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Abstract Wireless Video Sensor Networks (WVSNs) are composed of small
embedded video and camera motes capable of extracting the surrounding envi-
ronmental information. Those sensor nodes can locally process the information
and then wirelessly transmit it to the coordinator and to the sink to be fur-
ther processed. As a consequence, more abundant video and image data are
collected. In such densely deployed networks, the problem of data redundancy
arises when information are gathered from neighboring nodes. To overcome
this problem, one important enabling technology for WVSN is data aggrega-
tion, which is essential to be cost-efficient. In this paper, we propose a new
approach for data aggregation in WVSN based on images and shot similarity
functions. It is deployed on two levels: the video-sensor node level and the coor-
dinator level. At the sensor node level the proposed algorithms aim at reducing
the number of frames sensed by the sensor nodes and sent to the coordina-
tor. At the coordinator level, after receiving shots from different neighbouring
sensor nodes, the similarity between these shots is computed to eliminate re-
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dundancies and to only send the frames which meet a certain condition to the
sink. The similarity between shots is evaluated based on their color, edge and
motion information. We evaluate our approach on a live scenario and com-
pare the results with another approach from the literature in terms of data
reduction and energy consumption. The results show that the two approaches
have a significant data reduction to reduce the energy consumption, thus our
approach tends to overcome the other one in terms of reducing the energy
consumption related to the sensing process, and to the transmitting process
while guaranteeing the detection of all the critical events at the node and the
coordinator levels.

Keywords wircless video sensor networks - shot similarity - video aggrega-
tion - frames similarity - event detection.

1 Introduction

Nowadays, after the development of Wireless Video Sensor Networks (WVSN),
the enhancement of the surveillance in terms of monitoring and detecting crit-
icalities and anomalies has set big improvements in different fields (e.g. street,
forest, traffic, personal, healthcare, industrial monitoring, etc [1]). Hence, after
each anomaly and emergency detection, decisions must be made at the coor-
dinator level. The coordinator may be a normal node or a specific node with
greater ressources. It manages a zone of interest, analyzes the data received
from several camera sensor nodes and sends the necessary information to the
sink which controls the whole network as shown in Figure 1. Different types of
anomalies exist depending on the monitored environment and the predefined
criteria and parameters such as quick motion, sound, or scene change, the de-
cisions are made in order to avoid any action that can affect the monitored
environment.

The detection of irregularities in any monitored scene is one of the main tar-
gets in WVSN. Every scene is permanently filmed using multiple video-sensor
nodes. At the sensor node level, the sensor-nodes collect frames and send those
frames to the coordinator. The coordinator is responsible for the data aggrega-
tion process. The aggregation is limited to either selecting, fusing or deleting
the received frames. As a consequence, a significant amount of energy is con-
sumed due to the huge amount of captured frames, which reduces the lifetime
of the network. Moreover, the continuous transmission process between all the
components of the network (sensor nodes, coordinators and sink) has a big
influence on the bandwidth capacity of the network which may cause a bot-
tleneck on the network [2].

Video-sensor nodes operate periodically in WVSN. We define some keywords:
A fixed frame rate is defined on every sensor node to film the video accord-
ingly, this frame rate is the number of captured frames per second (fps).
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Fig. 1 Architecture of WVSN

A period is a fixed time length during which frames are captured with a given
frame rate.

A video shot is considered as a video sequence taken within a period.

Energy consumption and bandwidth limitation are two important challenges
in WVSN. The first one is related to the sensing and transmission modules of
the sensor node. The higher the frame rate and the number of frames sent, the
more energy is consumed. The second one is related to the transmission mod-
ule of the sensor node and the coordinator, the greater the number of frames
sent on the network is the more bandwidth is used. The energy consumption
and bandwidth usage issues on the coordinator’s side can be addressed by
reducing the amount of sent data from the coordinator to the sink node. In
our approach, the data analysis starts at the sensor node level and continues
at the coordinator level to match the greatest reduction possible in terms of
energy and bandwidth consumptions on both levels. Each video-sensor node
compares all the frames in a shot to the last frame sent and computes the
similarity between them. Based on the similarity function, only the frames in
which an event occurs are sent. The selected frames are called critical frames
and are sent to the coordinator. The similarity function at the sensor node
level is based on color and edge similarities able to compare frames. This com-
parison selects the least required number of captured frames to be sent to the
coordinator. By applying the similarity function, we reduce the energy con-
sumption related to the Communication process by reducing the number of
transmitted data.

Alongside the similarity function, the frame rate of each video-sensor node
is adapted. A method based on signal frequencies presented in [3| is adopted
and applied to WVSN in our approach. This method consists in reducing the
number of frames captured by adapting the frame rate of each video-sensor
node based on the number of critical frames detected in several consecutive
past periods. Consequently, by adapting the frame rate, the Sensing process is
reduced thus decreasing the energy consumption. At the coordinator level an
updated version of the similarity function is implemented in which the motion
similarity is added to the color and edge similarities. To avoid comparing all
received shots at the coordinator level, a geometric study and a filtering condi-
tion are presented. Those conditions consist in reducing the number of possible
comparisons. The remainder of this paper is organized as follows. In section
II, we present the related work to our approach. In section III, we describe
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the proposed method at the sensor node level within its two aspects: the local
detection system and the adaptive sampling system, as well as their corre-
sponding algorithms. In section IV, the data aggregation scheme is described
and the proposed geometric method at the coordinator level is introduced.
The experimental results and the comparison with another method are given
in Section V. Finally, we conclude in Section VI with perspectives and future
work.

2 Related Work

Several research work dealing with data redundancy and energy reduction have
been conducted so far [4-8]. In [7], Akkaya et al. introduced a GPS module into
scalar sensors in order to control the cameras. Thus, the system detects which
camera should be actuated based on the sensor’s position. In [5], Priyadarshini
et al. proposed an approach which eliminates redundancies caused by the over-
lapping of the FOV’s (Field Of View) of the video-sensors. To do so, it tends
to turn off some cameras and activate the optimal number of cameras at the
same time. In [8], Bahi et al. proposed an in-network data aggregation tech-
nique at the coordinator level which identifies the nearly duplicate nodes that
generate similar data.

In [9], Akkaya et al. discussed the background subtraction (BS) and com-
pression techniques as common data reduction schemes, which have been used
for camera sensors to reduce energy consumption.

In [10] and [11], almost all of the studies deal with the physical and net-
work layers. In [10] the authors use a CMOS image sensor where the image is
recreated from two outputs, with the details in stationary objects and the sup-
pressed motion in moving objects. It should be noticed that a high frame rate
is only applied in the region-of-interest where it matters the most to detect
and track any event.

In [12], the authors proposed two new approaches based on the cover set
concept to help a node in finding its redundancy level. They proposed an
algorithm to schedule the activity of sensor nodes according to the overlapping
degree between sensors, and to know for certain if a sensor belongs to the cover
set of another sensor.

In [13], the authors proposed a scheduling network solution to minimize
power consumption using the multipath theory in wireless video sensor net-
works. They proposed an algorithm that transmits packets over multipath
according to their importance.

Different strategies has been used to reduce energy consumption and band-
width usage by using an adaptive video streaming etc. that can minimize the
utilization of network bandwidth taking into consideration that bandwidth is
the most important ressource in a network [14],[15],[16],[17]. All these works
help to increase the lifetime of the network. Increasing the lifetime of the net-
work is also studied in [18] specifically for smart camera network.

