
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Assessing SMT and CLP Approaches for Workflow Nets
Verification

Hadrien Bride1,2, Olga Kouchnarenko1, Fabien Peureux1, Guillaume Voiron1

1 Institut FEMTO-ST – UMR CNRS 6174, Univ. Bourgogne Franche-Comté
16, route de Gray, 25030 Besançon, France
e-mail: {hbride,okouchna,fpeureux,gvoiron}@femto-st.fr

2 Ecole Centrale de Nantes, LS2N, UMR CNRS 6004
1 Rue de la No, 44300 Nantes, France
e-mail: hbride@ls2n.fr

The date of receipt and acceptance will be inserted by the editor

Abstract. In the actual business world, companies rely
more and more on workflows to model the core of their
business processes. In this context, the focus of workflow
analysts is made on the verification of workflows specifi-
cations, in particular of modal specifications that allow
the description of necessary or admissible behaviours.
The design and the analysis of business processes com-
monly relies on workflow nets, a suited class of Petri nets.
The goal of this paper is to evaluate and compare in a
deep way two resolution methods—Satisfiability Mod-
ulo Theory (SMT) and Constraint Logic Programming
(CLP)—applied to the verification of modal specifica-
tions over workflow nets. Firstly, it provides a concise de-
scription of the verification methods based on constraint
solving. Secondly, it introduces the toolchain developed
to automate the full verification process. Thirdly, it de-
scribes the experimental protocol designed to evaluate
and compare the scalability and efficiency of both res-
olution approaches and reports on the obtained results.
Finally, these obtained results are discussed in detail,
lessons learned from these experiments are given, and,
on the basis of experiments feedback, directions for im-
provement and future work are suggested.

Key words: Workflow nets, Modal specifications, Veri-
fication method, Experimental comparison, Satisfiability
Modulo Theory, Constraint Solving Problem

1 Introduction

In recent years, the growing need by companies to im-
prove their organizational efficiency and productivity has
led to the design and the analysis of business processes.
Major Key Performance Indicators (compliance with re-
spect to regulations and directives, end-user acceptance

and confidence, etc.) are often directly determined by
the quality of the business process in use, and therefore
much of the companies successes depends on them. In
order to control such business processes and to man-
age their tasks and steps, a great diversity of appli-
cation domains uses workflow management systems on
a daily basis. These include office automation, health-
care,telecommunication, manufacturing and production,
finance and banking, just to name a few.

Workflows actually constitute a convenient way for
analysts to describe the business processes in a formal
and graphical manner. Nowadays they are thus exten-
sively used by the economic and scientific communities
to model and analyse processes. Intuitively, a workflow
system describes the set of possible runs of a particular
system/process. Due to the critical relation between the
quality of the workflows in use and the success of the
companies in terms of efficiency, productivity and secu-
rity, workflow specification verification has thus become
one of the major activities of workflow specialists. Fur-
thermore, workflow analysts are required to express and
to verify specific properties over the workflows they de-
signed to ensure the validity of the related process and
make sure that no undesirable behaviour is present while
performing the specified tasks.

Among existing workflow specifications, this paper
focuses on modal specifications that allow the descrip-
tion of necessary and admissible behaviours over work-
flow nets, a suited class of Petri nets. Working on case
studies of real-life instances of industrial workflows ob-
tained through collaborations with industrial actors, de-
scribed in part in [3,4], has emphasized the importance
of expressing and verifying—at the specification or de-
sign stage of the development of large-size workflow nets—
some required behavioural properties, derived from tex-
tual requirements and business analyst expertise. Fur-
ther, these collaborations have demonstrated the limited
scalability of traditional model checking tools based on

state space exploration when verifying properties such
as the behavioural properties expressed by modal spec-
ifications, thereby, assessing the need for efficient and
scalable alternative verification methods. To this end, a
recent work in [3] and [4] has introduced and developed
a novel formal framework based on constraint systems to
model executions of workflow nets and their structural
properties, as well as to verify requirements specified by
modal specifications.

One of the advantages of such a method is the use of
constraint-based models allowing the proposed verifica-
tion method to benefit from existing mature and efficient
constraint solvers as they assume most of the computa-
tional workload. More precisely, in this framework, the
validity of a modal specification can be inferred from the
satisfiability of a corresponding Constraint Satisfaction
Problem (CSP), which can be solved using Constraint
Logic Programming (CLP) or using Satisfiability Mod-
ulo Theory (SMT) solvers.

On the one hand, using Logic Programming for solv-
ing a CSP has been investigated for many years, espe-
cially using CLP over Finite Domains, written CLP(FD).
This approach basically consists in embedding consis-
tency techniques [12] into Logic Programming by ex-
tending the concept of logical variables to the one of the
domain-variables taking their values in a finite discrete
set of integers. On the other hand, SMT solvers are also
relevant to solve the constraint systems (a conjunction of
boolean formulas expressing the constraints) since they
can determine whether a first-order logic formula can be
satisfied with regards to a particular theory (e.g., Linear
Arithmetic, Arrays theories). SMT solvers aim to gen-
erate counter-examples [11] by combining a SAT solver,
assigning a truth value to every atom composing the for-
mula so that the truth value of the latter is true, with
a theory solver determining whether the resulting inter-
pretation can be met with regard to the theory used. The
formula is satisfiable if and only if at least one interpre-
tation from the SAT solver can be met by the theory
solver.

Besides the theoretical assessment of the approach, a
proof-of-concept toolchain implementing this approach
has enabled to successfully evaluate its effectiveness and
reliability. However, as advocated in [4,7], these first en-
couraging experimental results need to be confirmed by
extensive and further experimentation, in particular to
definitively assess the scalability and the efficiency of the
approach. This paper precisely investigates these issues.
Therefore, the main contributions of this paper are the
following:

(1) an empirical assessment of the scalability of the ver-
ification approach proposed in [3] and [4],

(2) an accurate study to evaluate the efficiency of this
approach by experimenting two resolution methods
–SMT and CLP over Finite Domains– to solve the
constraint system that represents the modal specifi-
cations to be verified.

(3) a comparison of the both above-mentioned resolution
methods to evaluate their relevance and efficiency
within this verification approach.

Notice that the contributions of the present article
are based on formal means first introduced in [3] and
further developed in [4]. As extension to [6,7], this pa-
per provides a full description of the used tools, together
with a finer and larger experimental basis. This new ba-
sis, composed of 6400 workflow nets containing up to
1000 nodes, allows us to better address issues (1) and (2).
Differently from previous work [6,7], where CLP com-
putation was performed without labeling heuristics, the
new CLP results are computed using the strategy First
Fail Cut. It provides the more conclusive and convinc-
ing results in comparison with the other CLP heuristics
implemented by SICStus Prolog, which have also been
experimented but are not shown and discussed in the
present paper.

As a consequence, this paper reports on the obtained
experimental results, which are important and completely
new. Consequently, with relation to issue (3), the already
learned lessons are revisited and new lessons are pointed
out.

Layout of the paper. Section 2 briefly recaps com-
mon concepts and standard notations concerning work-
flow nets, while Sect. 3 introduces the key aspects of
the formal method given in [3] for verifying modal spec-
ifications over workflow nets. Afterwards, Sect. 4 de-
scribes the toolchain implementing this method: from
a workflow net and its modal specification, it automati-
cally produces a corresponding constraint system whose
satisfiability can then be checked using either CLP or
SMT computation. Section 5 first defines the experimen-
tal protocol designed, on the one hand, to evaluate the
efficiency of each resolution approach, and, on the other
hand, to compare their execution times when applied to
a broad range of modal specifications and workflow nets
of growing size and complexity. Second, it introduces a
dedicated benchmark-generation toolchain that has been
specially implemented to support and fully automate the
process of the proposed experimental protocol. Section 6
details the obtained experimental results and reports on
the lessons learned, which constitute the main contribu-
tion of this paper. Finally, after discussing related work
in Sect. 7, Sect. 8 concludes the paper by underlining
the major feedback and suggesting directions for future
work.

2 Preliminaries

This section presents preliminaries and basics required
for the presentation of the modal specification verifica-
tion approach considered in this paper. More specifically,
it presents Petri net [27], workflow nets [35] and related
notions that are used throughout this paper to describe
the verification approach.

2

2.1 Petri Nets

Petri nets, also known as place/transition nets, are a ba-
sic model of parallel and distributed systems proposed
by Carl Adam Petri [27]. They allow modelling of dis-
crete event systems exhibiting behaviours such as con-
currency, conflict, and causal dependency between events
in a readable graphical and/or a formal manner. They
are widely used to model concurrent processes in the-
oretical computer science. They are also used to de-
scribe chemical reactions, manufacturing processes, sup-
ply chains, and so on. Fortunately, for this expressive
formal model, several important verification problems,
like reachability problem, are known to be decidable [24].

