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Abstract

This paper proposes a generalized multi-sensor fusion approach and a
Health Risk Assessment and Decision-Making (Health-RAD) algorithm for
continuous and remote patient monitoring purposes using a Wireless Body
Sensor Network (WBSN). Health-RAD determines the patient’s health con-
dition severity level routinely and each time a critical issue is detected based
on vital signs scores. Hence, a continous health assessment and a monitoring
of the improvement or the deterioration of the state of the patient is ensured.
The severity level is represented by a risk variable whose values range between
0 and 1. The higher the risk value, the more critical the patient’s health con-
dition is and the more it requires medical attention. Moreover, we calculate
the score of a vital sign using its past and current value, thus assessing its
status based on its evolution during a period of time and not only on sud-
den deviations. We propose a generalized multi-sensor data fusion approach
regardless of the number of monitored vital signs. The latter is employed
by Health-RAD to find the severity level of the patient’s health condition
based on his/her vital signs scores. It is based on a fuzzy inference system
(FIS) and early warning score systems (EWS). This approach is tested with a
previously proposed energy-efficient data collection approach, thus forming a
complete framework. The proposed approach is evaluated on real healthcare
datasets and the results are compared with another approach from the litera-
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ture in terms of data reduction, energy consumption, risk assessment of vital
signs, the patient’s health risk level determination and accuracy. The results
show that both approaches have coherently assessed the health condition of
different Intensive Care Unit (ICU) patients. Yet, our proposed approach
overcomes the other approach in terms of energy consumption (around 86%
less energy consumption) and data reduction (around 70% for sensing and
more than 90% for transmission). Additionally, contrary to our proposed
framework, the approach taken from the literature requires an offline model
building and depends on available patient datasets.

Keywords:
WBSN, multi-sensor data fusion, fuzzy theory, patient’s health risk level,
EWS, decision-making

1. Introduction

According to the World Health Organization (WHO), the number of peo-
ple aged 65 or older is projected to grow from an estimated 524 million in
2010 to nearly 1.5 billion in 2050, with most of the increase in developing
countries. Moreover, wearable health monitoring systems (WHMS) are ex-
pected to become more available and have a larger impact on people’s life,
thus promoting a better quality of life (QOL). In the last decade, Wire-
less Body Sensor Networks (WBSNs), a subset of wireless sensor networks
(WSNs), drew the attention of researchers due to their attractive low cost
and diverse healthcare application potential. This technology ensures a re-
mote and continuous monitoring of the patient’s health condition, therefore
reducing healthcare expenditures [1]. Most popular and needed monitoring
scenarios include the surveillance of the elderly in nursing homes and in-home
monitoring of chronic or acutely ill patients, especially after a surgical inter-
vention. Many applications have been addressed in the literature so far such
as gait analysis, monitoring vital signs [2], daily activities [3], fall detection
systems and stress evaluation systems [4, 5].

In our approach, the WBSN consists of biosensor nodes and a coordina-
tor. First, the nodes are placed on the patient’s body and they continuously
sense vital signs such as the oxygen saturation, the respiration rate, the skin
temperature, etc [6, 7]. We suppose that each biosensor node only senses one
vital sign. Second, the coordinator can be the patient’s smartphone, pda or
any other portable devices [8]. It receives the collected physiological data in
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order to perform the multi-sensor data fusion and routinely takes decisions
and when emergencies occur. Such emergencies are called critical events
since they are triggered when abnormal variations, such as an increase in the
heart rate indicating a tachycardia or a decrease in the heart rate indicating
a bradycardia, of the vital signs are detected. Moreover, the coordinator
alerts the patient when critical events are detected and sends the collected
data and the taken decisions to the medical center or any other destination
for storage and further analysis [9].

However, several challenges arise in WBSNs. The energy consumed by
the biosensor nodes for sensing and transmitting is a highly critical issue,
since important physiological variations can be missed out and the data fu-
sion process can be affected if one or more biosensor nodes are dead [10].
Furthermore, the fusion of large amounts of heterogeneous data collected by
several biosensor nodes is another challenge in such networks. It enables the
coordinator to represent the global situation of the patient and consequently
take the corresponding decision. Several data analysis and processing ap-
proaches in WBSNs for anomaly detection, prediction and decision making
[11, 12] have been proposed in the literature so far. In the majority of these
approaches the data fusion techniques require either offline training, high
computation resources or do not take into consideration the energy consump-
tion on the sensor nodes level. To the best of our knowledge, no one has so
far tackled the problem of monitoring and fusing the vital signs of a patient
in order to determine the severity of his/her health condition while taking
into consideration data reduction for energy consumption requirements.

In a previous work [13], a specific 5 vital signs multi-sensor data fusion
model, based on a FIS and EWSs, was introduced. The major contributions
of this paper are threefold:

1. A generalized multi-sensor data fusion approach is proposed by defining
the input membership functions in terms of the number of vital signs
of interest. Thus, presenting a flexible model that can be applied in
any health assessment scenario regardless the number of vital signs of
interest. Fuzzy sets are used to deal with uncertainties and ambiguities
and a FIS to map the aggregate score of vital signs to the patient’s
risk level. We believe that the generalization of the multi-sensor fusion
model is very promising since it is a flexible knowledge-based model,
does not require any training, takes into consideration the uncertainty
and the ambiguity that exist in medical data (such as vital signs) that
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are collected by wireless body sensor nodes through fuzzy sets and
assesses patients’ health condition following a human reasoning logic
through the fuzzy inference system.

2. A Health Risk Assessment and Decision-Making algorithm (Health-
RAD) is proposed. It is implemented on the coordinator of the WBSN
that is deployed on the patient’s body. Health-RAD employs the pro-
posed multi-sensor data fusion model. It assesses the patient’s health
condition routinely and each time a critical situation is detected and
consequently makes an appropriate decision.

3. Further experiments are performed to validate the proposed multi-
sensor data fusion approach, combine it with a previously proposed
energy-efficient data collection technique [14], thus forming a complete
framework (from data collection to fusion), and compare it with an
existing approach [15] from the literature in order to validate it.