Several proposed methods in the literature discuss the similarity of images
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[19],20],[21]. In [19], the authors used the L;-,L,- and L.~ distance be-
tween two cumulative color histograms to simulate the similarity between two
color images. In [20], they are interested in the segmentation techniques to
compute the similarity, all the techniques are mainly edge based techniques.
In [21], the comparison is achieved through an exercise in determining the lack
of spatial correlation between two images.

Many methods have been proposed in the literature concerning the visual
information and motion estimation in wireless video sensor networks [22-25].
In [22], the authors studied the correlation in visual information between dif-
ferent cameras with overlapped field of views (FOVs) where the new spatial
correlation model function for visual information is implemented. The joint
effect of multiple correlated cameras is taken into consideration in this study.
An entropy-based analytical framework is developped to measure the amount
of visual information provided by multiple cameras. The authors designed a
correlation based camera selection algorithm which reduces the energy dissi-
pation of the communication and the computation. This algorithm requires
fewer cameras to report to the sink than a random algorithm.

In [23], Jbeily and al. proposed a new symmetric-object oriented approach
for motion estimation in WVSN called SYMO-ME which reduces the high
complexity of motion estimation, the authors main objective is to reduce the
redundancy between successive frames. They adapt a new motion estimation
energy consumption model for block matching algorithms (BMAs) in WVSN.
This model depends on the energy consumption value of different executed
instructions.

Many previous works focused on the scheduling method [4,26-30]. In [4], the
authors used a clustering methodology. They managed to make a scheduling
approach to all overlapping cameras in the same cluster to avoid redundant
data. Jiang et al. in [30] proposed a probability scheduling approach based on
the kinematics functions and normal law to study the expected positions of
the intrusion depending on the kinematics functions to track its trajectory.

In previous works regarding the similarity process, they do not use a pixel
by pixel technique. They use the color histograms for color images [19] which
can mislead the comparison if the same color happens to be in another place
in the area with the same intensity. None of the mentioned works have pro-
posed a data aggregation method at the coordinator level while taking into
consideration data reduction performed at the sensor node level for energy con-
sumption. In this paper, both levels arc taken into consideration, the sensor
node and the coordinator levels. The reduction in terms of energy and band-
width consumptions is the main purpose of this paper. On the sensor level, a
combination of color and edge techniques is established to do the comparison
between several images to send only the appropriate frames to the coordinator.
The coordinator is responsible for sending to the sink the non similar frames
received from different sensor nodes. A geometrical condition is implemented
on the coordinator to select the sensor nodes where the comparison must take
place.
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3 Local Detection System : Sensor Node Level

The proposed method is divided into two sections. The first one consists of
a local detection function that detects any change in the frames in order to
be sent to the coordinator. This function is introduced in every period of our
proposed "Multimedia Adaptive Sampling Rate Algorithm" (M ASRA). The
second section presents M ASRA algorithm. This algorithm adapts the sam-
pling frequency of each sensor node based on the monitored area.

3.1 Local Detection System

In this section, the frame analysis at the video-sensor node level is introduced.
This analysis helps sending only the different frames to the coordinator in
order to prevent sending all the frames which costs in terms of energy and
bandwidth. In some multimedia applications [31], only the middle frame of a
shot is used to represent the shot content. But this solution could represent
only static shots without taking into consideration the color similarity between
frames in the shot nor the edge similarity or the motion similarity, etc.
Comparing the new approach to the Structural Similarity (SSIM) Index qual-
ity assessment index, which is based on the multiplicative combination of the
luminance, the contrast and the structural terms, shows that this new ap-
proach conserves the information and is less complex than SSIM. Thus, SSIM
is not used with tiny sensor-nodes because it drains energy a lot more than
two simple low-level similarity metrics (color and edges). To compare between
SSIM and Color-Edge function in Multimedia Adaptive Sampling Rate Al-
gorithm (MASRA), we implement both algorithms on raspberry pi 3 using
c¢++ for openCV. For the same images input, the results of the execution
time needed are shown in table 1. The important execution time needed to
run SSIM function proves why the SSIM is not used for tiny sensor nodes
applications.

Table 1 Exccution Time Comparison for SSIM and Color-Edge Function

Function Execution Time
SSIM 3.7s
Color-Edge 0.1s

The proposed approach uses color and edge properties to find similarities
between frames, to decide which frame to send. Below a brief explanation
is presented to argument the choice of these two properties together and to
prove their complementarity. Those two properties have been chosen for simple
reasons: the edge property detects any change in the form of the objects in
the area of interest or detects a new object that enters the scene. If a new
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object enters the scene, this property will represent new edges in the gray-
scale format as explained later in the paper.

As for the color property, it detects any change in the colors of the scene,
an example of such a case is the change of the luminosity of the monitored
scene when a burgler turns the lights off before acting. To conclude, the edge
property cannot detect a change in the luminosity of the scene, and the color
similarity cannot detect a new overlapping object in the scene if it has the
same existing color. Thus, those two properties are complementary and are
considered of equal importance in the rest of the paper. They are also equally
weighted in the similarity function of the approach.

3.1.1 Color Similarity

Each frame is compared to the last frame which has been sent to the coor-
dinator. This comparison includes color similarity between frames. An image
is generally a 2D matrix M(n,m). Each pixel is divided into 3 different colors
to be able to add the RGB color criteria. To do so, the original matrix of the
image is transformed from a 2D to a 1D matrix, each element defining a pixel.
Then, each pixel is represented by its 3 colors RGB by column (3 columns are
needed). In brief, the RGB colors concentration of every pixel in the image is
represented by a 2D matrix where the rows represent pixels and the columns
represent the RGB colors concentration as shown in the matrix below:

Red Green Blue

pizely 2 3 4
pizely 20 60 40
pixely 5 10 20

M = - . . .
pixel,sxm

This color similarity consists in comparing the two frames pixel by pixel.
First, it computes the total distance for each color between the two frames
as shown in equation 1. Then, it normalizes each distance by dividing it by
n X m X 255, Where n x m is the number of pixels in the image, 255 is the
maximum concentration of a color. Three distances are computed distance,.q,
distancegreen, and distancepiye, each one normalized and € [0;1]. E.g, for an
image of 540x360=194400 pixels, each of the 3 main distances is divided by
194400 x 255. The distance for each color (column) is computed as mentioned
below:

nxm
1

> VIMi(i ) = Ma(i )2 (1)

distance, = ————— X

“ nxm x 255 4
Where c is the color (R,G or B), i is the pixel in comparison. To compute the
total distance difference between the two in comparison frames, a normaliza-
tion of the sum of those 3 distances is a must by dividing this sum by 3 so the
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total distance € [0;1]. The color similarity function Col sim is the inverse of
the total distance and computed as follows:

Col_sim = 1 — 2=distancee d”;“”cec (2)

The distance is computed alone for every column then it is aggregated to be
able to compute Col _sim. In the past equations, c refers to any color vector in
"RGB" color space while M; and My are two Matrices composed of 3 vectors
R,G and B.