Definition 1 (Petri net). A Petri net is a tuple 〈P, T, F 〉
where:

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– F ⊆ (P × T) ∪ (T × P) is a set of arcs.

Let g ∈ P ∪ T and G ⊆ P ∪ T . We use the following
notations:

– g• = {g′|(g, g′) ∈ F}, •g = {g′|(g′, g) ∈ F},
– G• = ∪g∈G g•, and •G = ∪g∈G •g.

This definition allows characterizing important struc-
tural features such as siphons and traps.

Definition 2 (Siphon). Let N ⊆ P such that N 6= ∅:

– N is a trap if and only if N• ⊆ •N , and
– N is a siphon if and only if •N ⊆ N•.

The marking of a Petri net, representing the number
of tokens on each place, is a function M : P → N. It
evolves during its execution since transitions change the
marking of a Petri net according to the following firing
rules. A transition t is enabled in a marking M if and
only if ∀p ∈ •t,M(p) ≥ 1. When an enabled transition t
is fired, it consumes one token from each place of •t and
produces one token for each place of t•.

Let Ma and Mb be two markings, and t a transition

of a Petri net N , Ma
t−→ Mb denotes that the transition

t is enabled in marking Ma, and firing it results in the
marking Mb. Mb is then called directly reachable from
Ma by transition t.

LetM1,M2, ..,Mn be markings, and σ = t1, t2, .., tn−1
a sequence of transitions of a Petri net N , M1

σ−→ Mn

denotes that M1
t1−→ M2

t2−→ ..
tn−1−−−→ Mn. The marking

Mn is then said to be reachable from M1 by the sequence
of transitions σ. We denote RN (M) the set of markings
of N reachable from a marking M .

With respect to these rules, a transition t is dead
at marking M if it is not enabled in any marking M ′

reachable from M . A transition t is live if it is not dead
in any marking reachable from the initial marking. A

Petri net system is live if each of these transitions is
live.

In the context of Petri nets, the need for considering
classes of Petri nets expressive enough with respect to
their modelling capabilities has led to the definition of
several subclasses of Petri nets based on structural fea-
tures. This paper deals with the following well-known
and popular Petri net classes:

– State-Machines (SM) without concurrency, but with
possible conflicts among tasks (transitions):

∀t ∈ T, | t• |=|• t |= 1

– Marked-Graphs (MG) without conflict, but there can
be concurrent tasks:

∀p ∈ P, | p• |=|• p |= 1

– Free-Choice nets (FC) where there can be both con-
currency and conflict, but not at the same time:

∀p ∈ P, (| p• |≤ 1) ∨ (•(p•) = {p})

2.2 Workflow Nets

Workflow nets (WF-nets) [35] constitute a special case of
Petri nets which are usually used to model the control-
flow dimension of a workflow. They allow the modelling
of complex workflows exhibiting concurrencies, conflicts,
as well as causal dependencies of activities. The use of
Petri net-based modelling of workflow systems has been
extensively studied [33,35,29], in order to be put into
practice. When modelling workflows using workflow nets,
the different activities are modelled by transitions, while
causal dependencies are modelled by places and arcs. For
instance, the Petri net depicted in Fig. 2.1 is a workflow
net. The next definitions formally introduce WF-nets.

Figure 2.1. An example of a WF-net (E1)

Definition 3 (Workflow net [35]). A Petri net N =
〈P, T, F 〉 is a workflow net (WF-net) if and only if N is a
Petri net, N has two special places i and o, where •i = ∅
and o• = ∅, and for each node n ∈ (P ∪ T) there exists
a path from i to o passing through n.

We denote Mi the initial marking (i.e. Mi(n) = 1
if n = i, and 0 otherwise) and Mo the final marking
(i.e. Mo(n) = 1 if n = o, and 0 otherwise). A correct
execution of a WF-net is a transition sequence σ such
that Mi

σ−→Mo.

3

The behaviour of a WF-net is defined as the set Σ
of all its correct executions. Given a transition t and
an execution σ, the function Ot(σ) gives the number of
occurrences of t in σ.

In the context of workflow nets, a well-established
correctness feature that all workflows should verify is
called soundness [35]. It states that beside structural
properties given by the definition of workflow nets, a
sound workflow net describes a procedure that will ter-
minate possibly (option to complete), and that when it
does there is a token in place o, and all of the other places
are empty (proper completion). Additionally, a sound
workflow net may not contain dead transitions. This cor-
rectness criterion constitutes an underlying property of
workflow nets that has to be verified in order to ensure
correct executions. It has been extensively studied [34,
37], especially in the context of stepwise refinement ap-
proach [38], and efficient verification tools have been de-
veloped [36,15,5].

Definition 4 (Soundness [35]). Let N = 〈P, T, F 〉 be
a workflow net, N is sound if and only if:

– ∀M ∈ RN (Mi),Mo ∈ RN (M) (option to complete),
– ∀M ∈ RN (Mi), (M(o) > 0) ⇒ (M = Mo) (proper

completion), and

– ∀t ∈ T, ∃M,M ′ ∈ RN (Mi),M
t−→ M ′ (no dead tran-

sitions).

Note that if we assume fairness – transitions that are
enabled infinitely often will fire eventually – then the
first requirement implies that eventually the final mark-
ing is reached. As argued in [35], the fairness assumption
is reasonable in the context of workflow management. In-
deed, all choices are made implicitly or explicitly by ap-
plications, humans or external actors which should not
introduce infinite loops.

Needed preliminaries about workflow nets being fixed,
the next section introduces the approach, based on con-
straint systems, to the verification of modal specifica-
tions considered in this paper.

3 Constraint-Based Verification of Modal
Specifications

In a first time, this section describes modal specifica-
tions, more precisely, it presents modal specifications
that allow specifiers to describe necessary or just admis-
sible behaviours as first introduced in [3]. In a second
time, this section presents and describes the verification
framework based on constraint systems, also introduced
in [3], that enables the verification of such modal speci-
fications.

3.1 Modal Specifications

Modal specifications, as presented and used in this pa-
per, are especially useful during the development of work-

flows systems developed in a top-down fashion, when the
original workflows are stepwise refined, each step bring-
ing them closer to the underlying implementations ready
for release and production [32].

In the context of stepwise refinement of workflow
nets, one of the main principles is that if the initial ab-
stract specification is correct, and the refinement steps
preserve correctness, then the resulting specification will
be correct by construction. This drives the need to val-
idate some behavioural properties possibly at the early
stage of development life cycle.

To this end, modal specifications have been designed
to allow loose specifications to be expressed by impos-
ing restrictions on transitions. They permit specifiers to
indicate that a transition is necessary or just admissible.

In their simplest form, the modal specifications allow
modeller to specify that a transition is a may-transition,
i.e. a transition which may be enabled, or that a tran-
sition is a must-transition, i.e. a transition which must
be enabled. Verifying that a given transition modality is
satisfied by the developed workflow net, or determining
the modality of a given transition, has initially motivated
the theoretical work in [3,4].

Nonetheless, as argued in [3,4] on the case study
requirement base, while basic modal specifications are
useful, they usually lack expressiveness for real-life ap-
plications, as only individual transitions are concerned
with. To fill this gap, these papers notably introduce (ex-
tended) modal specifications to express requirements on
several transitions and on their causalities. Such modal
specifications can be used to specify more complex modal
and logic links among multiple activities. For example,
let ta and tb be two activities of the considered process
(i.e. two transitions of the workflow net which models
the considered process), using (extended) modal specifi-
cations, one can express the following modal properties:
activity ta implies activity tb (causal dependence), ac-
tivity ta is completed if and only if activity tb is also
completed (causal co-dependence), either activity ta or
activity tb is completed but not both (mutual exclusion).

More precisely, in [3], modal specifications allow spec-
ifiers to express requirements on several transitions and
on their causalities. The modal specifications of a work-
flow net N = 〈P, T, F 〉 are specified using the language S
of well-formed modal specification formulae inductively
defined by: ∀t ∈ T, t is a well-formed modal formula,
and given A1, A2 ∈ S, A1 ∧ A2, A1 ∨ A2, and ¬A1 are
well-formed modal formulae. These formulae allow speci-
fiers to express modal properties about WF-nets correct
executions.

Let σ ∈ Σ be a correct execution of N and m a
well-formed modal specification formula, we denote σ |=
m the fact that the modal property expressed by m is
satisfied by the execution σ. Formally, given t ∈ T and
A1, A2 ∈ S(N), we have σ |= t ⇔ Ot(σ) > 0, σ |=
(A1 ∧ A2) ⇔ σ |= A1 ∧ σ |= A2, σ |= (A1 ∨ A2) ⇔ σ |=
A1 ∨ σ |= A2, and σ |= (¬A1)⇔ ¬(σ |= A1).

