compute Pc and Pf = Q−1PcQ−1 solving (30);

2. Compute the transformation matrix T ∈ Rn×n defined by
(46);

3. Find the balanced realization of the system (47) with Jb =

TJT T , Rb = TRT T , Qb = T−TQT−1 and Bb = TB;

4. Choose the order of reduction from the analysis of the sin-
gular values.

5. Proceed to the reduction by using the effort constraint
method accordingly to (48).

6. Compute the reduced order LQG controller.

Algorithm 1. The reduced order controller can be applied to the
given full order port Hamiltonian system (1) in order to stabilize
the system (Jonckheere & Silverman, 1983). Hereafter (Algorithm
1) we give an algorithm which summarizes the proposed Q-LQG
reduced controller design method.

4. Illustration on a 1D mass–spring–damper chain

In this section, we consider the benchmark example of a 1D
mass–spring–damper chain treated in Polyuga and van der Schaft
(2012) which can be interpreted as the spatially discretized model
of a robotic flexible link of a robot or a vibration absorber. We
first compare the closed loop performances obtained with the
full order Q -conjugated LQG controller to the one obtained with
the full order standard LQG controller designed and applied on
the full order system. Secondly, we compare the performances
of the reduced order Q -conjugated LQG controller, designed on
the reduced model and applied to the full order system, to the
performances of the full order Q -conjugated LQG controller.

The mass–spring–damper chain represented in Polyuga and
van der Schaft (2012) can be formulated as a port Hamiltonian
system of the form (1) :⎧⎨⎩x = [d1, p1, d2, p2, d3, p3, . . . , dN , pN ]T

u = F
y = v1.

The state vector x ∈ R2N contains the relative displacement d and
the momentum p of the N masses, the input of system is the force
F applied to the mass m1 and its dual output is the velocity of the
same mass.

The physical parameters and their numerical values are: the
masses mi = 2, the elasticity coefficients of the springs ki = 4,
the friction coefficients ci = 0.01. The structure matrix J = −JT ∈

R2N×2N , the dissipation matrix R = RT
≥ 0 ∈ R2N×2N , the energy

matrix Q > 0 ∈ R2N×2N and the input matrix B ∈ R2N .
In the numerical simulation, we choose N = 200, leading to a

state space of size 2N = 400, i.e. x ∈ R400.

4.1. Comparisons of the two LQG control design methods

In Fig. 1 are plotted the open loop step response (green dashed
curve), and the closed loop step responses (the output variable is
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Fig. 1. Step responses of the closed loop (full order) system with standard (full
order) LQG controller and (full order) Q -conjugated LQG controller.

Fig. 2. Singular values associated with different LQG problems.

the velocity) by using the Q -conjugated LQG controller (red solid
curve) and the standard LQG controller (black dashed curve).

4.2. Comparisons of the two LQG balanced reduction methods

It should be reminded that the closed loop system with the
Q -conjugated LQG controller is still a port Hamiltonian system
and that the weighting matrices can be freely chosen. The closed
loop performances are similar to the ones obtained by using the
standard LQG controller with modulated states weighting matrix
while preserving the closed loop structure of the system and guar-
anteeing the passivity of the controller. In the Q -conjugated LQG
controller design, the form of Q̃ is chosen to be Q̃ = γ CCT with
γ > 0 (γ = 5 is used for the simulation).

Before proceeding to the reduction of the system, the sin-
gular values obtained from the standard LQG balancing and the
Q -conjugated balancing are compared in Fig. 2.

One may observe that the singular values (depicted by red
circles in Fig. 2) obtained by the Q -conjugated LQG balancing have
a bigger decay rate than the ones obtained with standard LQG
balancing method (depicted by blue crosses in Fig. 2). The decay
rate of the singular values for the Q -conjugated LQG balancing can
be increased by increasing the value of γ in the expression of Q̃ . It

Fig. 3. Step responses of the closed loop (full order) systemswithQ -conjugated full
order and reduced order controllers.

should be recalled that in theQ -conjugated LQGbalancingmethod,
the choice of the weighting matrices is defined by the relation of
Theorem 7.

TheQ -conjugated LQGmethod does not only allow us to design
a passive Hamiltonian controller, but also allows us to reduce both
the system and the controller while preserving the Hamiltonian
structure of the system. In Fig. 3, we show the step responses of the
closed loop systemwith the full orderQ -conjugated LQG controller
(red dashed curve) and with the reduced order Q -conjugated con-
troller (blue solid curve).

The order of reduction is chosen equal to r = 40, since it
appears in Fig. 2, that the first 40Q -conjugated LQG singular values
are bigger than the remaining ones which is not the case for the
standard LQG singular values (the first 150 standard LQG singular
values are almost equal). One can observe that performances ob-
tained with both the full order and reduced order Q -conjugated
LQG controllers are quite similar.

5. Conclusion

In this paper is proposed a reduced order LQG control design
technique for port Hamiltonian systems. It is based on equivalent
port Hamiltonian formulation of the traditional LQG control design
and effort constraint structure preserving model reduction. In a
first instance an error estimate of the effort constraint reduction
method for port Hamiltonian systems is provided. In a second
instance it is shown that an appropriate choice of the LQG control
design matrices allows to formulate the control problem as a con-
trol by interconnection problem. Thismethod, calledQ -conjugated
LQG method, allows to find a balanced realization defined by
separable singular values. The reduced order system is derived
by using the aforementioned effort constraint reduction method,
preserving the structure and the passivity of the system during
the reduction. The reduced order LQG controller is then derived
using this reduced order system. This approach can be seen as an
adaptation to the LQG balanced reduction method proposed for
finite dimensional systems in Jonckheere and Silverman (1983).
Finally the effectiveness of the proposed method is illustrated
on a classical mechanical mass–spring–damper chain system. The
extension of this work to infinite dimensional systems is under
study.
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