3.1.2 Edge Similarity

This similarity function is way less expensive in terms of energy consumption
compared with the color similarity function. In this function, the compared
frames are converted to their gray level format. Comparing the edges via their
gray scale pixel values in the frame will not be affected by the absence of color.
The used function takes the grayscale image as an input, and returns a binary
image BW of the same size as an output. The output image contains 1’s where
the function finds edges in the input image and 0’s elsewhere using the canny
function. As presented in [32], edges are found by looking for local maxima of
the gradient in the input image. The gradient is calculated using the derivative
of a Gaussian filter. The method uses two thresholds, to detect strong and weak
edges, and includes the weak edges in the output only if they are connected
to strong edges. This method is therefore less likely than the others to be
fooled by noise, and more likely to detect true weak edges. We compute all the
edges in each frame using this function. When an edge is detected the number
of edge points is incremented. The edge points represent the total number of
edges in the frame. If both frames represent an edge in the same area, the
number of matched edge points between both frames is incremented. Then
the percentage of matched data which represents the edge similarity between
the two frames is calculated:

Total _points = Z edge_points (3)

Matched__points = Z Matched _edge _points (4)

Matched _points

Ed m =
ge_sm Total points

(5)

Where Total _points are the number of edge points in a frame, Matched _points

are the number of edges in common between the two frames in comparison.
The edge similarity Edge sim is the ratio of the Matched points over the
Total points of the first frame.
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Definition 1 (Similarity Function) It is the combination of the two inde-
pendent similarities (color and edge). This function is the sum of the product
between each similarity and its weighting factor (Col _fact and Edge _fact).
It is represented as follows:

Sim = Col_sim x Col_fact + Edge _sim x Edge _fact (6)

Where Col _ fact + Edge _ fact = 1.
As mentioned before, the edge property cannot detect a change in the lumi-
nosity of the scene, and the color similarity cannot detect a new overlapping
object in the scene if it has the same existing color. Thus, Color and Edge
similarities are complementary and each one targets different aspects of the
image. For this reason, they are weighted equally in the reminder of this paper.

3.2 Multimedia Adaptive Sampling Rate Algorithm (MASRA)

In this section, we focus on the reduction of the number of sensed frames
on every video-sensor node. This reduction is based on adapting the frame
rate of every sensor node. Inspired from [3], it consists in reducing the number
of sensed frames at the sensor node level.

The term "frame rate F'R" in this approach is used in the reminder of this
paper as the frame rate per period. A period consists of several seconds de-
pending on the needs of the application.

To add that a condition must be satisfied in order to send a frame to
the coordinator. This condition helps reducing the energy and the bandwidth
consumption by decreasing the number of sent frames from the video-sensor
node to the coordinator. Critical frames are only sent to the coordinator.
The first frame of each period is always sent to the coordinator as described
in algorithm 1.

Definition 2 (Critical frame) A critical frame is defined as a frame that
represents a degree of similarity "sim" smaller than a predefined threshold
thsim as presented in the LDS function of (Algorithm 1). E.g, if the predefined
threshold (least similarity needed) is set to 75%, supposing that frame, 1 is
sent to the coordinator, if frame, is similar to frame,_; lesser than 75%, it
is also sent.

Our objective in this method is to detect changes that are associated with
the number of critical frames Nb_Cry per period, where Nb_Crq is directly
related to the minimum sampling frame rate F'R, denoted as follows:

FR>=2x Nb_Cry (7)

In the proposed M ASRA algorithm (Algorithm 1) Nb_ Crq is defined as the
number of critical frames per period. We define F'R as follows:

FRZCXNZ)_CT’O (8)
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Where c is a confidence parameter between 2 and 5 as presented in [3]. In
order to detect the variation in the number of critical frames, a user-defined
confidence parameter d that represents the minimum detectable change (e.g,
if d = 0.2 then changes that affect Nb_ Crq for more than 0.2 x Nb_ C'ry must
be detected). A change is detected in the process when in the current period
the current number of critical frames denoted Nb_Cr; overcomes one of the
following thresholds for A consecutive periods :

thyy = Nb_Cro x (1+d) (9)
thaown = Nb_Cro x (1 — d) (10)

Algorithm 1 Adapting Sampling Rate Algorithm M ASRA

Store the first period’s critical frames in Nb_ Cro
2: Set FR=cXx Nb_C'rg

Set d
4: Compute thyp

Compute thgown
6: Set h—number of consecutive detected changes required

Set hup =0
8: Set hgown =0

Set thsim the threshold similarity
10: Set Colyqcr and Edgegact

Set sim the overall similarity between two frames
12: while Energy > 0 do

for each period do

14: Start LDS
Takes first frame fo
16: Sends first frame fq
Takes frame f; at R; Rate
18: Compares f; to the latest sent frame
sim = Col_sim x Col_fact + Edge sim x Edge _fact
20: if sim < ths;m then
sends critical frame f;
22: end if
End LDS
24: Nb_Cr;=number of critical frames in this period
if Nb_Cr; > thyp then
26: hup = hup +1
hdown =0
28: else if Feyrr < thgown then
hdmun = hdmun +1
30: hup =0
else
32: hup = hdown =0
end if
34: if (hup > h)||(hdown > h) then
Compute Nb_ Crog = Nb_Cr;
36: Compute FR=cx Nb_Cro
Compute thyyp
38: Compute thgown
end if
40: end for
end while
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In this case the frame rate F'R is modified according to the last value of
Nb_Cr; in order to adapt the frame rate as shown in the M ASRA algorithm
(Algorithm 1).

To sum up, the sensor node starts by sending the first frame to the coordi-
nator and then compares the second sensed frame to the previously sent frame.
The comparison is done based on the LDS similarity function presented in Al-
gorithm 1. The second frame is sent to the coordinator based on the output
of Algorithm 1. According to the number of sent frames in each period, Al-
gorithm 1 detects if this number exceeds one of the two predefined thresholds
thuyp or thqown- If the previous condition is satisfied for A consecutive periods,
the frame rate F'R changes as follows:

FR=2xNb_Cr; (11)

Where Nb_ C'r; is the number of frames sent (critical frames) in the last period.

4 Data Aggregation Scheme: The Overlapping Method
4.1 Video Sensing Model

A video sensor node S is represented by the FoV of its camera. In our approach,
we consider a 2-D model of a video sensor node where the FoV is defined as a
sector denoted by a 4-tuple S(P, Ry, 7, «). Here P is the position of S, Ry is
its sensing range, V is the vector representing the line of sight of the camera’s
FoV which determines the sensing direction, and « is the offset angle of the
FoV on both sides of V. Figure 2 illustrates the FoV of a video sensor node in
our model. In [12] the authors presented the FOV with 4 points a,b,c and the
center of gravity g as shown in Figure 3 to be able to detect the overlapping
areas according to those points.

A point P is said to be in the FoV of a video sensor node S if and only if
the two following conditions are satisfied:

1. d(P, P;) < R,, where d(P, Py) is the Euclidean distance between P and P;.
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Fig. 3 Video sensing and overlapping model

2. The angle between P—Pi and V must be within [—a, +a.

In other words, these two conditions are met if:

—
PP < R (12)
PP,V > ||PP}|| x | V]  cosa. (13)

In the remainder of this paper, we consider that all video nodes have the
same characteristics: same sensing range R, and same offset angle a.

In this part, the frame analysis at the coordinator level is introduced. This
analysis works when two or more video-sensor nodes are sensing the same area
of interest, the algorithm implemented helps sending only the different shots
to the sink node in order to prevent sending all the shots which is costly in
terms of energy and bandwidth.

