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Abstract. Concentric tube robots are based on the deformation of elas-
tic pre-curved tubes mounted in a telescopic manner. Their kinematic
model consists in a boundary value problem which must be solved dur-
ing analysis and design. When arbitrary properties and number of the
tubes are considered, this model must be solved numerically. We consider
in this paper the use of dynamic relaxation to perform this resolution. Its
performances in terms of accuracy and computation time are assessed in
a case study involving a two-tube CTR. Robustness of the method tun-
ing to variations of CTR behaviour as encountered during a deployment
is finally assessed.

Keywords: Concentric tube robot, Continuum robot kinematics, Dynamic re-
laxation, Boundary value problem

1 Introduction

Concentric tube robots (CTR) consist in telescopic assemblies of pre-curved and
elastic tubes, which have been used extensively in minimally invasive surgery [3].
The interactions between the tubes and with their environment create internal
wrenches which deform the tubes and place the robot in a certain equilibrium
configuration. Acting on the rotation and the translation of the tubes at their
base allows a modification in the equilibrium configuration which is used to
control the robot tip pose and the backbone shape. The kinematic model of the
CTR consists therefore in equilibrium equations issued from continuum mechan-
ics, which must be solved for analysis and design.

As they are composed of elastic beams performing large displacements, CTRs
are modelled using either energy considerations [11] or Cosserat rod theory [4].
The equilibrium equations to consider then form a multi-point boundary value
problem (BVP), of which the complexity depends on the number and the prop-
erties of the tubes and on the considered environment in interaction with the
CTR. For a two-tube robot with constant and planar pre-curvature deploying
in free space, an analytical solution of the model can be obtained as demon-
strated in [4]. When more complex geometries and larger number of tubes are
considered, the equilibrium configuration must be computed numerically. Sev-
eral numerical methods have been used for this purpose that need to handle the
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presence of boundary conditions at different locations along the CTR backbone.
Initial and final boundary conditions are managed independently in a two-step
process called the shooting method in [9]. The Galerkin and the LocattoIIIA
methods are proposed in [5] and [6] which discretize the CTR along its back-
bone. The BVP is then transformed into a set of non-linear equations solved
with root finding methods. The nodes are placed automatically on the backbone
in order to optimize the method accuracy and computation time. Discretization
is also considered in [1] where the tubes are represented with a 3D finite element
model. Dynamics of the robot are then integrated using a Bathe time integration
scheme in order to obtain the CTR equilibrium configuration.

We propose here to consider a discretization of the CTR, but as an initial
step to manually control node locations. This allows us to potentially express
any boundary condition at a given location, as in the case of contacts with the
environment for instance. We show in the following that, after discretization,
the problem of solving the CTR kinematics is similar to the one involved in the
shape finding of discrete elastic structures such as tensegrity mechanisms [2,8].
The Dynamic Relaxation (DR) method has been successfully used to solve such
form-finding problem, and has been already extended to finite element model of
rods and plates [10]. We consider therefore in this paper the use of DR to compute
the equilibrium configuration of the discrete CTR. This paper is organized as
followed. The kinematic model of CTR to be solved is first of all briefly described
in Section 2. CTR kinematics in the absence of external load is then considered
for sake of simplicity. DR is implemented in Section 3. A first evaluation of the
DR performances in terms of accuracy and computation time is finally performed
in Section 4, before concluding.

2 Kinematic model of CTR

Evaluation of the DR requires first the derivation of CTR kinematic model. We
consider the CTR to be composed of n tubes numbered from the innermost to
the outermost. The deployed length and the base angle of tube i are denoted
respectively Li and αi. The tubes are actuated at the arc-length s = −βi, where
βi is the transmission length [5] of tube i. The robot is considered as composed
of n sections, the number of tubes being constant along each one. The sections
are indexed from the distal end to the proximal one, and the length of the i-th
section is denoted ∆Li.

The local configuration of the robot is defined using a Bishop frame RB
which z axis is the tangent of the robot backbone. A frame Ri is attached to
each tube i, that is obtained by applying a rotation (θi(s), zB) to RB , with θi(s)
the twist angle of tube i at arc length s. In the remainder of this paper, we will
use when needed subscripts (B and i) to indicate the frame in which vectors are
projected.