4

Any modal specification formula m ∈ S can be inter-
preted as a may-formula or a must-formula. On the one
hand, a may-formula describes a admissible behaviour
that has to be ensured by at least one correct execution
of the WF-net. On the other hand, a must-formula de-
scribes a necessary behaviour that has to be ensured by
all the correct executions of the WF-net.

Modal specifications can thus express a wide range of
safety and liveness properties. Typically, a safety prop-
erty is a property asserting that something bad never
happens, whereas a liveness property asserts that some-
thing good eventually happens. Therefore a may-formula
which is expected not to hold can express a safety prop-
erty. Similarly, a must-formula that is expected to hold
can be viewed as a liveness property.

Further, given a well-formed may-formula (resp. must-
formula)m ∈ S, a WF-netN satisfiesm, writtenN |=may

m (resp. N |=must m), when at least one (resp. all) cor-
rect execution(s) of N satisfies (resp. satisfy) m. For-
mally, given m ∈ S(N):

N |=may m⇔ ∃ σ ∈ Σ, σ |= m, and

N |=must m⇔ ∀ σ ∈ Σ, σ |= m ∧N |=may m.

For example, regarding the workflow net E1 depicted
in Fig. 2.1, we have E1 |=may t2∧ t3 as well as E1 |=must

(¬t3) ∨ t4.
It should be noticed that, according to this definition,

the semantic of modal specifications is only defined with
respect to the set of correct executions (i.e. Σ) and there-
fore does not consider all behaviours exhibited by the
considered workflows. For instance, executions leading,
from the initial marking, to a deadlock marking (i.e. a
marking with no enabled transition) different from the fi-
nal marking are not taken into account. In fact, it is here
assumed, based on common practice, that the soundness
of the considered workflows are already positively deter-
mined as a preprocessing step to the verification of modal
specifications.

Further, note that, in contrast to modal specification
languages over labelled transition systems [22,14] and
Petri nets [13], the considered modal specification lan-
guage does not specify the behaviours that can, or have
to, appear in the subsequent refinements. Indeed, simi-
larly to specification logics such as CTL [9], the modal
specification language previously presented and consid-
ered in this paper specifies properties of the behaviours
appearing at the current refinement stage. In the context
of stepwise refinement of workflow nets, this implies that
either subsequent refinements must ensure the preserva-
tion of the previously verified modal specifications, or
that the modal specifications impacted by refinement
patterns must be refined accordingly [1].

As the matter of fact, modal specifications are a
proper subset of CTL. More precisely, must-formula can
be expressed as CTL property thanks to the operator
A (i.e. along all paths) whereas may-formula can be ex-
pressed as CTL property thanks to the operator E (i.e.

along at least one path). Further details are provided in
Appendix A.

Additionally, in order to highlight the numerous use-
cases of modal specifications, let us note that proper-
ties expressed by modal specification are closely related
to properties expressed by deontic logic – i.e. a field
of philosophical logic that is concerned with obligation,
permission, and related concepts. More precisely, must-
formulae express obligations whereas may-formulae ex-
press permission. Deontic logic are largely used through-
out the specification of workflows processes in the do-
main of banking and legal process compliance [16,17].

Finally, let us underline that, when using modal spec-
ifications, one cannot express temporal aspects (i.e. ac-
tivity ta must be performed before activity tb). Indeed,
modal specifications aim at expressing modal properties
that can be efficiently verified by leveraging abstractions
of the systems under analysis. Such abstractions (e.g.,
the abstractions presented in the next section) present
advantages over other verification methodologies (e.g.,
model checking), notably thanks to their restricted use-
cases (e.g., abstraction of temporal aspects). Therefore,
while not as expressive as other previously mentioned
specification logics, modal specifications are of prime in-
terest when it comes to verify modal specifications that
do not involve temporal aspects as they enable the use
of a specialised verification method.

3.2 Modal Specifications Verification Method

This section provides an overall detailed description of
the verification method introduced in [3] to verify modal
specifications of workflow nets. This method is based on
the resolution of constraint systems.

Basically, a constraint system is a set of constraints
(properties), which must be satisfied by the solution of
the problem it models. To achieve that, each variable
appearing in a constraint of the system should takes its
value from its domain. Such a system defines a Con-
straint Satisfaction Problem (CSP).

Definition 5 (Constraint Satisfaction Problem). A
Constraint Satisfaction Problem, CSP for short, is a tu-
ple Ω =< X,D,C > where:

– X is a set of variables {x1, . . . , xn},
– D is a set of domains {d1, . . . , dn} (di is the domain

associated with the variable xi),
– C is a set of constraints {c1(X1), . . . , cm(Xm)} (cj is

a constraint on a subset Xj of the variables of X).

A CSP thus models NP-complete problems as search
problems where the corresponding search space is the
Cartesian product space d1× . . .× dn. The solution of a
CSP Ω is computed by a labelling function L, which pro-
vides a set ν (called valuation function) of tuples assign-
ing each variable xi of X to one value from its domain

5

di such that all the constraints C are satisfied. More for-
mally, ν is consistent—or satisfies a constraint c(X) of
C—if the projection of ν on X is in c(X). If ν satisfies
all the constraints of C, denoted by Ω |= ν, then Ω is a
consistent or satisfiable CSP.

In our context, to verify a modal specification m of
a WF-net N , the constraint system is composed of a set
of constraints representing the correct executions of N
completed with the constraint issued from m. This con-
straint system can then be solved to validate or invali-
date the modal specification m regarding the WF-net N .
Considering a WF-net N = (P, T, F), the method starts
by modelling all the correct executions leading from Ma

to Mb, i.e. all σ such that Ma
σ−→ Mb through their

decomposition into segments structurally verifiable. To
reach that, the following constraint systems are defined:

Definition 6 (State Equation Constraint System).
Let N = 〈P, T, F 〉 be a workflow net, and Ma, Mb two
markings of N , the state equation constraint system
S(N,Ma,Mb), associated with it, is:

– ∀p ∈ P, ν(p) =
∑
t∈p• ν(t) + Mb(p) =

∑
t∈•p ν(t) +

Ma(p)

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 6
are related to the execution of N , as stated in Theorem 1
issued from [26].

Theorem 1 (Reachability Necessary Condition).

Let N = 〈P, T, F 〉 be a workflow net. If Ma
∗−→ Mb then

there exists a valuation satisfying S(N,Ma,Mb).

More precisely, the constraint system S(N,Ma,Mb)
models the fact that for each place p of N , the num-
ber of token(s) entering p plus the number of token(s)
in Ma(p) is equal to the number of tokens leaving p plus
the number of token(s) in Mb(p). Let ν be a valuation
function satisfying S(N,Ma,Mb), ν aims at modelling a
transition sequence σ such that ∀t ∈ T,Ot(σ) = ν(t), de-
noted ν |= σ. However, there is no guarantee that there
exists such σ corresponding to an execution of N reach-
ing the marking Mb from the marking Ma. Solutions
of S(N,Ma,Mb) which do not correspond to an execu-
tion of N are called spurious solutions. Indeed, spurious
solutions can appear because the order of transition fir-
ing is not taken into account in the modelled execution.
For example, consider E1 the workflow net depicted in
Fig. 2.1, the valuation function ν1 : P ∪ T → N de-
fined such that ∀ n ∈ {i, p1, p2, t2, t3}, ν1(n) = 1 and
∀ n ∈ {t1, t4, o}, ν1(n) = 0 satisfies S(E1,Mi,Mi) but
does not model an execution of E1. Indeed, in this ex-
ample, the transitions involved (i.e. t2 and t3) can not
be fired in any order from the initial marking (i.e. Mi).

Nevertheless, as stated in Theorem 1, if there is no
valuation satisfying S(N,Ma,Mb) then the marking Mb

is not reachable from marking Ma. In this sense the con-
straint system S(N,Ma,Mb) defines an over-approxima-
tion of all the executions of N reaching the marking Mb

from the marking Ma.
In order to dismiss the spurious solutions of S, [3]

proposes to refine it. To do so, it considers structural
features of the subnets corresponding to executions mod-
elled by S.
Let ν be a solution of the S(N,Ma,Mb) constraint sys-
tem, the subnet associated with it is an ordinary Petri
net such that only the places and transitions of N in-
volved in the ν valuation are considered. Note that the
decomposition process also removes the places which
have a greater or equal number of tokens in the mark-
ing Ma (resp. Mb) with respect to the number of tokens
consumed from (resp. produced in) those places.