The purpose of our framework is to ensure a continuous and remote mon-
itoring of the vital signs of an acutely ill patient recovering at home after a
surgical intervention, present at the hospital or even living in a nursing home
in case of the elderly. Indeed, an acute disease requires immediate medi-
cal attention and continuous assessment due to life-threatening possibilities.
Therefore, Health-RAD allows the early detection of emergencies, deteriora-
tion and improving condition of the patient regardless of his/her location.
The remainder of the paper is organized as follows. Section 2 presents the
related work. Section 3 presents some background work related to our pro-
posed approach and the complete framework. The multi-sensor data fusion
model is explained in section 4. Then, Health-RAD is presented in section 5.
Experimental results are shown and discussed in section 6. Finally section 7
concludes the paper with some directions and future work.

2. Related Work

Multi-sensor fusion in WBSN is currently gaining more and more atten-
tion since it introduces many advantages in a network that suffers from many
limitations such as : data loss, inconsistancy and affected sensor samples. It
has the potential to reduce uncertainty by increasing the confidence of the
collected data and the inferred decisions as well as enhancing the robustness
of the healthcare application [16]. Assessing the health condition of a pa-
tient suffering from a particular disease or an acutely-ill patient, such as in
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our scenario, requires a continous collection of multiple vital signs in order
to form a complete view of the patient’s situation and perform an accurate
health assessment. To this end, multi-sensor fusion is a must to combine and
infer heterogeneous data.

Diverse applications based on WBSNs, existing in the literature, propose
multi-sensor data fusion techniques such as activity recognition applications,
mental health related applications and health monitoring applications.

• Activity recognition: Many researchers have proposed approaches to
recognize activities by relying on multi-sensor fusion [17, 18, 19]. For
instance, Shoaib et al. [20] have studied the sensor fusion impact on
activity recognition in order to determine the best combination of sen-
sors and their positions. Feature extraction and selection accompanied
by different supervised classification methods are compared.

• Mental health: Begum et al. [2] have proposed a physiological signal
classification technique based on multisensor data fusion and case-based
reasoning in order to asses the stress level of the individual being mon-
itored. The matching between cases is done using fuzzy logic [5]. Lee
and Chung [21] have proposed a smartphone-based driver safety mon-
itoring system. This system is based on data fusion and uses a fuzzy
bayesian network to classify the drowsiness level of the driver.

• Health monitoring: Wang et al. [22] have designed an algorithm com-
bining sensor selection and information gain allowing a better manage-
ment of the WBSN. The information gain is defined as the minimum
compact set of features required to identify a disease. Pantelopoulos
and Bourbakis [23] have proposed a physiological data fusion model
for multisensor WHMS called Prognosis. The proposed model gener-
ates the prognoses of the patient’s health conditions using fuzzy regular
language and fuzzy finite-state machine. Apiletti et al. [15] have pro-
posed a framework that performs real-time analysis of physiological
data in order to monitor people’s health condition. The framework
determines the severity level of the patient being monitored by com-
puting a global risk. It uses historical data and data mining techniques
for model building and performs real-time analysis of the collected vital
signs measurements. It has been tested on intensive care unit datasets
and the results show that simple K-means has acceptable results and
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can be used as a clustering algorithm. However, energy consumption
due to continuous sensing and transmission was not taken into consid-
eration and the network lifetime was not studied. Furthermore, the
health assessment is based on the offline training phase which requires
enough medically validated datasets.

We chose to compare our proposed multi-sensor fusion approach to the
approach presented in [15] in terms of accuracy given that the same problem
is targeted: patient health assessment. Both approaches ensure a contin-
uous and real-time assessment of the severity level of the patient’s health
condition based on vital signs monitoring using a WBSN. Furthermore, our
complete framework, including the data collection and fusion, is compared to
the framework presented in [15] to demonstrate the effect of data reduction
on the fusion and the energy consumption in the WBSN.

3. Background

In this section, early warning score systems are presented and the data
collection technique which we have adopted in the proposed framework. The
former is used by the sensor nodes and the coordinator to assess vital signs
[24]. The latter is a previously proposed approach [14] which reduces the
amount of sensed and transmitted data to the coordinator, thus extending
the network’s lifetime.

3.1. Early Warning Score System
An early warning score system (EWS) is a chart used by emergency med-

ical services staff in hospitals to determine the severity level of a specific
illness that patients are suffering from or more generally to ascertain their
heath status. It is used as a systematic protocol for the measurement and
recording of the vital signs. Afterwards, the vital signs are weighed and ag-
gregated in order to allow an early recognition of patients who are subject
to an acute illness or those whose health condition is deteriorating [25]. For
each vital sign, a normal healthy range is defined. Values outside of this
range are allocated a score according to the magnitude of the deviation from
the normal range. The score weighing reflects the severity of the physiolog-
ical disturbance. Since our approach aims at early detecting emergencies,
such scoring systems can give the biosensor nodes the ability to locally de-
tect criticalities and only send the important changes in vital signs to the
coordinator by computing their scores.
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National Early Warning Score (NEWS)*
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*The NEWS initiative flowed from the Royal College of Physicians’ NEWS Development and Implementation Group (NEWSDIG) report, and was jointly developed and funded in collaboration with the
Royal College of Physicians, Royal College of Nursing, National Outreach Forum and NHS Training for Innovation

© Royal College of Physicians 2012

Please see next page for explanatory text about this chart.

Figure 1: Early Warning System

Figure 1 shows the National EWS (NEWS) which has been used in our
work. NEWS is standarized and employed in hospitals in the United King-
dom (UK) for the assessment of acute-illness severity [26]. For example, as
shown in Figure 1, if the respiration rate is between 12 bpm and 20 bpm
then the measurement is given a score of 0 indicating that it is in the normal
range. However, if the measurement is outside of this range a score of 1, 2
or 3 is given to it according to its level of severity/criticality. For example, if
the respiration rate is between 21 bpm and 24 bpm then a score of 2 is given
to it. In our work, we have used the measurement ranges defined by NEWS
to compute the scores of any of the following vital signs: the respiration rate,
oxygen saturation, temperature, systolic blood pressure and heart rate.