4.2 Camera’s Overlapping Filtering

We introduced, in the above sections, the functionalities of our similarity func-
tion. This function, when applied at the coordinator level, selects some video
shots to be sent to the sink. To select a video instead of another one, the
similarity function between the two must exceed a given threshold. A naive
solution to find all similar shots is to compare each pair of shots. This method
is obviously prohibitively expensive for video sensor networks, as the total
number of comparisons is extremely high. We apply a geometric condition on
the sensor nodes to select the appropriate comparison to be done and to reduce
data latency. This geometric condition is a combination of the angle condition
between the FOVs of the nodes and the ratio of the overlapped area between
them.
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5 S

Fig. 4 Two overlapping sensor nodes S and S’

4.2.1 The Angle Condition

The angle between two neighbouring sensor nodes is defined as the angle be-
tween the vectors of their FOVs. Our idea is that if a wide angle is established
between two sensor nodes FOVs, these two nodes can not take part in the
similarity comparison function at the coordinator level. In this case, they are
not sensing the same area of interest. A shot from two different perspectives
can be widely different. To be able to define two sensor nodes as candidates
for the similarity function, the angle between their FOVs must not surpass
a certain angle threshold. In order to determine the angle between the two
vectors (V and V') of the sensor nodes S and S’ respectively as shown in
Figure 4, the scalar product method between those sensor nodes has been pro-
posed. Both sensor nodes having the same dimensions (angle, FOV, energy
ressources,...), so both vectors V and V' in Figure 4 have the same length [.
The scalar product can be calculated in two formats. The first one according
to their coordinates (x and y) where V = (Xy,Yy) and V! — (X, Yy/) :

V.V = Xy x Xy + Yy x Yy (14)

The second format is given according to the length of each vector and to the
angle between both, as follows:

V.V’ =1 x cos(V, V') (15)

ﬁ
Where [ = [|[V/] = | V/]|.
Below we define the equation where the angle 6 between the two vectors can
be calculated according to both formats of the scalar product :

6 = arccos((Xy x Xy + Yy x Yy)/1%) (16)
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e.g, if an angle threshold thgngi. is defined as 30 degrees, the angle between
V and V' must remain less than 30 degrees so the two sensor nodes S and S’
can proceed to the next step (the two points strategy), to be able at the end
to take part in the similarity function process at the coordinator level.

4.2.2 The two Points Condition

Inspired from [12] we present below the two points condition for overlapping
filtering. A node S’ satisfies the two points condition with another node S if g
(the center of gravity of abc) and any other point between a, b and ¢ from S’s
FOV, belong together to the FOV of S as shown in Figure 3. S1, Sy and S3
satisfy this condition seperately with S. In this scenario each sensor node can
be a candidate alongside S to apply the similarity function between them.
Our method is used to chose the candidates that can take part in the com-
parison process at the coordinator level. Two camera-sensor nodes S; and Sy
are chosen as candidates if So and S; satisfy together the angle and the two
points conditions as shown in algorithm 2. After chosing the candidates cam-
eras, two cases are taken into consideration, the low similarity process and the
high similarity process.

Algorithm 2 Candidate Selection Algorithm C'SA

Set S1 and S two sensor-nodes
2: Set ABC and DEF the two FOV triangles for S; and Sa
Set G1 and Gg the two Gravity centers for ABC and DEF
4: Set V1 amd V5 the two ligne of sight vectors for S; and Sa
Set ayp the angle threshold required
6: while Energy > 0 do
if angleVq, V2 < ayp, then

8: Go to the 2 points condition
if (A,G)e(DEF) OR (B,G)e(DEF) OR (C,G)e(DEF) then
10: S1 and Sy are candidates
RUN SSA Algorithm
12: end if
end if

14: end while

Definition 3 (Low Similarity)

When the similarity between both compared video shots does not surpass
the predefined similarity threshold percentage (Bs;., between shots, the coor-
dinator works normally and sends both shots to the sink without any mod-
ification after each period, assuming that the similarity process is computed
between both shots (all the frames sent from both sensor nodes take part in
this similarity process) on a complete period and each period only represents
one shot composed of several frames.

Definition 4 (High Similarity) If the similarity between those shots sur-
passes the threshold, in this case the coordinator must chose one of these two
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shots to be sent to the sink node. The coordinator selects the video shot where
there are more variations within the shot, in other words, where the number
of critical frames is greater as shown in algorithm 3.

Definition 5 (similarity threshold percentage [;;, between shots)
This similarity between shots from overlapping sensor nodes, is the aggre-
gation of all the similarities between the frames of these two shots, it can vary
according to the application. For example and for military reasons, S, can
reach 100% to be sure that the system does not miss any information.

4.3 Shot Selection Algorithm

In this section we discuss the SSA (Shot Selection Algorithm): After choosing
the 2 candidates that meet the overlapping condition, this algorithm is im-
plemented at the coordinator level to compare received frames from different
sensor nodes sensing the same area of interest. This comparison is based on
a similarity function that consists of edge, color and motion similarities as
follows:

4.8.1 Motion Similarity

To evaluate the motion content in a shot, we use a function related to the
color similarity function by generating the mean of the sum of the inverse of
the color similarity for each frame of a complete shot (period). Inspired from
[33] and based on the color similarity function from M ASRA algorithm, this
motion content mot,, of a shot u is computed and normalized as follows:

b—1

mot, = - 1 . ;(1 —Col_sim(f,f +1)) (17)

Where mot,, € [0,1], a and b are the first and last frames sent from the
sensor node to the coordinator in a period respectively and f,f + 1 the two
frames from Shot,, which are sent by a sensor node.

The motion similarity between two shots mot sim associated to two shots
Shot, and Shot, from two different sensor nodes is defined as follows:

motl_sim = 1 —|mot,, — mot,| (18)

In the last equation mot_sim € [0, 1], if closer to 1 it marks that the two
shots are similar in motion, an when this value is close to 0, the two shots
are motionly different. In our approach we consider that the cameras in sensor
nodes are fixed and not rotatable. Hence, the motion content value of the shots
is much higher when an event is detected. Therefore, it is important to use
this motion content in shots similarity estimation.
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4.4 Shots Similarity Estimation

As explained below, shots sent from neighboring nodes to the same coordina-
tor often have similar visual (color and edge) and/or action (motion) contents.
Usually, in WVSNs, the motion content of shots depends on the event detec-
tion in the zone of interest. Therefore, when no event is detected the visual
correlation between shots from candidates video-sensor nodes becomes higher.
In our paper, we compute the similarities between shots as a function of their
visual and motion content features. The color and edge similarities comparing
two shots at the coordinator level are equal to their means all over the period,
to be able to add them to the motion similarity at the end of each period.
A solution for the synchronization problem is given later in this paper. The
similarity between shots from different sensor nodes after each period is rep-
resented as follows :

we consider :

cf = Col_facte; ¢s = Col_sim,

ef = Edge _fact.; es = Edge _sim,

mf = Mot_fact.; ms = Mot _sim,

SIM = (cf x cs)+ (ef x es)+ (mf x ms) (19)

Where Col _fact., Edge_fact. and Mot _fact. are considered as weights
for color, edge and motion similarities on the coordinator level respectively,
such that:

Col_fact. + Edge fact. + Mot _ fact. = 1.

In this approach, if two shots have similar motion contents, their Mot _sim,
function have a higher value. Note that Col _sim., Edge _sim.and Mot _sim,.
are in the range of [0,1].

4.4.1 Different Frame Rates Solution

In this scenario, a synchronization problem is faced when two candidates
sensor nodes S1 and S2 have two different frame rates FFRy and F' Ry respec-
tively, or when different critical scenes are sensed on each sensor node. At this
point, the similarity process at the coordinator level can be broken, e.g, at time
t =1, 52 sends a frame to the coordinator but S1 does not send a frame, due
to a criticality difference or to a frame rate difference between sensor nodes. To
solve this problem, the comparison must take place between the frame received
from S1 and the last frame received from S2 (if S2 did not send a frame at
the same time) and vice versa. E.g, at time ¢ = 1, S1 and S2 send two frames
f11 and fa1 to the coordinator respectively. At time ¢ = 2, S2 sends a frame
fa2 to the coordinator but S1 does not send a frame. The comparison process
continues by comparing Frame f;o with the last frame sent from S1 which is
f11- In other words, this can be a solution because a sensor node does not send
a new frame to the coordinator when there is no new event in the scene. In
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this case, we consider the last frame sent by a sensor node as the actual frame
of that sensor node.