Definition 7 (State Equation Solution Subnet).
Let N = 〈P, T, F 〉 be a workflow net, Ma, Mb two mark-
ings of N , ν : P ∪ T → N a satisfying valuation of
S(N,Ma,Mb), U+ : P 7→ N a function such that ∀p ∈
P, U+(p) =

∑
t∈p• ν(t) and U− : P 7→ N a function such

that ∀p ∈ P, U−(p) =
∑
t∈•p ν(t). We define the subnet

sN(ν) = 〈sP, sT, sF 〉 as an ordinary Petri net where:

– sP = {p ∈ P | ν(p) > 0∧ (U+(p) > Ma(p)∨U−(p) >
Mb(p))}

– sT = {t ∈ T | ν(t) > 0}, and
– sF = {(a, b) ∈ F | a ∈ (sP ∪ sT) ∧ b ∈ (sP ∪ sT)}

Let us now recall that an unmarked siphon cannot
be marked and a marked trap cannot be unmarked[26].
Therefore, the subnet sN(ν) of a non spurious solu-
tion ν of S(N,Ma,Mb) does not contain a trap nor a
siphon. Indeed, as a marked trap cannot be unmarked
and places marked in the final marking Mb have been
removed, sN(ν) cannot contain a trap. Likewise as an
unmarked siphon cannot be marked and places of sN(ν)
must have at least a token consumed, sN(ν) cannot con-
tain a siphon.

To illustrate this, let us consider the subnet associ-
ated with the valuation ν1 previously defined as an ex-
ample of spurious solution of S(E1,Mi,Mi). This sub-
net, depicted in Fig. 3.1, contains a siphon composed of
the places p1 and p2.

Figure 3.1. An example of a WF-net

We continue the reasoning by noting an interest-
ing property of the subnet sN(ν) of any solution ν of
S(N,Ma,Mb) which relates the presence of siphons to
the presence of traps, and vice-versa, as stated in Theo-
rem 2 issued from [3].

6

Theorem 2 (Siphon/Trap Property of Subnets).
Let N = 〈P, T, F 〉 be a workflow net, Ma, Mb two mark-
ings of N , ν : P × T → N a valuation satisfying
S(N,Ma,Mb) and sN(ν) the subnet associated with ν.

If sN(ν) contains a trap (resp. siphon) G then G is
also a siphon (resp. trap).

Therefore, according to Theorem 2, one can decide
the presence of siphons and traps in a subnet by decid-
ing the presence of siphons only (or, equivalently, the
presence of traps only). The presence of siphons in an
ordinary Petri net can be decided by evaluating the sat-
isfiability of the constraint system introduced in Theo-
rem 3 that is issued from [3]

Theorem 3 (Siphon Presence Constraint System).
Let N = 〈P, T, F 〉 be an ordinary Petri net and B(N) the
constraint system defined as follows:

– ∀p ∈ P,∀t ∈ •p.
∑
p′∈•t ξ(p

′) ≥ ξ(p)
–
∑
p∈P ξ(p) > 0

where ξ : P → {0, 1} is a valuation function.
N contains a siphon if and only if there is a valuation

satisfying B(N).

Using the constraint system S together with the con-
straint system B leads to the definition of the constraint
system Q as follows.

Definition 8 (State Equation + Absence of Siphon
Constraint System). Let N = 〈P, T, F 〉 be a work-
flow net and Ma, Mb two markings of N , the constraint
system Q(N,Ma,Mb), associated with it, is:

– S(N,Ma,Mb) |= ν
– @ ξ such that B(sN(ν)) |= ξ

where ν : P ∪ T → N is a valuation function.

While many of the spurious solutions of S(N,Ma,Mb)
are discarded from the solutions of Q(N,Ma,Mb), the
latter constraint system still defines an over-approxima-
tion of the valid executions of N leading to Mb from Ma.
This is because the absence of traps and siphons in the
subnets of solutions of Q(N,Ma,Mb) is only a necessary
but not a sufficient condition to the existence of a valid
execution of N leading to Mb from Ma.

Figure 3.2. An example of a WF-net (E2)

To illustrate this claim, let us consider the E2 work-
flow depicted in Fig. 3.2. The valuation ν2, where ∀ n ∈
{i, p2, o, t1 , t2, t3, t4, t5, t6, t7}, one has ν2(n) = 1 and
∀ n ∈ {p1, p3, p4}, one has ν2(n) = 2, is a valuation
satisfying Q(E2,Mi,Mo). However, the transition t2 of
this workflow E2 is a dead transition from the initial
marking Mi. Indeed, to be enabled, the transition t2 re-
quires the presence of two tokens (one in place p1 and
one in place p4), but the initial marking only has one to-
ken and the only transition creating a token is t3 which
requires a token to be produced by t2 in place p2. There-
fore there exists no execution σ such that Mi

σ−→Mo and
Ot2(σ) > 0. It follows that ν2 is a spurious solution of
Q(E2,Mi,Mo).

While defining an over-approximation might be use-
ful for the verification of safety properties, in our case,
our goal is to be able to model any executions of a
workflow net with enough precision in order to verify
modal specifications. To further refine Q and to define
sufficient conditions structurally, additional constraints
are required. To this end, [3] considers solution ν of
Q(N,Ma,Mb) such that sN(ν) is a marked graph. The
resulting constraint system is denoted D.

Definition 9 (State Equation + Absence of Siphon
+ MG Constraint System). Let N = 〈P, T, F 〉 be
a workflow net, and Ma, Mb two markings of N , the
constraint system D(N,Ma,Mb) associated with it, is:

– ∀p ∈ P,
∑
t∈•p ν(t) ≤ 1 ∧

∑
t∈p• ν(t) ≤ 1

– Q(N,Ma,Mb) |= ν

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 9
are related to the execution of a workflow net N , as
stated in Theorem 4 issued from [3].

Theorem 4 (Path Existence). Let N = 〈P, T, F 〉 be
a workflow net and Ma, Mb two markings of N . If there
exists a valuation ν : P ∪ T → N such that
D(N,Ma,Mb) |= ν then there exists a transition se-

quence σ such that Ma
σ−→Mb and ν |= σ.

As stated in Theorem 4, any solutions ofD(N,Ma,Mb)
model at least one valid execution of N leading to Mb

from Ma. Note the solutions of D are abstractions of
the executions they model as the ordering of the transi-
tions they involve is not explicitly computed. However,
as N might not belong to the subclass of marked graph,
not all valid executions of N leading to Mb from Ma

can be modelled by solutions of D(N,Ma,Mb). In this
sense, the solutions of D(N,Ma,Mb) define an under-
approximation of the valid executions of N leading to
Mb from Ma.

Every execution modelled by the constraint system
D is called a segment, and [3] proceeds by decomposing
any execution of a workflow net into such segments. The
resulting constraint system is denoted U .

7

Definition 10 (k-segment Execution Constraint
System). Let N = 〈P, T, F 〉 be a workflow net, Ma, Mb

two markings of N , and k ∈ N a number of segments,
the constraint system U(N,Ma,Mb, k), associated with
it, is:

– ∃ M1, ν1,D(N,Ma,M1) |= ν1
– ∀ i ∈ {2, .., k − 1},∃ Mi, νi,D(N,Mi−1,Mi) |= νi
– ∃ νk,D(N,Mk−1,Mb) |= νk
– ∀ n ∈ P ∪ T, ν(n) =

∑
i∈{1,..,k} νi(n)

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system of Definition 10
are related to the execution of a workflow net N , as
stated in Theorem 5 issued from [3].

Theorem 5 (Path Existence). Let N = 〈P, T, F 〉 be
a workflow net and Ma, Mb two markings of N . There
exists a transition sequence σ such that Ma

σ−→ Mb if
and only if there exist k ∈ N a number of segments
and ν : P ∪ T → N a valuation function such that
U(N,Ma,Mb, k) |= ν and ν |= σ.

By Theorem 5, every execution composed of at most
k segments and leading to a marking Mb from a mark-
ing Ma of a workflow net N can be modelled by the
constraint system U(N,Ma,Mb, k).

We now have recalled how ordinary workflow nets
correct execution can by modelled by constraint systems
according to previous work in [3]. More precisely, we have
reviewed how every execution could be modelled by seg-
ments structurally verifiable. We now continue by de-
scribing how such modelling can be used to verify modal
specifications over ordinary workflow nets.

Intuitively, a workflow net N is valid with respect
to a may-formula m if and only if there exists a correct
execution σ of N such that the modal property expressed
by m is satisfied by the execution σ (i.e. N |=may m ⇔
∃ σ ∈ Σ, σ |= m). Likewise a workflow netN is valid with
respect to a must-formula m if and only if it is a valid
may-formula ans there does not exist a correct execution
σ of N such that the modal property expressed by ¬m
is satisfied by the execution σ (i.e. N |=must m⇔6 ∃ σ ∈
Σ, σ |= (¬m)).

Furthermore, when determining whether or not a
workflow net satisfies the modal properties of interest,
two decision problems are distinguished. The first one,
called the K-bounded validity of a modal formula, only
considers executions formed by K segments, at most.
The second one, called the unbounded validity of a modal
formula, deals with executions formed by an arbitrary
number of segments; it generalises the first problem.