Next, the data collection algorithm, which is proposed in a previous work
[14], running on the biosensor node level, is briefly discussed.

3.2. Data Collection
In a previous work [14], we have proposed a local emergency detection and

adaptive sampling algorithm (Modified LED∗) at the biosensor node’s level.
WBSNs are periodic sensor networks in which huge amounts of data such
as vital signs are collected for monitoring needs. Our goal is to reduce the
amount of sensed data by the biosensor node as well as the transmitted mea-
surements to the coordinator. On the one hand, Modified LED∗ adapts the
sampling rate of the biosensor node in accordance to the dynamic evolution
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Algorithm 1 Modified Local Emergency Detection with Adaptive Sampling
Algorithm Modified LED∗

Require: m (1 Round = m periods), Rmax (maximum sampling rate), r0, α
Ensure: Rt (instantaneous sampling rate), N Number of sensed measurements.

Rt ← Rmax
2: while Energy > 0 do

for each round do
4: for each period do

takes and sends first measurement r0
6: gets score S of r0

takes measurements ri at Rate Rt
8: gets score Si of measure ri

if Si!=S then
10: sends measurement ri

S = Si
12: end if

end for
14: compute SR, SF and F .

if N < m then
16: Rt ← Rmax

else
18: find Ft given α such that Ft = Fα(m− 1, N −m)

if F < Ft then
20: Rt ← BV (F, Ft, r

0, Rmax)
else

22: Rt ← Rmax
end if

24: end if
end for

26: end while

of the monitored vital sign and its monitoring importance. This is done us-
ing the Fisher Test with One-way ANOVA to study the inter-variances (SF)
and the intra-variances (SR) of the collected measurements in m consecutive
periods. The result F of the Fisher Test is calculated as follows:

F =
SF/(m− 1)

SR/(N −m)
(1)

where N is the total of measurements. We define the variable r0 as the risk

8



level of a vital sign. It represents the monitoring importance given to the
vital sign regarding to the patient’s health condition such that r0 ∈ [0, 1].
The greater the value of r0 is , the more the vital sign is considered critical
and the lower its value is, the less the vital sign is considered critical. Having
the Fisher Test result F and the risk level r0, a Quadratic Bezier curve is
used as a Behavior Function (BV) to assign the appropriate sampling rate
for the following period [27]. On the other hand, our proposed algorithm
reduces the transmission by reducing the amount of measurements sent to
the coordinator. The biosensor node uses an EWS to detect changes in
the state of the monitored vital sign. These changes can indicate a normal
state or different levels of criticality. Therefore, the biosensor node sends a
measurement each time there is a change in the score indicating an increase
or a decrease in the level of criticality.

In the following, we assume that all the biosensor nodes run the Modified
LED∗ algorithm (cf. Algorithm 1). All of them have one common period p,
at the beginning of which the 1st sensed measurement is sent to the coordi-
nator. During p, a biosensor node senses a measurement at a rate Rt and
only sends it if its score is different from the last measurement sent to the co-
ordinator. At the end of each round R = m× p where m ∈ N∗, the sampling
rate of the biosensor is adapted using the BV function. The latter takes as
parameters the maximum sampling rate Rmax (corresponding to the total of
samples in a period), the risk level r0, the result of the Fisher Test F and the
critical F-value Ft as defined by the Fisher Test table for a given Fisher risk
α. Noting that Rmax and r0 are parameters to be medically judged by the
healthcare experts based on the monitoring requirements for a given patient.
Further details concerning the energy-efficient data collection technique can
be found in [14].

4. Proposed Approach: Multi-sensor data fusion model

In this section, we present the multi-sensor data fusion model having as
inputs N vital signs collected by N biosensor nodes and as an output the
assessment of the patient’s health condition which we represent by the pa-
tient’s risk level. The proposed model can be classified under the cooperative
sensor fusion techniques forasmuch as multiple sensor signals (N vital signs)
are needed in order to assess the patient’s health condition. Furthermore,
from the processing point of view, the coordinator performs the required fu-
sion of the gathered data by the biosensor nodes, thus the proposed model
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is centralized. In terms of data processing level of abstraction, the proposed
model can be classified under the feature-level fusion category [16].

Figure 2 shows the architecture of the proposed model which is composed
of the following blocks: the extraction of the up-to-date scores, their aggre-
gation, the mapping to the patient’s risk level using a FIS and finally the
decision selection. The proposed multi-sensor data fusion approach including
all the mentioned blocks (cf. Figure 2) is performed by the coordinator of
the WBSN. A FIS can determine the patient’s risk level using the informa-
tion it has about how much the patient’s health condition is critical. Fuzzy
logic is a widely used technique for representing ambiguity in high-level data
fusion tasks [28, 29]. Medical data such as vital signs and physiological sig-
nals are characterized by uncertainty and ambiguity given that sensor nodes
collecting these types of signals are subject to interference, noise and faulty
measurements. Moreover, medical data are interpreted in a human reasoning
way which enforces the ambiguity presented in such data. Thus, member-
ship functions (MFs) are defined for the input and the output of the FIS and
human-language rules are set. In this paper, we generalize the membership
functions of the input of the FIS in order to make our proposed approach
more flexible and applicable for any number of monitored vital signs.

In the following, we first discuss the extraction of the up-to-date scores
which is performed at regular time intervals. Then, we discuss the input of
the FIS being the aggregate score and its fuzzification as well as we discuss
its output being the patient’s risk level. Finally, the whole fuzzy inference
system is discussed including the fuzzy rule base as well as the decision-
making process.