5 Experiments

In this section, several experiments have been conducted to validate our ap-
proach at the sensor node and the coordinator levels, aiming to minimize the
energy consumption and bandwidth usage by reducing the number of data
(sensed and transmitted) all over the network. We compare our approach with
Jiang et al. [30]. We have used a Matlab based simulator in our experiments.
First of all, we introduce a scenario as shown in Figure 5 where 6 video-sensor
nodes S1,52,53,54,55,56 are deployed to monitor the same area of interest
from different perspectives. The main purpose in our work is to send to the
coordinator the frames that represent the critical situations. The coordinator
reacts accordingly. We have used 6 Microsoft LifeCam VX-800 cameras to film
a short video of 600 seconds, each camera is connected to a laptop to do the
processing via a Matlab simulator. In our study an intrusion has been detected
in the sensor-nodes at the following time-intervals:

S1: 40 seconds from 75 to 115.

S2: 40 seconds from 80 to 120.

S3: 200 seconds from 120 to 320

S4: 160 seconds from 300 to 460

Algorithm 3 Shot Selection Algorithm SSA

Set Shot; and Shoto
2: Set sim the overall similarity between two frames
Set sim. the overall similarity between two shots
4: Set Bsim the threshold similarity between two shots
Set Col _factc, Edge fact. and Mot _fact.
6: Set CR_F7 the number of critical frames in shot
Set CR_F> the number of critical frames in shotz
8: while Energy > 0 do
for each period do
10: Run the LDS
end for
12: Compute Col _sim.
Generate Fdge sim.
14: Generate Mot _simc
Compute similarity sim.
16: sime = Col_simexCol _factc+edge simexEdge  facte+Mot  simex Mot factc
if simc > Bsim then

18: Run the LDS on sensor node 1 to Generate CR_F}
Run the LDS on sensor node 2 to Generate CR_ F»
20: if CR_Fy >CR_F, then
Send shotq
22: else
Send shotg
24: end if
end if

26: end while




O Jo Ul WD R

AT U UGG OO B DD EBEDSEDSDLDDEWWWWWWWWWWNONNRONNONNNNNNNE P e e
AR WNRFROWVWOJONTEWNROWOW®®JAOAURWNROW®O®JdAAURWNRFROW®OW-JANUTAWNROWO®-IJOU B WNR O W

18 Christian Salim et al.

S5: 40 seconds from 450 to 490

S6: 0 seconds. We have run our M ASRA and SSA algorithms for 600 periods,
each period consists of 1 second, with a frame rate equal to 30 frames per sec-
ond. The frame rate in each sensor node changes independantly according to
the number of critical frames related to its sensor node. In each period, every
sensor node senses a certain number of frames according to the assigned frame
rate. The minimum frame rate is set to FR = 1 frame per period. We consider
the initial and maximum frame rate F R = 15 frames per period. In this case
the sensor node senses 15 frames from the 30 ones in the period.

Fig. 5 The setup of the video sensor nodes

As for the parameters at the sensor node level we used a color factor and edge
factor equal to 50%. At the coordinator level : we used a color factor and edge
factor equal to 25% each and the motion factor is equal to 50%. As shown in
Table 2 the motion factor Mot _ fact. has a higher weight at the coordinator
level. A frame received from a sensor node is known to be a critical frame, so
an information about the motion is more important at the coordinator level
to be sent to the sink.

Table 2 Weights of Small similarities at both levels

Level Col _facte Edge facte Mot _factc
Sensor node 0.5 0.5 0
Coordinator 0.25 0.25 0.5

Then, we implemented the PPSS approach in [30], and we did run the same
video sequence. This algorithm adopts the normal law of probability and the
kinematics rules. Its role is to schedule the monitoring time of the sensor-node
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depending on the trajectory of the intrusion and the time needed to reach its
FOV and the sensor-node sends all the sensed frames to the coordinator while
the intrusion is in its FOV, and then it goes back to the sleep mode. But after
several experiments, this approach tends to lose information up to 15% due to
probability errors. This loss of data in PPSS is shown in Figures 6 and 7 for
sensor S1 in our scenario when the intrusion passes by its FOV.

35
B MASRA50 B MASRA 80 HEMASRA70 HPPS

i

1234567 8 910111213141516171819202122232425262728293031323334353637383940
Period

Frames

Fig. 6 Difference between MASRA and PPSS on the sensing phase

35
B MASRAS50 B MASRA 80 B MASRA70 B PPS

o

1234567 8 910111213141516171819202122232425262728293031323334353637383940

Frames

Period

Fig. 7 Difference between MASRA and PPSS on the transmission phase



O Jo Ul WD R

AT U UGG OTOTE BB DERESEDSDLDDEWWWWWWWWWWNONNRONNONNONNNNNNE P P e e
AR WNRFROWVWOJONTEWNROW®®JAURWNROW®O®JdAAURWNRFROW®OW-JANUBRWNROWO®WJOU B WNR O W

20 Christian Salim et al.

5.1 The Sensor Node Level

5.1.1 Number of Frames

The biggest challenge in WSN is the energy consumption due to the limited
resources of the sensor nodes and to the big number of frames on the network.
When no specified or adapted frame rate is implemented, the amount of sensed
frames remains at 30 for each period. In terms of energy consumption and
bandwidth usage, sending all the frames is costly while a lot of frames are
identical and do not represent any criticality. Sending frames with a time
difference inferior to 0.03 seconds in a video surveillance does not represent
any additional information. For this reason, we set the initial and maximal
frame rate to FR = 15 frames sensed per period. The M ASRA algorithm
is implemented on every video-sensor node to reduce the number of frames
sensed and sent to the coordinator. For every sensor node, the frame rate
is adapted after two periods where P = 1 second. Every sensor node sends
the first frame of each period. For sensor node S1, as seen in Figure 7, the
M ASRA algorithm only sends the critical frames to the coordinator according
to a predefined threshold of similarity as explained in the upper sections, this
threshold varies from 50% to 70% to 80%. In the latter stages we chose a
threshold equal to 70% as a mean to all other values. The number of frames
sent in each period is the parameter that influences the frame rate. The frame
rate variation seen in Figure 6 validates our frame rate adaptation method in
the active mode of sensor S1, when an intrusion is detected.

In Figure 7, we can see the number of critical frames sent to the coordinator
via S1, this variation in the number of critical frames per period is proportional
to the adaptation of the frame rate. Figure 6 and Figure 7 present a slight
difference when the threshold changes from 50 to 70 to 80. Thus, the choice of
70% is validated. As seen in Tables 3 and 4 for S1 and in Tables 5 and 6 for
S3, adapting the frame rate reduces the sent data by more than 90%. Then,
applying our similarity function causes the degradation of the number of sent
frames by 94% from 14700 frames to 818 frames. Reducing the number of
sensed frames via the adaptation of the frame rate, and reducing the number
of frames sent to the coordinator by using our similarity function at the sensor
node level prove that our algorithm reduces the number of frames in terms of
sensing and transmitting as detailed in Tables 7,9 for all the network.

