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Abstract Compressional stability is an important mechanical factor that influ-
ences the overall performance of a fibre. Assessment of the compressive stability
and internal-stress distribution of a fibre must be performed to determine the ef-
fect of stress-induced birefringence due to the high deformation gradients in an
unstable fibre. The purpose of this study is to combine experimental and finite ele-
ment investigations of stress evolution and large post-buckling fibre deformations.
The results of this study show that stability is greatly influenced by the initial cur-
vature of the fibre. Increasing the deformation of the fibre leads to post-buckling
behaviour that results in a fibre taking a complex shape with altered stress-field
components. The results are compared with the analytical relation given by Eu-
ler’s theory of a thin beam and show that the simple analytical formula cannot
predict the complicated post-buckling states and stresses.

Keywords finite element · birefringence · buckling · fibre · large deformation

1 Introduction

The development of optical fibres was one of the most significant advances in
communication systems during the twentieth century. Optical fibres offer many
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benefits in comparison to classical conductors, such as high speed transmission
and less attenuation. In the late 1980s, as optical fibres were being improved, their
use spread into a wide range of applications. One promising application involves
smart textile development, where the optical fibres are incorporated into the woven
structure of a fabric [1–3]. However, regardless of their intended application, the
fundamental questions of mechanical reliability and the nature of failure modes
must be addressed. Neither the fabrication process nor the ultimate use should
change the signal propagation or damage the fibre structure. In the literature, it is
generally presumed that fibres are dominantly loaded in tension; thus, the strength
of an optical fibre has usually been measured under uniaxial tension [4–7]. However,
if an optical fibre is incorporated into a stratified structure, the mechanism of
loading will be different. Both the weaving process and subsequent packing causes
bending and buckling of the textile structure [8, 9]. Cheng et al. demonstrated that
the strength of an optical fibre under tensile testing is smaller than that determined
in a two-point bending test [10]. Another type of failure is buckling, in which
investigators seek to determine the maximum load that a structure can support
before it collapses. The collapse is not related to material yield but is instead
governed by the material and the geometric stiffness of the column. The basic linear
elastic theory solution is provided by Eulers beam-bending equation. In the Euler–
Bernoulli beam theory, shear deformations are neglected, and plane sections remain
plane and normal to the longitudinal axis. In the 1960s, Timoshenko proposed a
new formulation of beam theory, in which plane sections still remain plane but
are no longer normal to the longitudinal axis [11]. The difference between the
normal to the axis and the rotated plane section constitutes shear deformation.
However, limited research has been conducted on fibre- or yarn-buckling, although
there have been some attempts to improve Timoshenko’s equation to consider the
suppleness of the fibres [12]. The stress strain relation during the collapse state is
different from classical compression state and we hypothese that one of the stress
component would be dominant from the other one. The aim of this work is to
show, how the Euler’s beam formula is applicable for buckling of optical fibres and
what is the stress state of buckled optical fibre.

2 Material and Methods

We chose two different approaches to determine the stability of the optical fibres.
We first performed a set of experiments to determine the buckling states of an
optical fibre. To obtain further insight into the post-buckling states, we conducted
a finite element computer study. We subsequently compared the experimental and
numerical results with the analytical Euler formula as follows:

Fcrit = 4π2EI
1

L2
(1)

where Fcrit is the critical force at which a beam buckles, E is Young’s modulus,
I is the second moment of area and L is the length of the sample.



Title Suppressed Due to Excessive Length 3

Table 1 The opto-mechanical properties of tested fibre.

Core: index of refraction [-] 1.49
Skin: index of refraction [-] 1.42
Numerical aperture [-] 0.44
Acceptance [◦] 52.2
Tension strength [MPa] 78

2.1 Experiment Setup

We tested optical fibres with diameters of 0.75 mm, each of which comprise a poly-
methylmethacrylate core (PMMA) and a polycarbonate skin. The opto-mechanical
properties of the fibres are listed in Table 1, and the cross-sectional views of the
tested fibres are shown in Figure 1. We inspected the chemical compositions and
cross-sectional surfaces of the samples using energy-dispersive X-ray spectroscopy
(EDX) and scanning electron microscopy (SEM). The samples were sorted into
groups of 20. Fibres of different lengths, ranging from 5 mm to 100 mm, with
5-mm increments, were loaded at a stretch rate of 20 mm/min until loss of the
stability. A schematic of the experimental setup is shown in Figure 2. The com-
pression tests were performed using a universal machine (Testometric M350-5CT)
with a 100 N force gauge, and we determined the critical force, post-buckling
geometry and functionality of each fibre.