4.1. Up-to-date Score
The biosensors running the Modified LED∗ algorithm keep the coor-

dinator updated with changes in vital signs (cf. Algorithm 1). The latter
receives several measurements for each vital sign during one round R where
R = m× p, m ∈ N∗. It calculates the up-to-date score st for each vital sign
at instant t using an EWS as follows:

st =
st−1 + scoret

2
(2)

with s0 = score0 and where score0 is the score of the first measurement
sent during round R, scoret is the vital sign’s instantaneous score at time t
and st−1 is the score calculated at time t − 1. Therefore, the instantaneous
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Figure 2: Architecture of the Multi-sensor Data Fusion Model

score scoret and the score st−1, representing the history of the vital sign, are
given equal weights. For example, suppose that biosensor B1 sends a score of
zero at instant t = 0. While no other measurement is received during round
R, the score st of the vital sign is equal to zero. However, if a new score
scoret = 1 is received at time t , the new st would become 0.5 according to
equation (2). Supposing that no other measurement is received until the end
of round R (stable score), if the coordinator updates the vital sign’s score st
each δt, then st will converge to 1 depending on δt and the remaining time
until the end of round R such as:

lim
st−1→b

st = lim
st−1→b

st−1 + b

2
= b (3)

where b represents the value of the stable score. Thus, the persistence of
a vital sign in the same critical level contributes in the scoring and instan-
taneous measurements, presenting a deviation, have a lower impact on the
scoring.

4.2. Aggregate Score
Health experts and doctors use the aggregate score of the monitored vital

signs of a given patient in order to assess his/her health condition. This
total score represents the early warning score. It allows them to determine
the criticality level of the patient’s condition as well as the intervention mode
that should be adopted [26]. The aggregate score is used in our approach as
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an input into the FIS in order to get as an output the patient’s risk level. It
is calculated as follows:

AggScore =
N∑
i=1

si (4)

where si is the up-to-date score (see equation 2) of the ith vital sign during
a round R and N is the number of monitored vital signs (biosensors).

The analysis and the interpretation of medical data is ambiguous and
vary from one subject to another, thus we believe that the assessment of the
patient’s health condition should be done using fuzzy theory. The input of
the FIS is the aggregate score AggScore (see equation 4). First, the input
is fuzzified using 3 fuzzy membership functions: Low, Medium and High.
Then, the process of determining the patient’s risk level is executed using a
set of fuzzy logic rules.

AggScore
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Figure 3: Aggregate Score Membership Functions

The aggregate score fuzzy membership functionsf1(x) (Low), f2(x) (Medium)
and f3(x) (High) are defined as follows:

f1(x) =


1, x ≤ 1

1
1−N x+

N
N−1 , 1 ≤ x ≤ N

0, otherwise

(5)

f2(x) =


1

N−1(x− 1), 1 ≤ x ≤ N
1

1−N (x+ 1− 2×N), N ≤ x ≤ 2N − 1

0, otherwise

(6)
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f3(x) =


2( x

N
− 1), N ≤ x ≤ 3

2
N

1, x ≥ 3
2
N

0, otherwise

(7)

where x represents the aggregate score AggScore and N is the number
of monitored vital signs. The definition of these functions was inspired by
EWSs and the medical analysis carried out by doctors when assessing vital
signs and physiological measurements. Figure 3 shows the MFs for N = 5
vital signs. The aggregate score is Low if 0 < AggScore < 5, Medium if
1 < AggScore < 9 and High if AggScore > 5.

4.3. Patient Risk Level
As previously mentioned, the objective of the proposed multi-sensor fu-

sion model is to determine the patient’s risk level according to the received
measurements of the vital signs which are represented by the aggregate score.
The patient’s risk level r is expressed using a quantitative variable and can
range from 0 up to 1. It represents the severity of the patient’s health condi-
tion. The higher the risk value, the more critical/severe the patient’s health
condition is. The following fuzzy membership functions are defined for the
evaluation of the risk level: Low-Risk, Medium-Risk and High-Risk as shown
in Figure 4. A patient is at low risk if 0 < r < 0.5, at medium risk if
0.2 < r < 0.8 and at high risk if 0.5 < r < 1.

RiskLevel
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Figure 4: Patient Risk Level Membership Functions
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Figure 5: Fuzzy Inference System and Decision Selection Blocks

4.4. Fuzzy Inference System and Decision-Making
Figure 5 shows the FIS and decision selection blocks of the proposed

multi-sensor data fusion model. Having measurements from theN biosensors,
the patient’s risk level is computed in order to make a decision. The latter
is some predictive or corrective advice given to the patient and could be
a trigger to a specific action. The input of the FIS is the aggregate score
AggScore of the N monitored vital signs (cf. section 4.2). Its output is
the patient’s risk level. It uses the fuzzy membership functions described in
section 4.2 and the fuzzy rule base given by health experts or doctors to map
the input to the output.

Table 1: Fuzzy Rule Base

Rule No. Agg Score Patient Risk Level
1 Low Low-Risk
2 Medium Medium-Risk
3 High High-Risk

Table 2: Example of an Association Table between patient risk values and decisions

Decisions Risk value range
d1 r < 0.25
d2 0.25 ≤ r < 0.4
d3 0.4 ≤ r < 0.6
d4 0.6 ≤ r < 0.8
d5 r ≥ 0.8
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The fuzzy rule base is shown in Table 1. For example Rule 1 is: if the
aggregate score is Low then the patient’s risk level is Low-Risk. Finally, the
risk level is defuzzified using the centroid method to obtain a crisp patient’s
risk level r. A decision, some advice or even an action is selected based on
the value of r. It is selected from an association table between the patient’s
risk values and the decisions (c.f. Table 2). Such a table is set by healthcare
experts. The decisions/advices include for example: rest, take medicine, call
the doctor etc. depending on the trigger level. For example if 0 ≤ r < 0.2
then decision 1 is taken.

5. Health Risk Assessment and Decision-Making Algorithm

A Health Risk Assessment and Decision-Making (Health-RAD) algorithm
at the coordinator level (cf. Figure 6) is proposed based on the data fusion
model explained in the previous section. The coordinator receives the mea-
surements sent by different biosensor nodes running Modified LED∗. Its
role is to perform the multisensor data fusion in order to obtain meaning-
ful information about the patient’s health condition which is represented by
the patient’s risk level r. Depending on the value of r, some advice or a
decision is given to the patient. The coordinator sends the collected data
and the taken decisions to the medical center. The coordinator operates in
rounds where round R = m× p and where p is the common period of all the
biosensors at which they are running Modified LED∗ (cf. section 3.2) and
m ∈ N∗.