Table 8 The difference in terms of number of frames for S1 over 40s

Nb of Periods  All Frames Sampled Frames Critical Frames
40 1200 490 360

By comparing these numbers to the number of frames in Tables 10,11,12,13,
while applying PPSS algorithm, we can conclude that the efficiency of our algo-
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Table 4 The difference in terms of number of frames for S1 over 490s

Nb of Periods  All Frames Sampled Frames  Critical Frames
490 14700 938 818

Table 5 The difference in terms of number of frames for S3 over 200s

Nb of Periods  All Frames Sampled Frames  Critical Frames
200 6000 2940 2055

Table 6 The difference in terms of number of frames for S3 over 490s

Nb of Periods  All Frames Sampled Frames Critical Frames
490 14700 3245 2360

Table 7 Sensor by Sensor evaluation in terms of number of frames in active and passive
modes for MASRA Algorithm

Passive Mode  Passive Mode  Active Mode  Active Mode

Sensor (active time) | Sensed Transmitted Sensed Transmitted

S1 (40s) 448 448 490 360

S2 (40s) 448 448 520 380

S3 (200s) 305 305 2940 2055

S4 (160s) 333 333 2340 1710

S5 (40s) 448 448 500 400

S6 (0s) 490 490 0 0
Total 2472 2472 6790 4905

rithm for the sensing and transmission process surpasses the PPSS algorithm.
And this gain grows furthermore when the time interval of the active mode
of the sensor grows, as shown for sensor-node S3. For probability reasons, the
first sequence of frames for every sensor is lost in PPSS, once the intrusion
opts in the FOV of the sensor node. Tables 7, 8 and 9 show the efficiency of our
approach sensor by sensor and on the overall network regarding the number
of sensed and transmitted frames.

5.1.2 Bandwidth Consumption

The bottleneck issue is a problem caused by the limited ressources in terms
of bandwidth capacity and by the huge number of frames sent all over the
network. For the same algorithm (M ASRA) as we can see in Table 14 for
the network, the size of the sent frames varies and is by far reduced. At the
sensor node level, the frame rate adaptation and the similarity function applied
are responsible for this reduction by only sending the critical frames to the
coordinator which reduces the size of the total number of frames sent within
a period as shown in Table 14. The size of the video filmed in total is equal
to 300M B, this number is cut by 90% to reach 19M B when we send all the
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Table 8 Sensor by Sensor evaluation in terms of number of frames in active and passive
modes for PPSS Method

Passive Mode  Passive Mode  Active Mode  Active Mode

Sensor (active time) | Sensed Transmitted Sensed Transmitted

S1 (40s) 0 0 1080 1080

S2 (40s) 0 0 1102 1102

S3 (200s) 0 0 5134 5134

S4 (160s) 0 0 4120 4120

S5 (40s) 0 0 1065 1065

S6 (0s) 0 0 0 0
Total 0 0 12501 12501

Table 9 Comparison between MASRA and PPSS in terms of number of frames on the
overall Network

MASRA MASRA PPSS PPSS
Sensed Transmitted Sensed Transmitted
Total Frames 9262 7377 12501 12501

Table 10 The difference in terms of number of frames for S1 over 40s PPSS

Nb of Periods  All Frames Sampled Frames  Critical Frames
40 1200 1080 1080

Table 11 The difference in terms of number of frames for S1 over 490s PPSS

Nb of Periods  All Frames Sampled Frames Critical Frames
490 14700 1080 1080

frames by adapting the frame rate, and from 300M B to 15M B if we implement
our algorithm with all its functionalities as mentioned in Table 14.

Sending 15M B in 490 seconds is equivalent to having a bit rate equal to
31K B/s which is a very small bit rate which will avoid causing a bottleneck
problem even if we have a big number of video-sensor nodes in the network.
In this case a capacity of 100M B can serve more than 2,000 sensor-nodes at
the same time.

In [30], they reduce the bandwidth usage, but depending on the similarity
function presented in our paper, the bandwidth reduction is better by 5% from
90% in PPSS to 95% in MASRA algorithm as mentioned in Tables 14,15.

5.2 The Coordinator Level

The SSA algorithm is implemented on the coordinator. As seen in Figure 5,
and based on angle and position conditions, only video-sensor nodes S1 and
S2 satisfy the overlapping method geometric conditions so their frames can be
compared at the coordinator level by the SSA algorithm. The coordinator will
send the frame of the more critical video-sensor node to the sink with respect
to a predefined similarity metric threshold Bg;,. In our experiments S1 and
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Table 12 The difference in terms of number of frames for S3 over 200s PPSS

Nb of Periods  All Frames Sampled Frames  Critical Frames
200 6000 5134 5134

Table 13 The difference in terms of number of frames for S3 over 490s PPSS

Nb of Periods  All Frames Sampled Frames Critical Frames
490 14700 5134 5134

Table 14 The ultimate bandwidth total reduction MASRA

Nb of Periods  All Frames Sampled Frames Critical Frames
490 300 MB 19 MB 15 MB

Table 15 The ultimate bandwidth total reduction PPSS

Nb of Periods  All Frames Sampled Frames Critical Frames
490 300 MB 29 MB 29 MB

S2 send 938 and 968 frames to the coordinator respectively, which gives 52
the edge to be the more critical node. In this case when a comparison takes
place between two frames, if the similarity exceeds the predefined Bg;m, the
frame from S2 is sent to the sink and the other one from S1 will be rejected.
Otherwise both frames are sent to the sink.

In our experiments, the coordinator receives a sum of 1906 frames from
S1 and S2 combined. By modifying the threshold Bs;, from 50% to 80%, the
number of frames sent to the sink changes. The changes are recognised, the
number of sent frames and S,;,, are proportional. Table 16 summerizes the
coordinator behavior by showing the percentages of reduction that degrades
from 48% for Bg;m=50 to reach zero when B, =80. For B;,,=50, the 48%
reduction in terms of number of frames sent from the coordinator to the sink
added to the 90% reduction at the sensor node level increases the lifetime of
the network by reducing the number of frames and the bandwidth usage due to
transmission reduction on both levels. As for PPSS, they do send every frame

Table 16 The Coordinator Behavior
Bsim  Received Fr  Sent Fr  Sent(%) Reduction(%)

50 1906 1000 52% 48%
60 1906 1296 68% 32%
70 1906 1640 86% 14%
80 1906 1906 100% 0%

received by the coordinator to the sink node, disregarding the correlation of
several sensor-nodes and the similarity of their frames.
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Table 17 The Coordinator Behavior PPSS
Bsim  Received Fr  Sent Fr  Sent(%) Reduction(%)

50 1906 1906 100% 0%
60 1906 1906 100% 0%
70 1906 1906 100% 0%
80 1906 1906 100% 0%

As shown in Tables 16 and 17, our algorithm on the coordinator level helps
to reduce furthermore the number of frames sent to the sink by more than 32%
if Beim < 60% for the correlated sensor-nodes.

6 Energy Consumption Study

In this section, our energy consumption comparison study is based on the en-
ergy model proposed in [34]. The consumed energy as in [34] is divided into
two parts, the radio energy for the transmission of the data on the radio and
the computational energy for the in-node processing. as shown in the equation
below:

E= E'r'adio + Ecomp (20)

Table 18 shows the different parameters to compute the energy consumption
while considering:

Irx and Igrx the electric power needed for sending and receiving by the radio
respectively.

Trx and Trx the corresponding operating time over 1 byte.

V be the constant voltage supply throughout the transmission.

