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Abstract: This paper deals with optimal actuator location for a medical endoscope controlled
by electro-active polymer (EAP). The inner tube of the endoscope is a flexible structure that
can be represented by a Timoshenko beam. Actuators are patches of EAP. There is freedom
in the choice of EAP actuators location. In this paper, we first propose a port Hamiltonian
model of the endoscope. In order to choose the optimal location for the EAP actuators, we
consider the linear quadratic (LQ) performance as the optimal performance objective. At last,
some numerical simulation results are given based on the real experimental setup parameters.
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1. INTRODUCTION

The theoretical modeling and control of medical endo-
scopes have been studied since the last century (Anderson
et al., 1967). In recent years, technological progresses made
possible the use of continuum robots for different appli-
cations such as: laser manipulators, catheters and micro-
endoscopes (Robert J. Webster and Jones, 2010). Actuated
micro-endoscopes have been developed for endonasal skull
base surgery in (Chikhaoui et al., 2014) with embedded
actuators able to provide additional degrees of freedom to
the system. In this paper, the bending of the endoscope is
preformed by electro-active polymer (EAP) actuators. One
of the most important EAP actuators are Ionic Polymer
Composites (IPMC) which have attractive properties such
as: low actuation voltage, ease of fabrication, relatively
high strain and so on. These properties have been experi-
mentally pointed out in (Shahinpoor and Kim, 2001).

The modeling of medical endoscopes has been considered
in (Chikhaoui et al., 2014) by a kinematic approach. The
main body of the endoscope is a flexible structure and the
IPMC actuators consist in patches of poly-electrolyte gel
and metal electrodes plated by a chemical process. The
modeling of such kind of system naturally leads to a com-
plex multi physical system which is often governed by par-
tial differential equations (PDEs). The port Hamiltonian
framework is a very powerful approach for the modeling
and control of mechanical, electro-mechanical and multi
physical systems (Duindam et al., 2009). Port Hamilto-
nian modeling is based on energy exchanges between the
different components of the systems. It has been recently
extended to distributed parameter systems described by
partial differential equations (PDEs). The port Hamilto-
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nian framework is well suited for the modeling of intercon-
nected multiphysical systems and then particularly well
adapted for the modeling of medical endoscopes. More-
over, modeling and control of flexible structures by using
the port Hamiltonian framework have been widely studied
in the last decade (Macchelli and Melchiorri, 2004b,a) and
the port Hamiltonian modeling of IPMC soft actuators has
been introduced in (Nishida et al., 2011). The actuators
being coated outside of the medical endoscope (shown
in Fig. 1), this control problem can be regarded as the
distributed control of a distributed parameter system and
one has to decide the best location of actuators. This
naturally leads to the optimal actuator location problem.
This problem has been firstly introduced in the context
of distributed parameter system in (Slemrod, 1989). The
author in (Morris, 2011) proposes to minimize the linear
quadratic cost function in order to choose the optimal
actuators location. We can also find the other criteria to
find the optimal actuators location in the review article
(van de Wal and de Jager, 2001).

The organization of this paper is the following. In Sec-
tion 2, we introduce the port Hamiltonian modeling of
the endoscope with its distributed control. The optimal
actuator location is considered by minimizing the linear
quadratic cost functional in Section 3. In Section 4 is given
the discretized model of the endoscope and this model is
validated through several simulations. At last, we give the
conclusion of this work and some remarks for future works.

2. PORT HAMILTONIAN MODELING OF
ENDOSCOPE

A simplified model of a compliant endoscope used for
medical examination (Chikhaoui et al., 2014) is presented
in Fig 2. The inner tube is actuated by electro-active
polymers (EAP) caught on the body of the endoscope.
The modeling of EAP can be found in (Nishida et al.,
2011). In this paper we do not represent the physical
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Fig. 1. EAP actuated Endoscope

model of the EAP and consider only the distributed forces
and torques applied on the body of the inner tube. The
compliant inner tube of the endoscope can be regarded as
a flexible beam. One end of this beam is clamped while
the other one is free. The actuators and the beam are
interconnected through the power conjugated variables.
The interconnection relation and causality are indicated
also in Fig 2. The compliant inner tube is modeled as
an infinite dimensional Timoshenko beam model. In the
following subsections we discuss the modeling of this
compliant structure and its distributed control.
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Fig. 2. Simplified EAP actuated Endoscope