Let R0 = (r1, r2, r3, r4, r5) be the vector of the first measurements received
from the 5 biosensors at the beginning of each round. According toModified
LED∗, these measurements are sensed and sent to the coordinator at the
beginning of each period p.

Let Score0 = (score1, score2, score3, score4, score5) be the vector of the
computed scores corresponding to R0 and St = (st1, st2, st3, st4, st5) be the
vector of the up-to-date scores at instant t.

At the beginning of each round, the coordinator reads R0, computes
Score0 and sets S0 = Score0. Each time, the coordinator receives a measure-
ment, it identifies the sending biosensor Bi in order to compute scorei using
an EWS table and to update Scoret and St. Then, it checks whether scorei
is different from zero. If this is the case, it detects an emergency and sends
a query to the other biosensors in order to get their measurements. After
receiving them, the coordinator computes Scoret using the EWS, updates St
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Figure 6: Health Risk Assessment and Decision-Making Algorithm Flowchart
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(cf. equation 2) and calculates the aggregate score AggScore (cf. equation
4). The latter is the input of the proposed FIS. Finally, a decision is se-
lected depending on the patient’s risk level given as an output of the FIS. At
the end of each round, the AggScore is calculated and a decision is selected
based on the result given by the FIS. This decision is a global decision taken
routinely, it represents the overall health condition of the patient during one
round. Last, St is refreshed each δt in order to keep track of the patient’s
condition represented by the scores of his/her vital signs.

6. Experimental Results

Experiments are conducted on real medical datasets using a cutom-based
Java simulator and Matlab. In order to evaluate the performance of the
proposed framework, patient vital signs datasets are collected from Multiple
Intelligent Monitoring in Intensive Care (MIMIC) I, II and III databases
of PhysioNet [30]. The default number of monitored vital signs is N = 5:
heart rate (HR), the respiration rate (RESP), the systolic blood pressure
(ABPsys), the blood temperature (BLOODT) and the oxygen saturation
(SpO2). Thus, we suppose that 5 biosensors are deployed on the patient’s
body. In the following, when a different number of vital signs is monitored,
the value ofN as well as the vital signs of interest will be indicated. Modified
LED∗ (cf. algorithm 1) is implemented on the biosensor nodes and NEWS
(cf. Figure 1) is used as a local detection system. The parameters settings
for Modified LED∗ on all biosensors are set as follows:

• Period p = 100 sec and Round R = 2× p.

• Minimum sampling rate SRmin = 1 samples/5 sec and Maximum sam-
pling rate SRmax = 1 sample/2 sec.

• Fisher Risk α = 0.05.

• Patient risk r0 = 0.9. Indicating that all vital signs are highly critical
and have the same impact on the patient’s health.

The parameters settings for Health-RAD, which is implemented on the
coordinator, are set as follows:

• N = 5 vital signs by default.

• Round R = p = 100 sec.
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• Update interval δt = 1 sec.

The existing approach [15] to which the obtained results are compared is
implemented in R language. The datasets used in the training phase to build
a general intensive care model are taken from MIMIC database and the list
is found in [31]. The parameters settings are the following:

• Sampling rate on the sensors: 1 Hz (time granularity of the database
1 measurement/sec).

• Sampling interval on the coordinator: 3 sec.

• Sliding time window size: 10 samples.

• Absolute and Normality thresholds are found in [15].

• k coefficients and h weights for the risk components are found in [31].

• The clustering algorithm: simple K-means.

• The number of risk levels n is set to 3 indicating 4 possible levels (0 to
n) : 0, 1, 2 and 3. The higher the level, the more the criticality/severity.

• The number of clusters for the 3 risk components: Cmax = 5

In the rest of the paper, we refer to the existing approach [15] that is chosen
from the literature as data mining based framework.

In the data mining based framework, the signal (vital sign) features: off-
set, slope and distance are used to compute the following risk components:
sharp changes, long-term trends and distance from normal behavior (formu-
las are found in [15]). Then, the health risk associated to signal (vital sign)
x at time t is obtained by combining its risk components as follows

riskx(t) =
∑

i ki,xC(zi(x))∑
i ki,x

× n
Cmax

where i ranges from 1 to 3 for the three zi risk components, ki,x ∈ [0, 1]
are weights for the ith component of signal x, Cmax is the number of discrete
levels (the same for every risk component) set during model building and
C(z) is the function returning the risk level associated to risk component z.
The risk function is normalized to return a value indicating the severity level
from 0 to n. Finally, the risk levels of each vital sign are combined together
in order to obtain a global risk level for the patient as
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risk(t) = max
x∈X

(riskx(t))

where X designates the monitored vital signs.
The two approaches are compared on the following levels, for different

patient records and different number of monitored vital signs:

• Data Reduction

• Energy Consumption

• Vital Signs Assessment

• Health Assessment

The proposed approach is validated against the assessment of a medical
expert.

First, the data reduction performed by Modified LED∗ at the biosensor
nodes level is highlighted. For this purpose, the measurements of different
monitored vital signs for a given record, being received by the coordinator
over time are shown. Furthermore, the percentages of data reduction com-
pared to the data mining approach are reported for different patient records
and different number of monitored vital signs.

6.1. Data Reduction
The signals of the original dataset of a given patient are shown in Figure

7. The dataset is taken from MIMIC II (s01840-3454-10-24-18-46nm record).
The signals show the variation of the 5 vital signs of interest over approx-
imately 2 hours, where the sampling rate is set to 1 Hz for all vital signs.
Figure 8 shows the signals that are sent to the coordinator over 70 periods,
where each signal is sent by a biosensor node sensing the corresponding vital
sign. When comparing the original signal of the HR (Figure 7), for example,
to the sent signal by the HR biosensor (Figure 8), it is remarkable to see that
the number of small oscillations is considerably reduced while maintaining
the general shape and progession of the HR curve over time. This is due to
Modified LED∗, where only the 1st measurement and changes in the vital
sign’s score are sent to the coordinator in a period p. Thus, the amount of
redundant data in a period p is reduced and only informative measurements,
indicating a decrease or an increase in the vital sign’s score, are sent. Hence,
the shape and the progression of the HR curve over time are conserved. An
overall data reduction of about 97% is performed compared to the original
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Figure 7: Original dataset showing the variation of the 5 vital signs of interest over 2
hours.