In order to verify modal specifications, the method
proposed in [3] relies on their expression by constraints.
To build these constraints, for every transition t ∈ T , the
corresponding terminal symbol of the modal formulae is
replaced by ν(t) > 0, where ν is the valuation of the
constraint system.

Given a modal formula f ∈ S, C(f, ν) is the con-
straint built from f , where ν is a valuation of the con-
straint system. Upon the expression of a modal property
by a constraint system, we build a constraint system
extending the constraint system U(N,Mi,Mo, k) which
models the correct execution of N composed of at most
k segments.

Definition 11 (k-segment Modal Execution Con-
straint System). Let N = 〈P, T, F 〉 be a workflow net,
k ∈ N a number of segments, and m ∈ S(N) a modal
property, the associated constraint system V(N, k,m) is
defined as follow:

– U(N,Mi,Mo, k) |= ν
– C(N,m) |= ν

where ν : P ∪ T → N is a valuation function.

The solutions of the constraint system derived from
Definition 11 are related to the execution of a workflow
net N , as stated in Theorem 6 issued from [3].

Theorem 6 (Path Existence). Let N = 〈P, T, F 〉 be
a workflow net and m ∈ S(N) a modal property.

There exists a transition sequence σ such that Mi
σ−→

Mo and σ |= m if and only if there exists k ∈ N and ν :
P ∪ T → N a valuation function such that V(N, k,m) |=
ν, and ν |= σ.

By Theorem 6, there exists a correct execution of
N composed of at most k segments satisfying a modal
property m ∈ S(N) if and only if there exists a valua-
tion satisfying the constraint system V(N, k,m). It fol-
lows that we can determine the K-bounded validity of
a modal property m, by determining the satisfiability
of V(N,K,m). Consequently let m be a may-formula
(resp. a must-formula), the workflow net N is said to
be K-bounded valid with respect to m if and only if
∃ ν,V(N,K,m) |= ν (resp. 6 ∃ ν1,V(N,K,¬m) |= ν1 ∧
∃ ν2,V(N,K,m) |= ν2).

It follows that using a fixed K, the K-bounded va-
lidity of a modal formula, i.e. the validity of the modal
formula over correct executions formed by at most K
segments, can be inferred by evaluating the satisfiabil-
ity of the corresponding constraint system. Furthermore,
it has been shown that for K sufficiently large the K-
bounded validity of a modal formula corresponds to its
unbounded validity [3].

To summarize, this method proposes to encompass
both the modelling of workflow nets executions through
their decomposition into structurally verifiable segments
and the modal specification within the framework of con-
straints modelling. It enables their verification thanks to
the use of mature and efficient constraint solving tools.
The next section introduces the toolchain developed to
support this method.

8

Figure 4.1. Modal specifications verification toolchain

4 Modal Specifications Verification Tool

This section describes the toolchain developed to exper-
imentally validate and evaluate the modal specification
verification method described in Sect. 3.2. It presents
a complete and mature toolchain able to carry out the
modal specification verification of workflow nets based
on constraints system solving. Figure 4.1 depicts the ar-
chitecture of the verification toolchain, which enables to
verify modal specifications using CLP or SMT solving.

First, the workflow net and the modal specification
models are given as inputs to the verification software(1).
Both models conform to an ad-hoc standard, i.e. a dedi-
cated meta-model, so that all information needed by the
verification tool is provided.

Afterwards, the two code generators use the infor-
mation provided by the workflow and the modal spec-
ification(1) to generate the code corresponding to the
constraint system defined in Sect. 3.2. Such codes are
expressed in the input format of the targeted constraint
solver(2). To evaluate the produced constraint systems,
this toolchain relies on either SMT-Lib for Z3 [10] version
4.4.0, an SMT solver that finished first during the 2014
SMT-COMP challenge1 for solving non-linear arithmetic
problems, or SICStus Prolog [8] version 4.3.2, a CLP
solver (embedding a CLP(FD) library) that obtained the
third place during the 2014 MiniZinc challenge2.

Next, by applying the verification algorithm described
in Sect. 3.2, the verification module queries the related
solver with the generated code to determine the validity
of the modal specification(3).

Finally, a report is produced(4), giving the verdict
about the validity of the modal specification as well as
the verification time.

Figures 4.2 and 4.4 illustrate the encoding used to
model the constraints seen in Sect. 3.2 respectively for
the SMT-Lib and Prolog language. The constraints are
generated for the workflow E1 depicted by Fig. 2.1 and
the modal formula to be checked is E1 |=may t2∧t3, ask-
ing whether there exists a valid execution of E1 such that
both transitions t2 and t3 are fired. Note that this is in-
deed the case since for instance the path σ = t1, t3, t2, t3,
t2, t4 is valid and fires both t2 and t3 at least once.

1 www.smtcomp.org
2 www.minizinc.org/challenge.html

We use a particular naming convention to encode
each valuation and constraint seen in Sect. 3.2. Note that
this convention is followed for both Prolog and SMT-Lib
encodings. Let P and T be respectively the set of places
and transitions in E1. For all p ∈ P , all t ∈ T and all
i ∈ N:

– A variable Ap stands for the marking of the place
p before firing a sequence of transitions (i.e. Ap ≡
Ma(p)).

– A variable Bp stands for the marking of the place p af-
ter firing a sequence of transitions (i.e. Bp ≡Mb(p)).

– A variable Pp stands for the valuation of the place p
after firing a sequence of transitions (i.e. Pp ≡ ν(p)).

– A variable Tt stands for the valuation of the transi-
tion t (i.e. Tt ≡ ν(t)).

– A variable Xp stands for the valuation of the place p
in the subnet used for the detection of siphons (i.e.
Xp ≡ ξ(p)).

– The variables M1p, M2p and M3p respectively stand for
M1(p), M2(p) and M3(p).

Each constraint seen in Sect. 3.2 has also the corre-
sponding function in the encoding.

The functions initialMarking and finalMarking

respectively encode the initial marking and the final mark-
ing of a workflow.

They restrict the modelled executions of a workflow
net to its correct executions. Relaxing these constraints
would enable the proposed method to be applicable to
other classes of Petri nets. For example, by removing the
constraint associated with the final marking, it would be
possible for the proposed approach to model executions
of Petri nets denoting reactive behaviour, without any
final place.

The function stateEquation encodes the state equa-
tion constraint system (see Def. 6), therefore taking Ma

(Ai, Ao, Ap1 and Ap2) and Mb (Bi, Bo, Bp1 and Bp2)
as parameters and returning a valuation for each place
(Pi, Po, Pp1 and Pp2) and each transition (Tt1, Tt2, Tt3
and Tt4) of the workflow. The function stateEquation

first ensures that all variables belong to N (see for in-
stance the constraint Tt3 >= 0) and then applies the
state equation constraint to each place of the workflow
(see for instance for the place p1 the constraints Pp1 =

Tt3 + Tt4 + Bp1 and Pp1 = Tt1 + Tt2 + Ap1).

9

1 ; Variables definitions here

2 ; (declare -fun M1i () Int)

3 ; ...

4 ; (declare -fun T2t4 () Int)

5
6 (de f ine−fun i n i t i a l M a r k i n g ((Ai In t) (Ao In t) (Ap1 In t) (Ap2 In t)) Bool
7 (and (= Ai 1) (= Ao 0) (= Ap1 0) (= Ap2 0))
8)
9