CTR kinematics are classically described using the curvature of the robot
backbone u(s), the pre-curvature vector of each tube i denoted ûi(s) for tube i
and the bending and torsional stiffnesses kib(s) and kit(s), which form a stiffness
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matrix Ki(s) such that Ki(s) = diag(kib(s), kib(s), kit(s)) [11]. The dependences
in s are not mentioned in the following of the paper for sake of compactness. As
explained in [11], the equilibrium equations of the robot can be obtained first
by expressing the balance of moments at each cross section of the robot:

m∑
i=1

KjuB =
m∑
i=1

BRiKi(ûi − ûizez) (1)

and second by applying the Euler-Lagrange formula to the total potential energy
of the robot, giving:

kitθ
′′
i = gθi

= kitû
′
iz + k′it(θ′i − ûiz) + uTB

∂BRi

∂θi
Kiûi

i = 1...n
(2)

where BRi is the rotation matrix describing the rotation of Ri with respect
to RB , [...]′ is a derivative according to the arc length s and ez =

[
0 0 1

]T .
These differential equations are constrained by boundary conditions modelling
the proximal actuation of each tube and the free tube extremities. Assuming that
the torsional curvature is constant along the transmission lengths as introduced
in [5], these conditions write:

θi(0) = αi − βiθ′i(0)

θ′i(Lj) =
{

0 , i 6= j

ûiz , i = j
i = 1...n

(3)

The kinematic model of the CTR is therefore formulated, in this situation, as
a so-called two-point boundary value problem (BVP) composed of the moment
balance (1), the energetic equilibrium (2) and the boundary conditions (3).

3 Dynamic relaxation method for CTR

Solving in the general case the CTR kinematic model must be performed numer-
ically. To do this, we discretize first of all the robot geometry in a number N of
points along its backbone. The points are placed as denoted for illustration on
Figure 1, a point k being located at the arc length sk. The number of points for
section j is designated by Nj so that N =

∑n
j=1 Nj . The twist angles defining

the equilibrium configuration of the robot are then evaluated at each point, as
illustrated on the figure for point 5 and point N3 + 3. The distance in arc length
between point k and point k + 1 is denoted hk, so that hk = sk+1 − sk.

The equilibrium equation (2) can then be written using discrete formula-
tion of derivatives. The second-order derivative of θi(s) is replaced by a central
second-order finite difference, so that (2) becomes:

kit,k
hkθi,k−1 − (hk + hk−1)θi,k + hkθi,k−1

hkh2
k−1

− gθi,k = 0

with i = 1...n , k = 2...N − 1
(4)
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Fig. 1: Representation of the CTR after discretization. Here n = 3 and
[N1 N2 N3] = [4 8 6].

where subscript k denotes an evaluation at point k. The initial and final bound-
ary conditions (3) are then included to the central finite differences evaluated at
robot extremities:

βiθi,2 − (βi + h1)θi,1 + h1αi
h1β2

i

− gθi,1 = 0

θi,Nf − 2θi,N + θi,N−1

h2
N

− gθi,N = 0

θi,Nf = ûiz,NhN + θi,N

i = 1...n

(5)

Gathering the twist angle in a state vector X such that:

X =
[
θ1,1 ... θ1,N θ2,1 ... θn,N

]T
, (6)

the boundary-value problem is thus transformed into a set of non-linear equations
of the form:

G(X) = 0 (7)
The resulting discrete model is similar to the ones involved in discrete elastic

structures, and can be solved using DR. With DR, state variables are artificially
considered as function of time. The principle is to initially place the robot in
an arbitrary shape, which means an initial value of X is guessed. The CTR is
then relaxed virtually until it reaches an equilibrium. The dynamics of the state
variables according to the virtual time are imposed to fit a second order damped
differential equation:

MẌ + DẊ + G(X) = 0 (8)
where M and D are called the fictitious mass matrix and damping matrix re-
spectively, and are usually diagonal matrices [10]. The equilibrium configuration
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resulting from the DR is then the steady state of (8). The computational effi-
ciency of DR, in terms of numerical stability and computation time relies in the
selection of diagonal elements of M and D [10].

The mass matrix M is classically determined in order to maximize inte-
gration time-step while ensuring numerical stability, which includes integration
stability and convergence of the dynamical system. We consider the integration
with the ode45 solver of Matlab (The MathWorks Inc., Natick, USA) which
processes a 4-th order Runge-Kutta method. This implicit integration scheme
automatically optimizes the integration time step. Consequently, following the
same arguments as [12], the modulus of the mass matrix coefficients do not need
to be tuned and can be chosen as unitary. Their sign must be chosen equal to the
diagonal components of the gradient of G [2]. According to [10], the damping co-
efficients are determined to minimize the virtual time at which the steady state
is reached. Since this virtual time affects the DR performances, the question of
their selection is considered in the following.

4 Method evaluation

A realistic case study is chosen for the method evaluation using the CTR geom-
etry given in [7] and described by the parameters gathered in Table 1.