Time (sec)
0 1000 2000 3000 4000 5000 6000 7000

V
a
lu

e

0

20

40

60

80

100

120

140
HR (bpm)

RESP (bpm)

SpO2 (%)

BLOODT (°C)

ABPSys (mmHg)

Figure 8: The received vital signs signals at the coordinator having been sent by 5 biosensor
nodes running the Modified LED∗.

dataset, while maintaining information about changes in the 5 vital signs’
score.
For different patient records and different number of monitored vital signs,
Tables 3 and 4 show the percentages of data reduction performed at the
sensing level and the transmitting level in our framework (biosensor nodes
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Table 3: Data reduction performed for each monitored vital sign of record s01840-3454-
10-24-18-46nm from MIMIC II compared to [15].

Vital Sign
Reduction
of sensed
data (%)

Reduction
of

transmitted
data(%)

HR 63.33 96.91
SpO2 79.58 96.85

BLOODT 64.81 96.93
Resp 72.11 95.56

ABPsys 68.08 95.53

running Modified LED∗) compared to the existing approach [15] in which
data are sensed and transmitted each 1 second. The results obtained are
over 70 periods (7000 sec). The requests sent by the coordinator running
Health-RAD, when critical situations are detected, are taken into consider-
ation in the calculations corresponding to our framework. Missing values in
the datasets are ignored and not taken into consideration.

Table 4: Total data reduction of four patient records compared to [15].

Database Patient
Record

Monitored
vital signs

Reduction
of sensed
data (%)

Reduction
of

transmitted
data(%)

MIMIC 276n HR, ABPsys 69.91 88.03

039n
HR, SpO2,
RESP,
ABPsys

69.73 92.2

MIMIC II

s01840-3454-
10-24-18-
46nm

HR, SpO2,
RESP,
ABPsys,
BLOODT

67.87 94.09

s15480-2803-
10-21-19-
54nm

HR, SpO2,
RESP,
ABPsys,
BLOODT

69.57 96.36
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6.2. Energy Consumption
We study the energy consumed by the biosensor nodes for sensing and

transmitting. The remaining energy after 36 periods in the WBSN in the
case of our framework and in the case of the data mining based framework
are compared. Figure 9 shows the results obtained for patient records s01840-
3454-10-24-18-46nm (MIMIC II), 039n (MIMIC I), 3000190 and 3100038
(MIMIC III). We assume that the total initial energy of a sensor node is
arbitrarily fixed to 3200 units. The total initial energy in the WBSN is then
N×3200 where N can be equal to 2, 3, 4 or 5. The node consumes 0.04 units
for sensing, 0.4 units for transmitting (TX mode) and 0.4 units for receiving
(RX mode) [32]. For example, for patient record s01840-3454-10-24-18-46nm,
at the end of 36 periods the remaining energy in the WBSN in the case of
our framework is about 15010.81 units, however it is only about 8080.0 units
in the case of the data mining based framework, suggesting that the energy
consumption in the WBSN implementing our framework is about 8 times less
than the data mining based framework at the end of 36 periods. The number
of vital signs of interest N has been varied and the results show that: at the
end of one hour, the average energy consumption in the WBSN when ap-
plying the proposed approach is approximately 6 times less than the energy
consumption in the WBSN when applying the data mining based approach
such as the vital signs of interest are the following: HR and RESP (record
300190) and is 16 times less such as the vital signs of interest are the following
: HR, RESP and SpO2 (record 3100038) and about 10 times less for record
039n where the vital signs of interest are the HR, REP, SpO2 and ABPSys.
Therefore, our approach considerably reduces the energy consumption on the
biosensor nodes and extends the WBSN lifetime.

In the following, we compare the results of the two multi-sensor data
fusion approaches of the two frameworks. We start by comparing the results
obtained at the level of the analysis of the measurements for several vital
signs for different patients. Then, we compare the results obtained in the
assessment of the patient’s health condition (severity level) after performing
the data fusion in both frameworks.

6.3. A comparison of the severity level assessment of vital signs
In our approach, Health-RAD regularly updates the scores of the mon-

itored vital signs. In addition, the severity level of a given vital sign is
represented by a score between 0 and 3 with score ∈ R. According to the
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Figure 9: Comparison of the remaining energy in the WBSN after 36 periods (1 hour) for
different patient records and different number of monitored vital signs: proposed frame-
work (in red) vs data mining based framework (in blue)

proposed multi-sensor data fusion model, the score of each vital sign is up-
dated each δt and each time a measurement is received from a given biosensor
node indicating a change in the status of the vital sign including critical sit-
uations. Using equation 2, the update of the scores is done while taking into
consideration the history and the current score of the vital sign during one
round R. As for the data mining based framework, the severity level of the
vital sign is represented by a risk variable taking values between 0 and n−1,
where n is the number of severity levels specified by the user and risk ∈ N.
We set n = 4 since the scoring system used in our approach uses four levels
ranged between 0 and 3. Figures 10 and 11 show the assessment of the HR
and the SpO2 of patient record s01840-3454-10-24-18-46nm during 1000 sec
and 2000 sec respectively. The time intervals were chosen randomnly. On the
one hand, Figures 10a and 11a show the scores assigned to the HR and SpO2
respectively, when applying the data mining based framework which relies
on feature extraction and clustering (K-Means) for the online classification.
On the other hand, Figure 10b and 11b show the scores assigned to the same
vital signs during the same time interval, but when applying Health-RAD. In
Figure 10b, the score of the HR is stable and is equal to zero from t1 = 1400
sec until t2 = 1800 sec, indicating that it is normal and not critical. Indeed,
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according to the measurements of the HR between t1 and t2, the values vary
between 75 bpm and 87 bpm (cf. 10a) which corresponds to the normal range
according to NEWS (cf. 1). However, Figure 10a shows that the score of the
HR between t1 and t2 vary between 0 and 1 but is, most of the time, equal to
0. Therefore, K-Means has not classified all the HR signal as normal, since
at some instants, it was assigned a score of 1. Yet, most of the HR signal
between t1 and t2 was considered as normal.
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Figure 10: Severity level assessment of the HR of patient record s01840-3454-10-24-18-
46nm using the data mining based framework [15] (a) and the proposed approach (b)