10 (de f ine−fun f i na lMark ing ((Bi In t) (Bo In t) (Bp1 In t) (Bp2 In t)) Bool
11 (and (= Bo 1) (= Bi 0) (= Bp1 0) (= Bp2 0))
12)
13
14 (de f ine−fun s tateEquat ion
15 (
16 (Ai In t) (Ao In t) (Ap1 In t) (Ap2 In t)
17 (Bi In t) (Bo In t) (Bp1 In t) (Bp2 In t)
18 (Pi In t) (Po In t) (Pp1 In t) (Pp2 In t)
19 (Tt1 In t) (Tt2 In t) (Tt3 In t) (Tt4 In t)
20) Bool
21 (and
22 (>= Ai 0) (>= Ao 0) (>= Ap1 0) (>= Ap2 0)
23 (>= Bi 0) (>= Bo 0) (>= Bp1 0) (>= Bp2 0)
24 (>= Pi 0) (>= Po 0) (>= Pp1 0) (>= Pp2 0)
25 (>= Tt1 0) (>= Tt2 0) (>= Tt3 0) (>= Tt4 0)
26 (= (+ Ai) Pi) (= (+ Bi Tt1) Pi)
27 (= (+ Ao Tt4) Po) (= (+ Bo) Po)
28 (= (+ Ap1 Tt1 Tt2) Pp1)
29 (= (+ Bp1 Tt3 Tt4) Pp1)
30 (= (+ Ap2 Tt3) Pp2)
31 (= (+ Bp2 Tt2) Pp2))
32)
33
34 (de f ine−fun formula ((Tt2 In t) (Tt3 In t)) Bool (and (> Tt2 0) (> Tt3 0)))
35
36 (de f ine−fun noSiphon
37 (
38 (Ai In t) (Ao In t) (Ap1 In t) (Ap2 In t)
39 (Bi In t) (Bo In t) (Bp1 In t) (Bp2 In t)
40 (Pi In t) (Po In t) (Pp1 In t) (Pp2 In t)
41 (Tt1 In t) (Tt2 In t) (Tt3 In t) (Tt4 In t)
42) Bool
43 (and (not (e x i s t s
44 ((Xi In t) (Xo In t) (Xp1 In t) (Xp2 In t))
45 (and
46 (and
47 (> (+ Xi Xo Xp1 Xp2) 0)
48 (and (>= Xi 0) (<= Xi 1))
49 (and (>= Xo 0) (<= Xo 1))
50 (and (>= Xp1 0) (<= Xp1 1))
51 (and (>= Xp2 0) (<= Xp2 1))
52 (=> (or (> Ai 0) (> Bi 0) (= Pi 0)) (= Xi 0))
53 (=> (or (> Ao 0) (> Bo 0) (= Po 0)) (= Xo 0))
54 (=> (or (> Ap1 0) (> Bp1 0) (= Pp1 0)) (= Xp1 0))
55 (=> (or (> Ap2 0) (> Bp2 0) (= Pp2 0)) (= Xp2 0))
56 (=> (> Tt1 0) (and (>= (+ Xi) Xp1)))
57 (=> (> Tt2 0) (and (>= (+ Xp2) Xp1)))
58 (=> (> Tt3 0) (and (>= (+ Xp1) Xp2)))
59 (=> (> Tt4 0) (and (>= (+ Xp1) Xo)))
60)
61)
62)))
63)
64
65 (de f ine−fun markedGraph
66 (
67 (Tt1 In t) (Tt2 In t) (Tt3 In t) (Tt4 In t)
68) Bool
69 (and
70 (<= T1 1)
71 (<= (+ T1 T2) 1) (<= (+ T3 T4) 1)
72 (<= T3 1) (<= T2 1)
73 (<= T4 1)
74)
75)
76
77 (de f ine−fun segment
78 (
79 (Ai In t) (Ao In t) (Ap1 In t) (Ap2 In t)
80 (Bi In t) (Bo In t) (Bp1 In t) (Bp2 In t)
81 (Pi In t) (Po In t) (Pp1 In t) (Pp2 In t)
82 (Tt1 In t) (Tt2 In t) (Tt3 In t) (Tt4 In t)
83) Bool
84 (and
85 (s ta teEquat ion
86 Ai Ao Ap1 Ap2
87 Bi Bo Bp1 Bp2
88 Pi Po Pp1 Pp2
89 Tt1 Tt2 Tt3 Tt4
90)
91 (noSiphon
92 Ai Ao Ap1 Ap2
93 Bi Bo Bp1 Bp2
94 Pi Po Pp1 Pp2
95 Tt1 Tt2 Tt3 Tt4
96)
97)
98)

Figure 4.2. SMT-Lib code of a segment of workflow

(a s s e r t (i n i t i a l M a r k i n g M1i M1o M1p1 M1p2))
(a s s e r t (f ina lMark ing M3i M3o M3p1 M3p2))
(a s s e r t (formula (+ T1t2 T2t2) (+ T1t3 T2t3)))
(a s s e r t (segment

M1i M1o M1p1 M1p2 M2i M2o M2p1 M2p2
P1i P1o P1p1 P1p2 T1t1 T1t2 T1t3 T1t4

))
(a s s e r t (markedGraph T1t1 T1t2 T1t3 T1t4))
(a s s e r t (segment

M2i M2o M2p1 M2p2 M3i M3o M3p1 M3p2
P2i P2o P2p1 P2p2 T2t1 T2t2 T2t3 T2t4

))
(a s s e r t (markedGraph T2t1 T2t2 T2t3 T2t4))
(check−sat−us ing smt)
(get−model)

Figure 4.3. Input encoded in SMT-Lib language

1 :− use module (l i b r a r y (c l p f d)) .
2 :− use module (l i b r a r y (l i s t s)) .
3
4 i n i t i a l M a r k i n g ([1 , 0 , 0 , 0]) .
5
6 f i na lMark ing ([0 , 1 , 0 , 0]) .
7
8 s tateEquat ion (
9 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,

10 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4]
11):−
12 domain ([Ai , Ao , Ap1 , Ap2] , 0 , sup) ,
13 domain ([Bi , Bo , Bp1 , Bp2] , 0 , sup) ,
14 domain ([Pi , Po , Pp1 , Pp2] , 0 , 50) ,
15 domain ([Tt1 , Tt2 , Tt3 , Tt4] , 0 , 50) ,
16 sum ([Ai] , #= , Pi) ,
17 sum ([Bi , Tt1] , #= , Pi) ,
18 sum ([Ao , Tt4] , #= , Po) ,
19 sum ([Bo] , #= , Po) ,
20 sum ([Ap1 , Tt1 , Tt2] , #= , Pp1) ,
21 sum ([Bp1 , Tt3 , Tt4] , #= , Pp1) ,
22 sum ([Ap2 , Tt3] , #= , Pp2) ,
23 sum ([Bp2 , Tt2] , #= , Pp2) .
24
25 formula ([Tt2 , Tt3]):− ((Tt2 #> 0) , (Tt3 #> 0)) .
26
27 bui ldSubnet (
28 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
29 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4] ,
30 [Xi , Xo , Xp1 , Xp2]
31):−
32 domain ([Xi , Xo , Xp1 , Xp2] , 0 , 1) ,
33 (((Ai #> 0) #\/ (Bi #> 0) #\/ (Pi #= 0)) #=> (Xi #= 0)) ,
34 (((Ao #> 0) #\/ (Bo #> 0) #\/ (Po #= 0)) #=> (Xo #= 0)) ,
35 (((Ap1 #> 0) #\/ (Bp1 #> 0) #\/ (Pp1 #= 0)) #=> (Xp1 #= 0)) ,
36 (((Ap2 #> 0) #\/ (Bp2 #> 0) #\/ (Pp2 #= 0)) #=> (Xp2 #= 0)) .
37
38 s iphon ([Tt1 , Tt2 , Tt3 , Tt4] , [Xi , Xo , Xp1 , Xp2]):−
39 sum ([Xi , Xo , Xp1 , Xp2] , #> , 0) ,
40 ((Tt1 #> 0) #=> (((Xi) #>= Xp1))) ,
41 ((Tt2 #> 0) #=> (((Xp2) #>= Xp1))) ,
42 ((Tt3 #> 0) #=> (((Xp1) #>= Xp2))) ,
43 ((Tt4 #> 0) #=> (((Xp1) #>= Xo))) ,
44 l a b e l i n g ([f f c , step , up] , [Xi , Xo , Xp1 , Xp2]) .
45
46 noSiphon (
47 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
48 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4]
49):−
50 bui ldSubnet (
51 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
52 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4] ,
53 [Xi , Xo , Xp1 , Xp2]
54) ,
55 l a b e l i n g ([f f c , step , up] , [Tt1 , Tt2 , Tt3 , Tt4]) ,
56 \+ s iphon ([Tt1 , Tt2 , Tt3 , Tt4] , [Xi , Xo , Xp1 , Xp2]) .
57
58 markedGraph (
59 [T1 , T2 , T3 , T4]
60):−
61 T1 #<= 1 ,
62 T1 + T2 #<= 1 , T3 + T4 #<= 1 ,
63 T3 #<= 1 , T2 #<= 1 ,
64 T4 #<= 1 .
65
66 segment (
67 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
68 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4]
69):−
70 s tateEquat ion (
71 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
72 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4]
73) ,
74 noSiphon (
75 [Ai , Ao , Ap1 , Ap2] , [Bi , Bo , Bp1 , Bp2] ,
76 [Pi , Po , Pp1 , Pp2] , [Tt1 , Tt2 , Tt3 , Tt4]
77) .

Figure 4.4. SICStus code of a segment of workflow

10

The function formula encodes the modal formula to
be verified. This function expresses the exact same con-
straint as the one expressed by the formula (in our case
t2 ∧ t3) and states that the valuation of each transition
appearing in it must be greater than 0. Therefore, for
the formula t2 ∧ t3, we have the constraint Tt2 > 0 ∧
Tt3 > 0.

The function noSiphon encodes the absence of siphon
constraint system (see Def. 8). Note that for SICStus
(Fig. 4.4), the functions buildSubnet and siphon are
subsidiary functions respectively used to build the sub-
net as defined in Def. 7 and to check the presence of a
siphon. The noSiphon function ensures that there exists
no valuation such that B(N) (see Th. 3) is satisfied.