Fig. 1 A cross-sectional view SEM (A-B) and EDX (C) of optical fibre taken by SEM.

Fig. 2 Experimental set-up: optical fibre constrained at bottom end.
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2.2 Finite Element Model

The geometry of a fibre was discretised using linear tetrahedral elements (CGAL
library [13]). The displacement u and its gradient ∇u were discretised on tetra-
hedra using a continuous, isoparametric, quadratic approximation (Lagrange-P2).
However, the gradient ∇u was further projected onto the discontinuous space
DG-0 to obtain sufficient resolution of the fibre cross-section. We used the Green–
Lagrange strain tensor C and the second Piola–Kirchoff stress tensor P for large
deformation(total lagrangian framework); both are second-order symmetric ten-
sors. Convergence analysis showed the optimal spacing of the radial elements to
be r

15 , where r is the radius of the fibre, in order for the relative error in H1 to be
less than 5% in terms of the stress tensor norm. The material model we used is
based on the Saint Venant–Kirchhoff model written in terms of the strain energy:

W (C) =
λ

2
tr(C)2 + µ tr(C2) (2)

where λ and µ are the Lam constants, which are given in terms of the Young’s
modulus and Poisson’s ratio:

λ =
Eν

(1 + ν)(1− 2ν)
; µ =

E

2(1 + ν)
(3)

We determined these material constants from auxiliary uniaxial experiments. We
used the arc-length continuation method to determine the stability points [14]. The
underlying linear solver is based on the Krylov solver (using the conjugate gradi-
ent method and the algebraic, multigrid preconditioner CG-AMG (PETSc/Hypre)
[15][16]). We perturbed the initial beam geometry with the small parameter ε ∈ {1−5 − 1−10}
to introduce a geometrical imperfection. We implemented the perturbation as a
half-sine spatial function to mimic the first perturbation mode known from the
auxiliary eigenvalue analysis:

f(x) = εsin
(
π

L
x
)

(4)

The eigenvalue analysis of the underlying system is intended to determine the
three modes with the longest wavelengths for which buckling can occur. We used
the Locally optimal block preconditioned conjugate gradient method (SLEPc) [17]
to find the smallest eigenvalues and corresponding eigenvectors of the Hermitian
system. Convergence analysis again showed that the mesh spacing must be r

15 to
obtain a relative error less than 5%. The computational framework is based on the
problem-solving environment library Fenics 2017.1 [18].

3 Results

3.1 Experimental Results

We used a compression test to determine the post-buckling state and corresponding
critical force on the optical fibre. The critical force is the maximal force that can
be applied to a fibre before it suddenly decreases; this force drop occurred up
to sample lengths of 35 mm. For long samples, instead of a force decrease, we
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Fig. 3 The critical force as a function of samples length.

observed a horizontal force distribution. The critical force as a function of sample
length is shown in Figure 3. The difference between the experimentally measured
critical force and the analytical Euler result increases linearly with the sample
length, with a maximal difference of 309%, as shown in Figure 4. There are two

Fig. 4 The difference (%) between the analytical, numerical and experimental result depend-
ing on samples length.
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principal post-buckling shapes that depend on the sample length. Up to length 95
mm, the post-buckling shape is typically a V shape, as shown in Figure 5 (A). For
long fibres, the shape changes to a spiral, as shown in Figure 5.

Fig. 5 The post buckling shapes, A) from 5 to 95, B) higher than 95 mm. The green dots
follow the fibre deformation shape for better visibility.

3.2 Computational analyses results

The three buckling modes with the longest wavelengths are shown in Figure 6.
From our experiments, the critical forces for the first buckling mode alone are -22.3,

Fig. 6 Three stability modes of the fibre(an example with L = 20 mm).