After t2 = 1800 sec, Figure 10b shows that the calculated score values are
between 0 and 1. However, for long time intervals and most of the time,
it reaches stability and takes a score of 1. This is due to the stabilization
of the received score to 1. When a new score is received, Health-RAD does
not affect it automatically to the vital sign, instead it computes a new score

25



based on the last calculated score (history) and the new one received. Since,
the fact that a patient has an instantaneous measurement in another score
range does not necessarily indicate that his/her health condition is degrading
or improving. It is his/her persistence in such conditions which contributes
to the risk level. The score of the HR reaches 0 for very short time inter-
vals and this is due to the fast alternation of the HR measurements between
score 0 and 1. Hence, our approach assigns to the HR scores between 0 and
1 until stability. Figure 10a shows that the HR is assigned most of the time
a score of 1, which is compatible to the resuts we obtained in our approach,
however K-Means classified it for some instants in a higher risk and assigned
it a score of 2. Figures 11a and 11b show the assessment of the SpO2 during
tstart = 2000 sec and tend = 4000 sec. Likewise, both of the approaches as-
signed alternating scores of 1 and 2 at the beginning. At t = 2800 sec, both
of them detected a higher level of criticality and assigned a higher score (a
score of 3 in the data mining based framework and a score increasing from
2 to 3 in the proposed approach). At t > 3500 sec, both of the approaches
mostly assigned a score of 1, while the data mining based framework detected
some scores of 2. Likewise, Figure 12 shows the assesment of the ABPsys
of patient record 267n during 1000 seconds. Both approaches detected high
levels of criticality between t1 = 2500 sec and t2 = 3000 sec. Health-RAD
assigned to the ABPsys a score up to 3 while the other approach assigned a
score of 2.
Therefore, the proposed framework analysed and assessed the vital signs of
different patients coherently compared to the data mining based approach.
However, the proposed approach takes into consideration the limited energy
resources requirement in WBSNs. It overcomes the data mining based frame-
work in terms of energy consumption (around 86% less energy consumption)
and data reduction (around 70% for sensing and more than 90% for trans-
mission).

26



Time (sec)
2000 2500 3000 3500 4000

S
p

O
2
 (

%
)

91

92

93

94

95

96

97

98
Score 1

Score 2

Score 3

Score 1

Score 2

Score 3

(a)

Time (sec)
2000 2500 3000 3500 4000

S
p

O
2
 S

c
o

re
 V

a
lu

e

0

0.5

1

1.5

2

2.5

3
Received Score

Calculated Score

(b)

Figure 11: Severity level assessment of the SpO2 of patient record s01840-3454-10-24-18-
46nm using the data mining based framework [15] (a) and the proposed approach (b)
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Figure 12: Severity level assessment of ABPsys of patient record 267n using the data
mining based framework [15] (a) and the proposed approach (b)

6.4. A comparison of the patient health assessment: patient severity level
In this section, we compare the results regarding the patient’s health

assessment. In both approaches, this is done by performing a multi-sensor
data fusion. Figure 13 shows the health assessment of the three following
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patients 3100038, 3000190 and 039n. The first two records are taken from
MIMIC III database and the last record is taken from MIMIC I database. For
patient 3000190, only the HR and RESP are being monitored, whereas for
patient record 3100038 only the HR, RESP and SpO2 are being monitored
and for patient 039n the HR, RESP, SpO2 and ABPSys are being monitored
(the energy consumption of these records was reported ion Section 6.2).

In order to compare the risk value of the proposed approach to the global
risk of the data mining approach, Table 5 is used. The average risk per period
for each record based on the proposed approach is 0.36 (record 3000190), 0.26
(record 3100038) and 0.53 (record 039n). Thus, the proposed approach has
assigned a global risk of 2 to the records 3000190 and 039n, and a global
risk of 1 to the record 3100038. Similarly, the average global risk per period
based on the data mining based approach for record 039n is also 2, and it is
1 for record 3100038. However, the average global risk per period based on
the data mining based approach for record 3000190 is 1.

As shown in the plots of record 3100038, both approaches have similarly
assessed the patient’s health condition over time: the majority of the time the
global risk was 1 and alternatively 2. Similarly, as shown in the plots of record
039n, both approaches have in the majority of the time given a global risk of
2 whilst the proposed approach after 2000 sec have alternatively assigned a
global risk of 3. For patient record 3000190, the plot of the data mining based
approach show that in the majority of the time the global risk was equal to
1 and stable for a longer time compared to when it was equal to 2. Whereas,
for the same patient record, the plot of the proposed approach show that a
score of 3 was given much more times to the patient’s health condition than it
was given in the data mining based approach. As a consequence, the average
risk per period for record 3000190 was not the same in both approaches.

The results show then that both approaches have detected a critical sit-
uation over 1 hour (absence of risk < 0.2 and global risk = 0), that both
approaches have similarly assessed the patient’s health condition when the
vital signs were stable over long periods of time, however the proposed ap-
proach reached higher risk values than the data mining based approach when
the vital signs presented unstability on short time periods and that the data
mining based framework is more sensitive to single deviating vital signs.

Tables 6 and 7 show respectively the average risk per period for 10 records
where only the HR and RESP are monitored and the average risk per period
for 10 other records where only the HR, RESP and SpO2 are monitored based
on both approaches. The results show that 50% of the 2 vital signs monitoring
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Figure 13: Comparison of health assessment during 36 periods (1 hour) for different patient
records and different number of monitored vital signs: data mining based framework
(second row) vs proposed multi-sensor fusion (second row)

Table 5: Equivalence Table between Risk of proposed approach and Global Risk of data
mining based approach.