The function markedGraph encodes the marked graph
constraint system (see Def. 9). It ensures that the seg-
ment proposed by the solvers is indeed a marked graph,
meaning that there can only be at most one transition
before and one transition after each place.

The function segment encodes the path existence
constraint system (see Th. 4). If there exists a valuation
satisfying this constraint, there exists a valid sequence
of transition (also called a segment of execution) leading
from the marking Ma to the marking Mb. The expres-
sion of the k-segments constraint defined in Def. 10 is
implicitly achieved by successive calls to the segment

function (for more details, see the explanation for the
inputs given below).

The encoding in Fig. 4.3 and 4.5 allows us to deter-
mine, using respectively Z3 and SICStus, whether there
exists a correct execution of the workflow in Fig. 2.1
made of two segments such that both t2 and t3 are fired.
These inputs implicitly express the k-segment constraint
given in Def. 11. Note that for this example, we used a
may specification. Thus, if the solvers find a valuation
for these inputs, it means that the specification is valid,
since there exists a valid sequence of transitions from the
initial marking to the final marking with two segments.

i n i t i a l M a r k i n g ([M1i , M1o , M1p1 , M2p2]) ,
f i na lMark ing ([M3i , M3o , M3p1 , M3p2]) ,
segment (

[M1i , M1o , M1p1 , M1p2] , [M2i , M2o , M2p1 , M2p2] ,
[P1i , P1o , P1p1 , P1p2] , [T1t1 , T1t2 , T1t3 , T1t4]

) ,
markedGraph ([T1t1 , T1t2 , T1t3 , T1t4]) ,
segment (

[M2i , M2o , M2p1 , M2p2] , [M3i , M3o , M3p1 , M3p2] ,
[P2i , P2o , P2p1 , P2p2] , [T2t1 , T2t2 , T2t3 , T2t4]

) ,
markedGraph ([T2t1 , T2t2 , T2t3 , T2t4]) ,
S1 #= T1t2 + T2t2 , S2 #= T1t3 + T2t3 ,
formula ([S1 , S2]) .

Figure 4.5. Input encoded for SICStus Prolog

M1i=1 , M1o=0 , M1p1=0 , M1p2=0 , M2i=0 , M2o=0 , M2p1=0 , M2p2=1 ,
M3i=0 , M3o=1 , M3p1=0 , M3p2=0
P1i=1 , P1o=0 , P1p1=1 , P1p2=1 , P2i=0 , P2o=1 , P2p1=1 , P2p2=1 ,
T1t1=1 , T1t2=0 , T1t3=1 , T1t4=0 , T2t1=0 , T2t2=1 , T2t3=0 , T2t4=1

Figure 4.6. Output given by the solvers

These two segments are given in Fig. 4.7 and derived
from the valuation proposed by the solvers (see Fig. 4.6),
starting (resp. ending) in the initial (resp. final) mark-
ing where only the input place i (resp. output place o)
is marked. The first segment brings the token from the
source place i to the place p2 by firing t1 and t3 suc-
cessively. The second segment brings the token from the
place p2 to the sink place o by firing t2 and t4.

Figure 4.7. The two segments of execution given by both solvers

Let us notice that when using SICStus, multiple la-
belling heuristics can be used. Figure 4.4 illustrates the
use of the First Fail Cut strategy (ffc, step and up),
given in lines 44 and 55, that is the more efficient CLP
heuristic observed during experiments.

5 Experimental Evaluation of Modal
Specifications Verification

This section presents the experimental evaluation of the
verification of modal specifications over workflow nets
accordingly to the approach presented in Sect. 3.2, and
thanks to the implemented toolchain described in Sect. 4.
To reach this goal, we first detail the objectives of the
proposed experimental evaluation. Second, we define the
experimental protocol and introduce the toolchain im-
plemented in order to carry it on. Finally, the experi-
mental results obtained according to the defined exper-
imental protocol are presented and discussed.

5.1 Objectives

The primary objectives of this experimental evaluation
are to experimentally assess the effectiveness, efficiency
and scalability of the proposed modal specification veri-
fication method over workflow nets of growing size and
complexity.

In the context of this experimentation, the proposed
method is said to be effective over a given instance –
a workflow net together with its modal specification –
if and only if it is able to assign a verdict about the
(in)validity of the given modal specification in an ad-
missible time.

If the proposed method is effective over a given modal
specification, its efficiency is its ability to return such a
verdict in the least amount of time and memory. It fol-
lows that the proposed method is scalable if it is effective
and efficient over workflow nets of growing size and com-
plexity.

11

The secondary objective of this experimental evalua-
tion is to compare the relative efficiency of the proposed
method when employing two different constraint reso-
lution approaches: Constraint Logic Programming and
Satisfiability Modulo Theories.

5.2 Experimental Protocol

On the basis of the previously introduced objectives, the
following experimental protocol has been designed.

About effectiveness assessment, an admissible time
is arbitrary fixed to a reasonable value of 20 minutes,
i.e. the time-out of constraint solver queries if fixed to
20 minutes. To evaluate the effectiveness of the proposed
method, this protocol thus consists in gathering the pro-
posed verification approach ability to assign a verdict to
the instances of the considered data set in an admissible
time of 20 minutes. If a verdict is assigned, the required
time is also gathered in order to evaluate the proposed
verification approach efficiency.

Furthermore, in order to compare the relative effi-
ciency of the proposed method when employing two dif-
ferent constraint resolution approaches (CLP vs SMT),
each instance of the considered data set has to be evalu-
ated once using a CLP constraint solver, and once using
a SMT solver.

Moreover, to make conclusion and feedback relevant
and credible, and to be able to evaluate reliability as well
as scalability of the methods, this information has to be
calculated from a broad range of modal specifications
and workflow nets.

Indeed, the type of modal specifications shall be taken
into account because, to conclude about their validity,
the verification method may require the computation of
the over-approximation of the workflow nets executions
or a full decomposition into segments. The size of the
modal formula to be verified is also important since a
larger formula may constrain further the system to be
solved.

The proposed experimental protocol thus considers
workflow nets of realistic and industrial size by evaluat-
ing workflow nets of size up to 1000 nodes. Moreover, not
only the size of the workflow nets is considered but also
their complexity by evaluating workflow nets of classes
with a growing expressiveness (cf. Sect. 2.2). Therefore,
to experimentally evaluate the effectiveness, efficiency
and scalability of the proposed modal specification veri-
fication as well as the relative efficiency of the proposed
method when employing two different constraint resolu-
tion approaches (CLP vs SMT) over instances of growing
size and complexity, the following parameters are taken
into account:

– Class of the workflow nets (State machine, Marked
graph, Free-choice, and Ordinary nets)

– Size of the workflow nets (25 ∗ i where i ∈ {1, .., 40})

– Type of modal specification (Valid may-formula, In-
valid may-formula, Valid must-formula, and Invalid
must-formula)

– Size of the modal formula (5 and 15 literals)

For each combination of the above parameters, a cor-
responding modal formula and a workflow net are ran-
domly generated. This forms a data set of 1280 instances
of growing size and complexity. Furthermore, in order to
avoid statistical bias, five different data sets – i.e. a to-
tal of 6400 workflow nets and modal specifications – are
randomly generated. The following section introduces
the data set generation toolchain that has been used to
carry the experimental protocol described in Sect. 5.2.

5.3 Data Set Generation Tools

To perform the proposed experimental protocol a bench-
mark generation toolchain has been implemented.

The purpose of these generation tools is to enable
the generation of large benchmarks of realistic workflow
nets of growing size and complexity together with their
associated modal specifications according to the criteria
defined in the experimental protocol of Sect. 5.2.

Figure 5.1 depicts the global architecture of the tool-
ing developed to randomly generate modal formulae and
workflow nets as defined by the protocol introduced in
the previous section. The elements in the middle line of
the figure represent the tools, while the elements above
and below represent data files.

The entry point of the toolchain is an XML file that
contains the specifications of the formula to be gener-
ated(1): its intended size as well as the probability at
which the operator and, or, and not will be used by the
Formula Generator(2) to produce a Formula(3) satisfy-
ing these given specifications. According to these speci-
fications, the Formula Generator(2), starting from a sin-
gle literal, recursively and randomly replaces an exist-
ing literal by (according to the given probability) ei-
ther its negation, or its conjunction/disjunction with a
newly introduced literal. Once the desired formula’s size
is reached, the produced formula is then saved in an
XML file(3).

Expanded
Workflow net

8

Workflow net
Expander

7

Formula Generator

2

Formula

3

Formula
to Workflow net

4

Workflow net

5

Formula
Specification

1

Figure 5.1. Architecture of the generation toolchain

12

The next step consists to produce an XML file de-
scribing a workflow net(5) satisfying (resp. not satisfy-
ing) the modal formula (resp. the negation of the modal
formula) of the input formula interpreted as a must-
formula. This computation is done using the Formula to
Workflow net tool(4) that maps each operator of the in-
put formula to its corresponding workflow net structure.
Note that these structures can be different depending on
the class of workflow nets that we intend to obtain. Fur-
ther, we underline the fact that workflow nets generated
this way are sound.