2.1 Timoshenko beam

The distributed parameter port Hamiltonian formulation
of Timoshenko beam has been represented in(Macchelli
and Melchiorri, 2004b; Jacob and Zwart, 2012). This repre-
sentation has been widely studied for the boundary control
problem (Villegas et al., 2009; Ramirez et al., 2014) as well
as for the distributed control problem (Macchelli, 2003) of
beams. Let consider the port Hamiltonian representation
of the Timoshenko beam as follows:

ẋ(t) = (P1
∂

∂z
+ P0)︸ ︷︷ ︸
J

Lx(t) (1)

with the operator:

L =


K 0 0 0

0
1

ρ
0 0

0 0 EI 0

0 0 0
1

Iρ

 , (2)

and the matrices:

P1 =

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P0 =

 0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 . (3)

The state (energy) variables are the shear displacement
x1 = ∂w

∂z (z, t) − φ(z, t), the transverse momentum dis-

tribution x2 = ρ(z)∂w∂t (z, t), the angular displacement

x3 = ∂φ
∂z (z, t) and the angular momentum distribution

x4 = Iρ
∂φ
∂t (z, t) for z ∈ (a, b), t ≥ 0, where w(z, t) is the

transverse displacement and φ(z, t) is the rotation angle of
the beam. The coefficients ρ, Iρ, E, I and K are the mass
per unit length, the angular moment of inertia of a cross
section, Young’s modulus of elasticity, the moment of iner-
tia of a cross section, and the shear modulus respectively,
and the state space X = L2(a; b;R4). The energy of the
beam is expressed in terms of the energy variables,

H =
1

2

ˆ b

a

(Kx2
1 +

1

ρ
x2

2 + EIx2
3 +

1

Iρ
x2

4)dz

=
1

2

ˆ b

a

x(z)T (Lx)(z)dz =
1

2
‖ x ‖2L

(4)

The medical endoscope is clamped at one end while the
other end is free. The endoscope is actuated in its domain
by the use of EAP patches but does not have any control
at the boundary. Thus, the boundary conditions of the
endoscope are Kx1(b, t) = EIx3(b, t) = 0 ∀t ≥ 0 and
1
ρx2(a, t) = 1

Iρ
x4(a, t) = 0 ∀t ≥ 0 , The domain of the

operator J is

D(J ) =

x ∈ H1(0, 1;Rn)

∣∣∣∣∣∣∣
x2(a, t) = 0
x4(a, t) = 0
x1(b, t) = 0
x3(b, t) = 0

,∀t ≥ 0

 ⊂ X
(5)

The operator J = P1
∂
∂z + P0 defined by the matrices

P1 = PT1 and P0 = −PT0 is a first order skew adjoint
differential operator acting on the state space X with the
boundary condition (5). We also consider the material
of the endoscope is uniform, i.e. ρ, Iρ, E, I and K are
constant. Hence the operator L is self-adjoint and coercive.

2.2 Distributed control of Timoshenko beam

As previously mentioned, the endoscope is controlled by
the EAP actuators caught on its body. In this section,
we discuss the distributed control of the inner tube body
(Timoshenko beam).

Assume the EAP actuators can provide uniform torques.
We place the EAP actuators on the different small inter-
vals Ii = [ai, bi] of the beam (on the spatial domain [a, b]).
The torque given by each EAP can be written as bi(z)ui(t)
with bi(z) = 1 if z ∈ Ibi and bi(z) = 0 elsewhere.

The torque given by each EAP is bi(z)ui(t) on the i−th
on the small interval Ii = [ai, bi] of the spatial space [a, b]
i.e. bi(z) = 1 if z ∈ Ibi and bi(z) = 0 elsewhere. Thus the
input operator and input are:

B(z)u(t) =
∑
i

 0
0
0

bi(z)

ui(t) =

 0
0
0
b(z)

u(t) (6)



where B : Ci 7→ X, b(z) = [b1(z), · · · , bi(z), · · · ] and
u(z) = [u1(z), · · · , ui(z), · · · ]T .