Risk Global Risk
[0, 0.2[ 0

[0.2, 0.35[ 1
[0.35, 0.65[ 2
[0.65, 1] 3

records (cf. Table 6) have been similarly assessed by both approaches whereas
90% of the 3 vital signs monitoring records (cf. Table 7) have been similarly
assessed by both approaches. In all the records where the health assessment
was different, the proposed approach has given a higher global risk of one
class than the data mining based framework (for example patient record
3000190).

Now, a comparison is made based on the default settings of both ap-
proaches. In the data mining based framework, the monitored vital signs
are the default ones chosen by the authors of [15]: HR, SpO2, ABPdias
and ABPsys. In our approach, as per NEWS, the following five vital signs
are chosen to perform the patient’s health assessment: HR, RESP, ABPsys,
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Table 6: Average Risk per period based on the proposed approach and Average Global
Risk per period based on the data mining based framework for 10 patient records such as
the vital signs of interest are the HR and RESP.

Record Average Risk
per period

Average
Global Risk
per period

3000190 0.36 1
3000203 0.33 1
3000598 0.49 2
3000611 0.53 1
3000710 0.27 1
3300295 0.35 1
3300312 0.4 1
3300380 0.23 1
3300430 0.3 1
3300446 0.78 2

Table 7: Average Risk per period based on the proposed approach and Average Global
Risk per period based on the data mining based framework for 10 patient records such as
the vital signs of interest are the HR, RESP and SpO2.

Record Average Risk
per period

Average
Global Risk
per period

3100038 0.26 1
3100140 0.37 2
3100308 0.23 1
3100331 0.23 1
3100524 0.25 1
3200013 0.33 1
3200059 0.64 2
3200163 0.41 1
3200268 0.26 1
3200359 0.25 1
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BLOODT and SpO2. In the data mining based framework, the patient’s
health condition is represented by a global risk being the maximum of the
scores assigned to the monitored vital signs.
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Figure 14: The health assessment of patient record s01840-3454-10-24-18-46nm using the
data mining based framework [15] (a) and the proposed approach (b)
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This could in some cases trigger false alarms, if it is generated by only one de-
viating vital sign. This usually occurs when a sensor node is collecting faulty
measurements. However, our proposed approach represents the patient’s
health condition by a patient’s risk level. For this purpose, our multi-sensor
data fusion model aggregates the scores of all monitored vital signs. Then,
it uses the aggregate score as an input into a FIS to generate the patient’s
risk level. Figure 14 shows the results of the health assessment of patient
record s01840-3454-10-24-18-46nm during 7000 sec using the data mining
based framework and the proposed approach. Clearly, the patient presented
high severity levels in the same intervals in both approaches between 2000 sec
and 2800 sec and medium severity levels between 4000 sec and 5700 sec and
lower ones between 1000 sec and 1500 sec. In our approach, a decision/advice
or action is triggered according to the range to which the computed patient
risk level belongs.
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Figure 15: Comparison of the total of health assessment triggers over 1 hour between
Health-RAD and the real-time assessment algorithm of the data mining based framework.

Finally, Figure 15 depicts the total of health assessment triggers over 1
hour for the four patient records : 3000190, 3100038, 039n and s01840-3454-
10-24-18-46nm. The health assessment algorithm of the data mining based
framework is triggered at a fixed time interval of 3 sec. Whereas, the proposed
algorithm Health-RAD which implements the proposed multi-sensor fusion
approach is triggered periodically (each 100 sec) and each time a critical
situation is detected (cf. Section 5). As shown in the results, Health-RAD
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performs an average of 871, 5 health assessments less than the algorithm of
the data mining based framework over a time period of 1 hour. Therefore,
by using Health-RAD the coordinator’s processing ressources are less used
which extends the coordinator’s battery lifetime. This matter did not affect,
as shown previously in this section, the health assessment of these patient
records because both approaches assessed the health condition of the patients
in a similar way.

6.5. Medical domain expert validation
The data collection technique and the EWS based vital sign assessment,

used in our framework, have been compared to the classification done by an
expert in the medical domain. The comparison focuses on detecting critical
events: when the measurements of a given vital sign deviate from the normal
range (score 6= 0). Table 8 shows the results obtained for record s15480-2803-
10-21-19-54n for each of the HR, ABPSys and RESP over 28 hours and 46
minutes. It shows the accuracy and false positives of the detection of critical

Table 8: Accuracy of critical events detection and rate of false positives compared to
medical domain expert classification.

HR ABPSys RESP
Accuracy (%) 93 85 72

False positives (%) 20 15.4 36.3

events. For each vital sign, we have divided the first 100000 sec of the record
into 100 time frames each of about 1000 sec. If the time frame contains at
least one critical event (score 6= 0) then it is counted as a positive event,
otherwise it is counted as a negative event. The medical expert has classified
the 100 time frames based on the knowledge that the record belongs to an ICU
patient of a given sexe and age and based on their used vital signs normality
thresholds. All of the critical events were detected by our approach for all the
vital signs. An average accuracy of about 83% is achieved compared to the
expert’s classification. However, an average false alarm rate of about 24% is
recorded. This is mainly due to narrower normality ranges, which are used in
our system, compared to the expert’s classification, making it more sensitive
to variations. These thresholds can be easily configured depending on the
EWS implemented at both the biosensor nodes and coordinator levels.
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7. Conclusion

In this paper, a health risk assessment and decision-making algorithm has
been proposed whithin a complete acute illness monitoring system using a
WBSN deployed on the patient’s body. A generalization of the multi-sensor
data fusion model has been proposed in order to make it more flexible and
to allow its usage regardless of the number of vital signs being monitored. A
comparison wih an existing approach from the literature has been done. The
results show that our approach reduces data transmission while preserving
the required information. In addition, it reduces the energy consumption due
to sensing and transmitting, therefore extending the lifetime of the network
of about 10 times over 1 hour of continuous monitoring compared to the
other framework proposed in the literature. Furthermore, the assessment
of the vital signs and of the global health condition of the patient in both
approaches are compatible: risks are detected on time. As a future work,
a real implementation of the complete framework is to be achieved in order
to validate its performance on real-case scenarios. Additional information
regarding the context of the patient are to be added into the data fusion
process for more specificity and more robustness.
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