4.1 Initial validation of the DR

Obviously, DR is of interest only if it can allow us to solve accurately the CTR
kinematic model. Given the numerical values of G components, the diagonal
components of M and D are in an initial step chosen equal to -1 and -10 re-
spectively. The dynamical system is then integrated using ode45 on a virtual
time interval large enough to reach the steady state. The time interval is deter-
mined by trials and errors process in the following. The initial guess is chosen
as θi,k = ai,∀k for tube i.

Since the accuracy of the discrete derivatives involved in (4) depends on
the number of discretization points N1 and N2, so does the accuracy of the
computed equilibrium. With [N1, N2] = [4, 100] and the steady state defined by
a threshold on ‖G(X)‖ equal to 1.10−6, that we will keep in the following of the
paper, the equilibrium configuration is reached within a virtual time interval of
1.106s. Comparing the DR results with the analytical solution of two-tube CTR
fully overlapped provided in [4], the maximum relative error is of approximately
0.5%, validating thus the ability of the DR to compute accurate CTR equilibria.

4.2 Adjustement of DR parameters

Selection of the damping coefficients in DR is important to control the steady
step computation time [10]. The main approach to determine them consists in
linearizing (8) and to identify each of its equations to a standard second order
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Tube 1 Tube 2
αi (rad) π/4 0
Li (mm) 117 100
βi (mm) 0 0
ûix(mm−1) 1/60 1/60
kib (N.mm2) 1 1
kit (N.mm2) 1/1.3 1/1.3

Table 1: Geometrical and mechani-
cal properties of the two tubes.
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Fig. 2: Evaluation of torsion angles of
tube 1 using DR. Index k on the curve.

differential equation with damping factor ξ and corner pulsation ω0. The optimal
damping corresponds then to ξ = 1, and writes for equations numbered k:

Dk = 2ω0,kMk (9)

Different methods exist in the literature to calculate ω0. In [12], (8) is integrated
once without damping. This results in an oscillating response which fundamental
pulsation is measured and used as corner pulsation in (9). This method has
been proved to provide efficient damping matrices in several application cases of
structural mechanics [12] and is consequently chosen here.

The optimal damping matrix is determined for the two-tube CTR described
before with [N1, N2] = [4, 20], which ensures acceptable accuracy of 2% and rea-
sonable computation times. The dynamical system is integrated without damp-
ing on a virtual time interval of 2000s so that several oscillations are generated
to identify ω0. Using the damping matrix obtained with (9), Figure 2 is gener-
ated by applying DR. The torsion angles converge at the virtual time 114s, to
compare with 9500s considering the arbitrary values used in section 4.1. Such
virtual time is obtained after approximately 5s of simulation on an Intel Core
I5-6300HQ CPU running at 2.3GHz.

4.3 Robustness of the DR parameter selection

It would be interesting to be able to compute several equilibrium configurations
of CTR with the same mass and damping matrices in order to simplify the
use of DR during the kinematic analysis of a CTR. This would be particularly
interesting for the simulation of CTR deployments, where several equilibria must
be computed for consecutive values of the actuation inputs.

The mass and damping coefficients determined in the previous section are
here used to solve the CTR kinematic model for several values of the angle α1
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(a) Variations of α1 (rad).
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Fig. 3: Evolution of the virtual time responses obtained with DR for several
values of actuation parameters. Steady state times localized with a red circle on
each curve. Parameter values written on the curves.

and of the deployed length L2 with DR. The Figure 3a shows that the method,
starting from the initial guess proposed previously, is able to solve the CTR
kinematics for all values of α1, even for the unstable configuration where the
tubes are placed in opposition [7]. The virtual time at which the equilibrium is
reached equals 321s for α1 = π ± π/8 and 114s for α1 = ±π/8, indicating an
increase in computation time in the neighbourhood of the unstable configuration.
The Figure 3b shows the ability to solve the CTR kinematics for all values of L2
at the cost of increased virtual response time, which are reached however with
acceptable computation time of maximum 13s for L2 = 30.

5 Conclusion

In this paper we have proposed to use dynamic relaxation to solve kinematic
model of CTR. From our case study, it appears first that the numerical method
is able to compute accurately equilibrium configurations of CTR. Second, compu-
tation time can be minimized dramatically by choosing an appropriate damping
matrix to reach acceptable values even when CTR geometry is modified during
a deployment.

Such initial encouraging results open several perspectives. On one hand, more
efficient integration methods in term of computation time could be used to reach
the steady-state, such as the explicit integration schemes. On the other hand the
efficiency of the damping may be improved by applying tuning methods all along
the integration, as proposed in [13]. This could largely improve DR efficiency.
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Further use to solve CTR kinematics in complex situations with interactions will
then be evaluated.
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