Example 1. Consider that three EAP actuators are placed
on the three small intervals of the beam I1 = [0, 0.1c],
I2 = [0, 4c, 0.5c] and I1 = [0.9c, 1c] with c = b−a

10 . The
three inputs given by the three actuators are u1(t), u2(t)
and u3(t). Thus the distributed control is given by

Bu =

 0 0 0
0 0 0
0 0 0

b1(z) b2(z) b3(z)

[ u1(t)
u2(t)
u3(t)

]
(7)

where

bi(z)

{
= 1 if z ∈ Ii
= 0 if z /∈ Ii i ∈ {1, 2, 3}. (8)

The output is power conjugated to the input, i.e.

y = B∗Lx(t) (9)

The input-output model of the endoscope can be described
by the following port Hamiltonian formulation :

ẋ(t) = JLx(t) + Bu(t)
y(t) = B∗Lx(t)

(10)

The derivative of the Hamiltonian can be easily computed
by using the total energy of the system (4) and the system
(10):

∂H

∂t
= yTu. (11)

3. LINEAR QUADRATIC OPTIMAL LOCATION

In this section, we discuss the optimal placement of the
actuator which minimizes a quadratic performance. Before
analyzing the optimal location problem, let recall the
linear-quadratic optimal problem (Curtain and Zwart,
1995). The linear-quadratic optimal controller design is to
find a control u(t) such that the cost functional:

Jco(u, x0) =

ˆ ∞
0

(〈x (t) , Qx (t)〉+ 〈u (t) , Ru (t)〉) dt

(12)
is minimized. x(t) ∈ X is the state variable defined in (1).
The state and control weighting operators Q : X 7→ X and
R : U 7→ U are bounded, symmetric and positive definite.

Definition 2. The system (10) with cost functional (12)
is optimizable if for every x0 ∈ X, there exists u ∈
L2 ([0,∞);U) such that the cost is finite.

Definition 3. The pair (Q1/2,JL) is detectable if there
exists F : Y 7→ X such that JL − FC generates an
exponentially stable semigroup.

Theorem 4. (Curtain and Zwart, 1995) The system (10)
with cost functional (12) is optimizable and detectable,
then the cost function has a minimum for every x0 ∈
X. Furthermore, there exists a self-adjoint non-negative
operator P : X 7→ X such that

min
u∈L2([0,∞];U)

Jco(u, x0) = 〈x0, Px0〉 (13)

The operator P is the non-negative unique solution of
Riccati equation:(

(JL)∗P + PJL − PBTRBP +Q
)
x = 0 (14)

with x ∈ D(L). Defining K = R−1B∗P , the optimal
control is u = −Kx(t) and JL − BK generates an
exponentially stable semigroup.

Definition 5. The pair (JL,B) is stabilizable if there
exists K : U 7→ X such that JL − BK generates an
exponentially stable semigroup.

Now we consider there are m actuators and their locations
can be varied over the compact set Ω. We parametrize the
location by r. The input operator is denoted as B(r) which
depends on the parameter r. This parameter r is a vector
of length m with components on Ω so r is varied on the
space denoted by Ωm. Hence for each r we have an optimal
control problem (12) which we denote by Jrco(u, x0) which
its corresponding optimal cost 〈x0, P (r)x0〉.
Normally, the initial condition x0 is not fixed. In this
paper, we will consider that the optimal location will min-
imize the cost function with the worst choice of the initial
condition (Curtain and Zwart, 1995, Lemma A.3.70), i.e.
to choose r in order to minimize

max
x0 ∈ X

‖x0‖ = 1

min
u∈L2([0,∞];U)

Jrco(u, x0) = max
x0 ∈ X

‖x0‖ = 1

〈x0, Px0〉

= ‖P (r)‖.
(15)

We denote the performance on location r is µ(r) = ‖P (r)‖
and the optimal performance is

µ̂ = inf
r∈Ωm

‖P (r)‖. (16)

Theorem 6. (Morris, 2011) Let B(r) : U 7→ X, r ∈ Ωm,be
a family input operator such that for any r0 ∈ Ωm

lim
r→r0

‖B(r)− B(r0)‖ = 0. (17)

Assume that (JL,B(r)) are all exponentially stabilizable
and that (Q1/2,JL) is detectable where Q1/2 : X 7→ Y
is compact. If U and Y are finite dimensional, then there
exists an optimal actuator location r̂ such that

‖P (r̂)‖1 = inf
r∈Ωm

‖P (r)‖1 = µ̂ (18)

The Theorem 6 shows that we can find the optimal
actuator locations if the input operators B(r) and the
operator Q1/2 are compact, the Riccati equations have the
unique non-negative solutions, then the optimal location
with the performance µ̂ = infr∈Ωm ‖P (r)‖ exists. This
result is proven following the Theorem 3.1 (Curtain and
Sasane, 2001).