Eradio(k) =kIpx . Virx + kIgrx.V.IRrx (21)

Taking into account that k is the number of bytes sent from a specific sender
to a specific receiver. For the computational energy consumption:

€add:Emul ,€emp-€sht are the basic operations (shift,addition,comparison,multiplication,

ete...), Table 18 shows the required energy for each operation. To compute this
energy consumption, we only needs to count the number of each basic opera-
tion in the algorithm:

Ecomp = Nadd X €add + Nsht X €spt + Nmul X €mul + Ncmp X €cmp (22)

In order to compare both approaches, we calculate the energy consump-
tion of both the processing and the transmission tasks of a wireless sensor
node equipped with a CC2420 radio transceiver and an ARM7TDMI micro-
processor. Table 18 displays the parameters that are used in the calculations
and which are found in the data sheets of the node’s components [34].
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Table 18 Parameters of the Energy Model

Parameter Value
Irx 17.4 mA
Irx 19.7 mA
Trx 3.2x107% s
Trx 32x107%s

\%4 3.3V
Tepu 31 mA
fepu 48 MHz
€add 2.13 nJ
€mul 6.39 nJ
€cmp 2.13 nJ
€shit 4.26 nJ

6.1 Sensor Node Level

In our experiments, when running the MASRA algorithm, 9262 frames were
sensed and compared using the similaritiy function. For a 640 x 480 frame
size, 307200 pixels exist in each frame. Each similarity takes into account all
the pixels in every frame. The MASRA algorithm consists of 2 additions, 2
multiplications and 1 comparison. We can compute the computational energy
for Ecomp for 9262 similarities as follows:

Eoomp = 9262 x 640 x 480 X (2 X €qdd + 2 X €mut) + 9262 X €emp  (23)

In this case, Ecomp,masra=49 J.

If we apply PPSS, Ecomp, ppss = 0.1 J.

To move on to the transmission phase, where our network for the MASRA
algorithm transmits 7377 frames = 15 MB, comparing to the 12501 frames =
29 MB for PPSS. In the MASRA algorithm, the sensors only send the frames
to the coordinator, but in PPSS when a sensor-node detects a frame, the node
sends a message to its neighboors containing several information such as the
id of the sensor, the position of the intrusion .... Adding to the 29 MB of
frames that has been sent on the network, the sensor-nodes in PPSS in our
experiments send to each other 25600 messages of 4 KB for each message.
which means 100 MB to be added in the received data.

Eradiomasra = 151024 x 1024 x 17.4x 1073 x 3.3 x 3.2 x 1075 = 28.9J (24)

Eradioppss = 29 x 1024 x 1024 x 17.4 x 107° x 3.3 x 3.2 x 107°
+100 x 1024 x 1024 x 19.7 x 1073 x 3.3 x 3.2 x 10°°
= 276.13J

To compute the total energy consumption consumed by the network on the
sensor node level, the energy consumptions related to the computation and to
the transmission must be added to each other.
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E’mas’ra = ECO"VLP,’H’LLLS"'LL + E'r'adio,'mas’r'a = 49 + 289 = 779J (25)

Eppss = Ecompppss + Eradioppss = 0.1 +276.13 = 276.23J  (26)

Table 19 Energy consumption comparison for MASRA and PPSS

Energy MASRA PPSS

EComp 49J 0.1J
Eradio 28.9J 276.13 J
Etotal 77.97 276.23 J

- masra —¢-pps
600
500
400
300
200
100

Energy (J)

40 80 280 440 490

Time (s)

Fig. 8 Energy consumption comparison for MASRA and PPSS

As shown in Table 19, while comparing with PPSS, our algorithm con-
sumes more energy on the computational level, but reduces much more energy
on the transmission level. Figure 8 compares both approaches in terms of en-
ergy consumption over time on the overall network while considering a start
energy of 500 J for the network. The gain of our approach is positive, PPSS
and as shown in Figure 8 consumes more energy than our approach in our
experiments.



O Jo Ul WD R

AU OTOTOTE D S D D D DD DEWWWWWWWWWWNNNNNNNNNNNNNNRE R PR RP R
OB WNRFRPOW®O-JNNEWNRFROW®O-JAUREWNROWOWO®JdAUTBRWNROWO®®MJdAOANUB®WNRLROWOWOW-JOU S WNR O O

Image Selection with FR Adaptation and Local Event Detection in WVSN 27

7 Conclusion

In this paper, we introduced an adaptive frame rate algorithm with a similar-
ity detection function for wireless video sensor nodes. Also, a Shot Selection
algorithm is implemented at the coordinator level. The proposed work allows
a dynamic frame rate control of each video-sensor node. The conducted ex-
periments show that the proposed algorithms did not miss any event in the
recorded video sequence. Thus, the algorithms send the minimum required
frames to the sink node by using a similarity detection function at the sensor
node and coordinator levels. The selected frames are transmitted by the sensor
nodes to the coordinator and by the coordinator to the sink without missing
any required information. The results show that the size of the transmitted
data in each period is reduced and the energy consumption is decreased, thus,
preventing any bottleneck problem regarding the bandwidth limitation issue.
Comparing our approach with PPSS algorithm in terms of data reduction
and energy consumption, helps us to find out that our algorithm outperforms
PPSS, and reduces the number of data for more than 40% than PPSS. Thus,
PPSS consumes 4 times more energy than our approach on the sensor node
level. As future works, first of all we need to do some real experimentations on
real sensor-nodes in the near future. Then, and after examinating the amount
of energy needed to do the processing, we aim to extend this work by including
a study which further reduces the computational energy consumption at the
sensor node level.

Acknowledgement

This project has been performed in cooperation with the Labex ACTION
program (contract ANR-11-LABX-0001-01).

References

1. I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. Wireless multimedia sensor networks:
Applications and testbeds. Proceedings of the IEEE, 96(10):1588-1605, 2008.

2. I. F. Akyildiz, T. Melodia, K. R. Chowdhury, and R. Kaushik. A survey on wireless
multimedia sensor networks. Computer networks, 51(4):921-960, 2007.

3. C. Alippi, G. Anastasi, M. Francesco, and M. Roveri. An adaptive sampling algorithm
for effective energy management in wireless sensor networks with energy-hungry sensors.
IEEE Trans on Inst and Measurement, 59(2), 2010.

4. M. Alaei and J. M. Barcelo-Ordinas. A method for clustering and cooperation in wireless
multimedia sensor networks. Sensors, 10(1):3145-3169, 2010.

5. S. B. Priyadarshini, B. M. Acharya, and D. S. Das. Redundant data elimination and
optimum camera actuation in wireless multimedia sensor network (wmsn). IJERT, 2(6),
2013.

6. W. Luo, Q. Lu, and Q. Xiao. Distributed collaborative camera actuation scheme based
on sensing-region management forwirelessmultimedia sensor networks. Distributed Sen-
sor Networks, 12(0):1-14, 2012.

7. A. Newell and K. Akkaya. Distributed collaborative camera actuation for redundant
data elimination in wireless multimedia sensor networks. Ad Hoc Networks, 45(4), 2011.



O Jo Ul WD R

AT U UGG OTOTE BB D EBESEDSDLDDEWWWWWWWWWWNNNRONNONNNNNNNE P P e
AR WNRFROWVWOJONTEWNROWOW®®JAURWNROW®O®JdAAURWNRFROW®OW-JANUBEWNROWO®WJOU B WNR O W

28

Christian Salim et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

J. M. Bahi, A. Makhoul, and M. Medlej. An optimized in-network aggregation scheme
for data collection in periodic sensor networks. ADHOC-NOW, 11:153-166, 2014.

P. Sarisaray-Boluk and K. Akkaya. Performance comparison of data reduction tech-
niques for wireless multimedia sensor network applications. Hindawi Publishing Corpo-
ration, 15:1-15, 2015.