-8.1, -5.5, -4.6, -3.2, -2.3 and -1.8 N for the respective fibre lengths ranging from 5
to 35 mm. Up to this threshold, the displacement-force relation is approximately
linear. Beyond the threshold, the force decreases up to a limiting value depending
mainly on bending stiffness of the fibre. Further increasing the load causes the post-
buckling state to evolve, as shown in Figure 7. This occurs for fibres longer than the
threshold length L > 35 mm, as shown experimentally. Figure 7 shows that that
the shape of the fibre loop becomes complex after it is deformed to around 75%
of its length. Force switches from being a compressional force to being a tension
force. The fibre does not stretch further after passing the zero-force state. The
final deformation becomes a ring in the plane XZ. Figure 8 shows the variations
in the components of the stress tensor along the length of the fibre. The stress
value -96 MPa, which is the largest in magnitude, occurs in the component σxx
at the initial state, and the magnitude of the stress decreases to -58 MPa in the
final state. The normal components σxx, σyy, σzz tend to decrease toward the final
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Fig. 7 The evolution of fibre deformation state at post buckling domain. The bottom chart
of force[N]-deformation[mm] curve shows a change of sign during the post-buckling state.

state, while the shear components σxy, σxz tend to increase in value up to the final
state.

Fig. 8 Stress tensor components evaluation [MPa] at three fibre states (L = 50 mm): bottom
- final state; middle-middle state; top - initial state. Only six independent stress components
are shown.

4 Discussion

Fibre compression has generally been ignored owing to the extremely high sup-
pleness of a fibre structure. However, while it is known that this type of loading
can lead to buckling failure even for such supple structures, this behaviour has not
been well-described anywhere. We emphasise that the collapsed state of a fibre is
not related to the material yield but is governed by the material and geometric
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stiffness of the fibre column. Thus, the use of optical fibres has been restricted
by their performance under compression. The main outcome of the present study
has been to evaluate the stress–strain state relationship in an optical fibre dur-
ing buckling loading. We performed compressional tests for samples with lengths
ranging from 5 to 100 mm, while the critical buckling force was evaluated only for
the length of 35 mm. For long samples, we recorded only the post-buckling states.
Our study has demonstrated that the difference between the analytical approach
and the experimental approach follows a linear relationship. In other words, with
increasing sample length, this difference increases linearly, starting at 11% and
ending at 309%. Thus, the form of the relationship between Eulers critical force
as a function of length is preserved, although Eulers equation can be seemingly
used only for fibres of limited lengths. The following may be the reasons for the
difference between the analytical and experimental results: 1) geometrical imper-
fections of the fibres, 2) tension/compression asymmetries, or 3) anisotropy of the
material. The role of lateral-bending deformations has been studied by [19] for
composite laminates and recently by [20] for organic fibres. They showed that the
critical load increases quadratically with the number of initial imperfections in the
samples. The results from our finite element analyses also showed that the domi-
nant stress component in the post-buckling state is the axial stress in the initial
state, although the shear stress is not negligible. Several authors have shown that
the stress–strain response of selected textile fibres differs under tension and com-
pression [21–23]. We hypothesise that this may influence the behaviour of short
samples loaded by compression more than long fibres. However, this may also ex-
plain the reason for the enormous difference between the experimental results and
the computational data. The elastic modulus used in equation (1) was obtained
from an auxiliary uniaxial test. We emphasise that none of these parameters were
tested on optical fibres. We observed no decrease in the optical functionality of the
fibres in spite of great differences among the post-buckling shapes. It is difficult to
compare our results with those from the literature. Several studies have focused
on stress analyses of optical fibres to investigate stress-induced birefringence [24–
26]. In these studies, the optical fibres are assumed to be loaded transverse to
their cross-sectional areas. Suhir [27, 28] has developed an analytical model for
short, dual-coated optical fibres supported by a continuous elastic foundation and
subjected to a compressive force applied to the free end. However, this model is
valid only for short fibres with free ends. Moreover, no information is provided
about the stress distribution in the optical fibre during buckling. A key parameter
in textile engineering is the bending stiffness of woven structures. This parame-
ter is measured either on a macro scale or a meso scale [29–32]. We expect the
compressional behaviour of single fibres to have the same degree of importance as
other mechanical parameters with respect to their use in various structures. We
also recognise that our study has some limitations. For example, the sensitivity
of the force–displacement gauges of the traction machine were limiting factors for
the long samples; therefore, we were not able to evaluate the critical force over
the whole range of sample lengths. Also, the finite element material model that we
used was developed from the isotropic, elastic behaviour of an optical fibre, but this
material model would have failed in modelling the non-reversible, post-buckling
deformation states of these optical fibres.
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5 Conclusion

We have evaluated the compressive stability of optical fibres using both experi-
mental and computational approaches. Both the buckling and the post-buckling
states of an optical fibre play important roles in determining the stress distribution
in a fibre and consequently influence the fibre’s optical/mechanical quality.
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