4. COMPUTATION OPTIMAL LOCATIONS AND
SIMULATION RESULTS

In this section, we will discuss how to choose the optimal
locations of the EAP actuator to control the beam posi-
tion.

We first focus on the one actuator case. In this part,
we will discuss two different situation. First one, we will
consider optimal actuator location when we measure the
power conjugate output of the port Hamiltonian system.
Secondly, we will consider the optimal actuator location
when we fix the output measure, in this case, we will
measure the displacement of the middle of the beam as
output.

The system (10) can be presented as:

ẋ(t) = JLx(t) + B(r)u(t) (19)



The input operator B(r) depends on the actuator location
r. We denote ∆ the length of the actuator. Thus the input
operator can be written as:

B(r) =

 0
0
0

br(z)

 with br(z) =


1, |r − z| < 1

∆

0, |r − z| > 1

∆

. (20)

The power conjugated output are

y(t) = B∗(r)Lx(t), (21)

which also depends on the actuator location r. Consider
the state weighting operator Q = LB(r)B∗(r)L and the
input weighting operator R = I, the cost functional (12)
becomes:

Jco(u, x0) =

ˆ ∞
0

(〈y(t), y(t)〉+ 〈u(t), u(t)〉) dt. (22)

The optimal objective is minimize the norm of the response
over times. The Riccati equation associated with this
optimal problem is

((JL)∗P + PJL − PB(r)B∗(r)P + LB(r)B∗(r)L)x = 0
(23)

with x ∈ D(L). Since the operator Riccati equation (23)
can not be solved in practice, we need an approximation
of the system (19) to compute the control law. We will
discuss the discretization of the system (10) in the next
paragraph.

We use the mixed-finite element discretization method
proposed in (Golo et al., 2004). The idea of this method
is to approximate flows and efforts with differential forms
related to their physical (geometrical) natural. In the case
of the Timoshenko beam, defined on a one-dimensional
spatial domain, The efforts (torque) correspond to the
zero forms (functions) and the flows (angular velocities)
correspond to the one forms respectively. This spatial
discretization method has been used on the different phys-
ical models, the reader can read (Hamroun et al., 2009;
Baaiu et al., 2009) for more details and particularly in the
Timoshenko beam case can be find in (Macchelli et al.,
2009). The explicit finite dimensional port Hamiltonian
discretization of the Timoshenko beam is given as follow:

ẋd = Jd
∂Hd

∂xd
+Bd(r)u (24)

where Jd = −JTd ∈ R4N with N infinitesimal subsections
for the discretization, Hd = 1

2x
T
d Ldxd is the Hamiltonian

function with Ld the approximation matrix of operator L.
The following matrices presents the discretized structure
operator of the infinite dimensional model :

Jd =


0 M 0 0
MT 0 0 0

0 0 0 M
0 0 MT 0


︸ ︷︷ ︸

P̄1

+

 0 0 0 −Φ
0 0 0 0
0 0 0 0

ΦT 0 0 0


︸ ︷︷ ︸

P̄2

(25)

where the sub-matrices are:

M =


−1 1 0 · · · 0

0 −1 1
. . .

..

.
...

. . .
. . .

. . . 1
0 · · · 0 0 −1

 with M ∈ RN×N (26)

Φ = diag(β, · · · , β) with Φ ∈ RN×N (27)

where β is the distance of the infinitesimal section. The
matrix Bd(r) is the approximation of the input operator
B(r):

Bd(r) =

 0
0
0
br

 ∈ R4N (28)

where the vector br ∈ RN depends on the actuator location
r. By using the approximation (24) of the system (19),
we can get an approximate solution Pd to the infinite
dimensional Riccati equation with solving the following
finite dimensional Riccati equation:

(JdLd)
TPd + PdJdLd − PdBd(r)BTd (r)Pd

+LdBd(r)B
T
d (r)Ld = 0.

(29)

We consider now the numerical simulation of optimal ac-
tuator location. The parameters used for the numerical
simulations are given in Tab. 1. These are the real param-
eters of the experimental setup in department AS2M of
Institute FEMTO-ST (shown in Fig. 3).