J. Choi, S. Han, S. Kim, S. Chang, and E. Yoon. A spatial-temporal multiresolution
cmos image sensor with adaptive frame rates for tracking the moving objects in region-
of-interest and suppressing motion blur. JSSC, 42(12), 2007.

R. Stewart, K. Trahan, D. Chesavage, S. Casey, M. Rome, and C. Kokinakes. Surveil-
lance system and method with adaptive frame rate. Patent Application Publication,
21:234-241, 2003.

C. Pham, A. Makhoul, and R. Saadi. Risk-based adaptive scheduling in randomly
deployed video sensor networks for critical surveillance applications. JNCA, 34(2),
2011.

I. Politis, M. Tsagkaropoulos, and S. Kotsopoulos. Optimizing video transmission over
wireless multimedia sensor networks. IEEE GLOBECOM, pages 1 — 6, 2008.

M. A. Usman, M. R. Usman, and S. Y. Shin. An intrusion oriented heuristic for efficient
resource management in end-to-end wireless video surveillance systems. pages 1-6, Jan
2018.

Muhammad Rehan Usman, Muhammad Arslan Usman, and Soo Shin. Subjective
quality assessment for impaired videos with varying spatial and temporal information.
9:1574-1579, 07 2015.

C. Kyrkou, C. Laoudias, T. Theocharides, C. G. Panayiotou, and M. Polycarpou. Adap-
tive energy-oriented multitask allocation in smart camera networks. IEEE Embedded
Systems Letters, 8(2):37-40, June 2016.

M. B. Shahab, M. A. Usman, and S. Y. Shin. Bandwidth adaptation by squeezing
idle traffic in browsers: An active window detection based approach for next generation
networks. IEEE Communications Letters, 21(2):310-313, Feb 2017.

M. A. Usman, M. R. Usman, and Soo Young Shin. A no reference method for detection
of dropped video frames in live video streaming. pages 839-844, July 2016.

Markus A. Stricker and Markus Orengo. Similarity of color images. Proc. SPIE,
2420:381-392, 1995.

Miguel Segui Prieto and Alastair R. Allen. A similarity metric for edge images. IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,
25(10), 2003.

N. Sahasrabudhe, J. E. West, R. Machiraju, and M. Janus. Structured spatial domain
image and data comparison metrics. pages 97-515, Oct 1999.

R. Dai and I. F. Akyildiz. A spatial correlation model for visual information in wireless
multimedia sensor networks. IEEE Trans on Multimedia, 11(6), 2009.

T. Jbeily, M. Alkubeily, and I. Hatem. A new symmetric-object oriented approach for
motion estimation in wireless multimedia sensor networks. IJSR, 4(11), 2015.

H. T. Nguyen, M. Worring, and A. Dev. Detection of moving objects in video using a
robust motion similarity measure. IEEE Trans on Image Processing, pages 1 — 4, 2000.
P. Spagnolo, T. Orazio, M. Leo, and A. Distante. Moving object segmentation by back-
ground subtraction and temporal analysis. Image and Vision Computing, 24(5):411—
423, 2006.

A. Benzerbadj and B. Kechar. Redundancy and criticality based scheduling in wireless
video sensor networks for monitoring critical areas. Procedia Computer Science, 21:234—
241, 2013.

M. Alaei and J. M. Barcelo-Ordinas. A method for clustering and cooperation in wireless
multimedia sensor networks. Patent Application Publication, 10:3145-3169, 2010.

Z. Qin, L. Wang, C. Ma, J. Xu, and B. Lu. An overlapping clustering approach for
routing in wireless sensor networks. IJDSN, 2013(0):1-11, 2013.

Y. Yao and G. B. Giannakis. Energy-efficient scheduling for wireless sensor networks.
IEEE TRANSACTIONS ON COMMUNICATIONS, 53(8):1-10, 2005.

B. Jiang, B. Ravindran, and H. Cho. Probability-based prediction and sleep scheduling
for energy-efficient target tracking in sensor networks. IEEE TRANSACTIONS ON
MOBILE COMPUTING, 12(4), 2013.



O Jo Ul WD R

AT U UGG OTOTE B BB EBEDSEDSDLDDEWWWWWWWWWWNNNRONRNONNONNNNNNE P e e
AR WNRFROWVWOJONTEWNROWOW®®JAOAUBRWNROW®O®JdAAURWNRFROW®OW-JANUBRWNROWO®WIOU B WNR O W

Image Selection with FR Adaptation and Local Event Detection in WVSN 29

31.

32.

33.

34.

Zeng X, Hu W, Li W, Zhang X, and Xu B. Keyframe extraction using dominant-set
clustering. IEEE International Conference on Multimedia and Ezpo, 1(1):1285-1288,
2008.

J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(6):679-698, 1986.

Zeeshan Rasheed and Mubarak Shah. Detection and representation of scenes in videos.
IEEE Transactions on Multimedia, 7:1097-1105, 2005.

Yao Liang and Wei Peng. Minimizing energy consumptions in wireless sensor networks
via two-modal transmission. SIGCOMM Comput. Commun. Rev., 40(1):12-18, January
2010.



Click here to download Author Biographies biography.tex

Christian Salim is currently a Ph.D. student at Uni-
versity of Franche-Comté (UFC), France co-directed by
the Antonine University, Lebanon. He received the M.S
degree in computer science and telecommunication engi-
neering in 2015 from the Antonine University, Lebanon.
He reveived the M.S. degree in Distributed and Mobile
Computing in 2015 from University of Franche-Comté
(UFCQC), France. His research interests include wireless sen-
sor networks, multisensor data fusion and data aggregation.

Abdallah Makhoul received the M.S. degree in com-
puter science from INSA Lyon, Lyon, France, in 2005, and
the Ph.D. degree in the problems of localization, coverage
and data fusion in wireless sensor networks from the Uni-
versity of Franche-Comté, Belfort, France, in 2008. Since
2009, he has been an Associate Professor with the Univer-
sity of Franche-Comté. His research interests include In-
ternet of Things, structural health monitoring, and real-
time issues in wireless sensor networks. Dr. Makhoul has
been a TPC chair and member of several networking con-
ferences and workshops and a Reviewer for several international journals.

Rony Darazi (SMi6) reccived the M.S. degree

in Computer and Telecommunications engineering from

Antonine Univerity (UA), Lebanon in 2005, and the

Ph.D. degree in engineering sciences from the Univer-

§ sité catholique de Louvain (UCL), Louvain-la-Neuve, Bel-

gium, in 2011. His PhD was entitled “Towards a com-

v bining scheme for compression and watermarking for 3D

K‘ stereo images”. He is currently an Associate Professor

- at UA. He was a Researcher in the ICTEAM Institute

at UCL from 2006 until 2012, and is a Member of the

TICKET Lab at UA since 2010. His research interests include information

security and digital watermarking, digital 2D and 3D image processing, sensor

networks, and e-health. Dr. Darazi is an IEEE senior member, he received

a grant research project from the National Council for Scientific Research in

Lebanon (CNRS-L) in 2016 and a resecarch fund from the Francophone Uni-

versity Agency (AUF) in 2017. He co-chaired the International Conference on

Applied Research in Computer Science & Engineering (ICARI5), sponsored

by IEEE in 2015, and has been actively involved as a Reviewer in several

conferences and journals. In 2009, he received the Best Paper Award, second

prize by the Digital Watermarking Alliance and the IS&T/SPIE International
Conference on Media Forensics and Security XII.

*



Raphaél Couturier is a professor in computer sci-
ence in University Bourgogne Franche Comté, France
(ICIP).