Parameters of beam and actuator Value (unit)

Length L 30 cm

Width b 2 cm

Thickness h 2 mm

Young’s modulus E 0.2 GPa

Mass density ρ 920 kg/m2

Actuator length ∆ 3 cm

Table 1. Parameters of the beam

Amplifier

Position sensor

(Laser)

dSpace

Analog to

digital 

converter

Digital to

Analog 

converter

PC

Clamped flexible beam

Actuators (IPMC)

Fig. 3. Clamped flexible beam experimental setup

We illustrate the optimal actuator location for system
(19) with the LQ cost function (22). We take the length
of the actuator ten times shorter than the beam i.e.
∆ = b−a

10 . The optimal actuator locations are computed
by the approximations (24) with the different numbers of
infinitesimal subsection (N). We take N from 10 to 200.
The optimal actuator locations are shown in Fig 4. In this
simulation result, we find that for the power conjugated
input-output case, i. e. Y = B∗(r)Lx, the optimal actuator
location is on the clamped side of the beam.

In the Fig. 5, we show the LQ-performance ‖P‖ for the
different actuator locations. This variation of the LQ
norm ‖P (r)‖ has been computed when N = 60. The
actuator locations are evaluated by each finite element of
discretization from the clamped side to the free side of the
beam. The actuator location which minimizes LQ-norm
‖P (r)‖ is on the clamped side.

Now we consider the second case. The measurement is
the displacement of the middle of the beam. Where is
the optimal actuator location which minimize the LQ
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performance with this measurement? In this situation, the
output of the system is

y2(t) = B∗Lx(t), (30)

with

B =

 0
0
0
b(z)

 with b(z) =

{
1, z ∈ I
0, z /∈ I (31)

where I is a small interval I = [0.4c, 0.5c], c = b−a
10 .

The cost functional of LQ problem can be written as
following:

Jco(u, x0) =

ˆ ∞
0

(〈y2(t), y2(t)〉+ 〈u(t), u(t)〉) dt. (32)

with the state weighting operator Q = LBB∗L. Then the
optimal objective becomes to minimize the norm of the
response at the fixed interval I = [0.4c, 0.5c] over time.

We illustrate the optimal actuator location of above LQ
optimal problem by Fig. 6. We can see now the optimal
actuator location is not the same shown in Fig. 4. Because
we change the LQ cost functional. We obtain the optimal
actuator location is as same as interval we measure output,
i.e. I = [0.4c, 0.5c]. In the Fig. 7, we show the LQ-
performance ‖P‖ for the different actuator locations. This
variation of the LQ norm ‖P (r)‖ has been computed when
N = 60.

This simulation result shows that in order to minimize
the the norm of the response at the fixed interval I =
[0.4c, 0.5c] over time, we have to place the actuator in

the same interval. The input and output are collocated in
this case. After several simulations (which are not shown
in this paper), the optimal actuator locations are always
collocated at the output measurements.
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Now we consider two actuators placement case. We sup-
pose that the measurements are the displacement at the
intervals I = [0.2c, 0.3c] and I = [0.5c, 0.6c]. The Fig. 8
shows that the optimal actuator locations are also around
these two intervals. This variation of the LQ norm ‖P (r)‖
has been computed when N = 100. In this figure, we
want to underline that the anti-diagonal elements from
the bottom left to the top right are no meaning from
two actuator point of view. Because these elements show
the norms ‖Pr‖ when the two actuators are superposed.
They don’t have the real physical meaning in practical
application. This simulation shows the similar result as
the one actuator case.

5. CONCLUSION AND FUTURE WORK

In this paper, the port Hamiltonian framework has been
used to model and reduce one class of bio-medical endo-
scope. This medical endoscope is controlled by the dis-
tributed torques provided by EAP actuators. We formulate
the endoscope with its distributed control as an abstract
system by port Hamiltonian approach. Then we have con-
sidered a LQ optimal actuator location problem for this
system. This optimal problem consists in the minimization
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of the LQ cost functions which are related to the actuator
locations. This method has been illustrated by the numer-
ical simulations. The parameters of a real experimental
setup have been used in the simulation.

The ongoing work is to implant this method on the
experimental benchmark in order to compare with the
numerical simulation results. Since the EAP can also be
used as the deformation sensor, we will consider both
optimal sensor/actuator locations in the future work.

REFERENCES

Anderson, V., Horn, R., and of Mechanical Engineers, A.S.
(1967). Tensor Arm Manipulator Design. American
Society of Mechanical Engineers. Papers. American So-
ciety of Mechanical Engineers.

Baaiu, A., Couenne, F., Gorrec, Y.L., Lefèvre, L., and
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