To illustrate this generation step, let us consider the
must-formula t1 ∧ (t2 ∨ t3). Figure 5.2 depicts the gener-
ated workflow net E3 such that E3 |=must t1∧(t2∨t3). In
this figure, black boxes outline the nesting of the struc-
tures mapped from the operators of the input formula.

Figure 5.2. Workflow net E3 generated for the modal specifica-
tion E3 |=must t1 ∧ (t2 ∨ t3)

Finally, the produced workflow net(5) is expanded
using the Workflow Expander tool(7). This tool expands
the input workflow net(5) by randomly and successively
applying synthesis rules (i.e. stepwise refinement) which
add transitions and/or places while preserving the valid-
ity of the modal specification associated. The synthesis
rules considered are the inverse rules of the reduction
rules introduced in [5]. The result is an expanded work-
flow net saved as an XML file(8) satisfying or not the
modal formula of the produced formula(3) interpreted
as a may-formula or a must-formula. Note that, as the
input workflow net is sound and the applied synthesis
rules preserve soundness, the resulting expanded work-
flow net is also sound.

This expansion step is analogue to the benchmarks
generation of Petri nets by random stepwise refinement
proposed and discussed in [39]. The main difference be-
tween our expansion process and the generation process
in [39] is the fact that the synthesis rules we consider
generalize and therefore encompass and extend the syn-
thesis rules that they considered thus producing more
realistic and complex workflow nets. Indeed, experimen-
tal work presented in [5] has illustrated the effectiveness,
i.e. the ability to reduce workflow nets, of the reduc-
tion rules it introduced over two benchmarks composed

of a total of 1976 industrial workflow nets by provid-
ing a reduction factor of 82.2% on average. Further, it
has demonstrated the ability of the proposed reduction
rules to completely reduce all of the sound workflow nets
of these benchmarks of industrial workflow nets thereby
demonstrating the ability of the inverse of the proposed
reduction rules, i.e. synthesis rules, to generate and pro-
duce such sound realistic and industrial workflow nets.
This greatly underlines the relevance and quality of the
workflow nets randomly generated by our toolchain.

Together the produced formula(3) and the produced
expanded workflow net(8) form an instance of the data
set as described by the experimental protocol in Sect. 5.
It should be noticed that the XML output files of this
generation toolchain can be directly used as input files
of the verification toolchain introduced in Sect. 4.

6 Results and Feedback from Experiments

This section presents the experimental results obtained
using the dedicated tool described in Sect. 4 when fol-
lowing the experimental protocol introduced in Sect. 5.2.
All the executions have been computed on a computer
featuring an Intel(R) Xeon(R) CPU X5650 @ 2.67GHz
with 15.6 GiB of memory available. In total, these ex-
perimentations required about 1577 hours (65 days) of
computation.

As said previously, various enumeration predicates
could be used for SICStus, theoretically able to signifi-
cantly reduce the resolution time on some instances. In
order to determine the most adapted to our purpose,
the following combinations have been used during the
experiments for all instances of workflows:

– leftmost, step and up (the default)
– leftmost, step and down

– leftmost, enum and up

– min, step and up

– ffc, step and up

– ffc, bisect and up

Combined with up and either step or bisect, the ffc

(standing for First Fail Cut) enumeration predicate tends
to decrease the number of timeouts produced by SICS-
tus compared to the other combinations tested. Since
the leftmost predicate (the default one) essentially de-
pends on the order in which the variables appear in the
code, it mostly searches through the state space in a
randomized manner. However, when using the ffc pred-
icate, the variables with the smallest domain and with
the most constraints on it are assigned first, which allows
to search through the state space while staying guided
by the structure of the network itself. Since most results
were improved using this particular predicate, all SIC-
Stus experiments have been conducted using the ffc,
step and up combination. Similarly, since all results were
improved using the SMT tactic, this strategy has also
been used for all Z3 experiments.

13

Table 6.1. State-Machine – Metrics

May-Valid/Must-Invalid Must-Valid/May-Invalid

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 492 513 656.5 778

Z3 212.5 528 875 1219

Mean(ms)
SICStus 523 1097 2672 1126

Z3 214 536 882 1240

#Timeout
SICStus 11(5.5%) 36(18%) 64(32%) 79(39.5%)

Z3 0(0%) 0(0%) 0(0%) 116(58%)

Overall
SICStus

Z3

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 428 7805 364 379.5

Z3 56 142 231 361

Mean(ms)
SICStus 6335 14550 385 420

Z3 59 146 245 377

#Timeout
SICStus 141(70.5%) 196(98%) 197(98.5%) 192(96%)

Z3 0(0%) 0(0%) 0(0%) 0(0%)

Overall
SICStus

Z3

Table 6.2. Marked-Graph – Metrics

May-Valid/Must-Invalid Must-Valid/May-Invalid

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 462.5 496.5 655 868

Z3 342.5 970 1691.5 357.5

Mean(ms)
SICStus 470 511 665 863

Z3 354 1034 1937 356

#Timeout
SICStus 0(0%) 0(0%) 0(0%) 0(0%)

Z3 0(0%) 0(0%) 76(38%) 192(96%)

Overall
SICStus

Z3

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 342.5 323.5 359 401.5

Z3 84 185.5 285.5 381

Mean(ms)
SICStus 359 340 367 407

Z3 86 186 292 407

#Timeout
SICStus 0(0%) 0(0%) 0(0%) 0(0%)

Z3 0(0%) 0(0%) 0(0%) 0(0%)

Overall
SICStus

Z3

: Reasonable time, no time-out — : Reasonable time, # time-outs < 50% — : # time-outs > 50%

14

Table 6.3. Free-Choice – Metrics

May-Valid/Must-Invalid Must-Valid/May-Invalid

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 483 556 700 772

Z3 251.5 634 1045 1053

Mean(ms)
SICStus 598 613 2734 6018

Z3 266 634 1080 1069

#Timeout
SICStus 1(0.5%) 13(6.5%) 31(15.5%) 63(31.5%)

Z3 0(0%) 0(0%) 0(0%) 188(94.4%)

Overall
SICStus

Z3

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 422 393 420.5 466

Z3 64 136.5 248 350

Mean(ms)
SICStus 8559 2891 483 498

Z3 66 149 254 374

#Timeout
SICStus 47(23.5%) 167(83.5%) 178(89%) 190(95%)

Z3 0(0%) 0(0%) 0(0%) 0(0%)

Overall
SICStus

Z3

Table 6.4. Ordinary – Metrics

May-Valid/Must-Invalid Must-Valid/May-Invalid

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 566.5 659.5 736 993

Z3 484 679 1162 372

Mean(ms)
SICStus 3597 869 804 997

Z3 1193 2045 1147 372

#Timeout
SICStus 64(32%) 126(63%) 133(66.5%) 139(69.5%)

Z3 28(14%) 154(77.3%) 167(83.9%) 199(99.5%)

Overall
SICStus

Z3

↓Solver \ →Size 0-250 250-500 500-750 750-1000

Median(ms)
SICStus 474 325 391.5 476

Z3 68 169 306 450

Mean(ms)
SICStus 10982 383 392 574

Z3 73 176 326 506

#Timeout
SICStus 75(37.5%) 194(97%) 196(98%) 195(97.5%)

Z3 0(0%) 0(0%) 0(0%) 0(0%)

Overall
SICStus

Z3

: Reasonable time, no time-out — : Reasonable time, # time-outs < 50% — : # time-outs > 50%

15

To provide relevant feedback regarding the initial
challenges given in Sect. 1, the obtained results are dis-
cussed by distinguishing two different categories of modal
specifications: may-valid and must-invalid specifications,
and may-invalid and must-valid specifications.

Note that the algorithm given in Sect. 3.2 is applied
to all generated workflows and specifications, no matter
what type of specification is being verified. Thus, our
implementation first checks if an over-approximation is
sufficient to conclude about the validity or the invalidity
of a specification and, only if it is not the case, computes
an under-approximation before concluding. Indeed, us-
ing the verification algorithm given in Sect. 3.2, most
may-valid and must-invalid modal specifications can be
verified by using only an over-approximation of correct
executions of the workflow. This over-approximation is
less complex than the under-approximation that must
very often be computed to verify may-invalid and must-
valid modal specifications.

In this context, even though may-valid and must-
invalid specifications express two different behaviours
(i.e. a may-valid specification is not necessarily a must-
invalid specification), most of the specifications of this
category may only require the computation of the over-
approximations of correct executions of the workflow.
On the contrary, even though may-invalid and must-
valid specifications express two opposite behaviours (i.e.
a may-invalid specification is never a must-valid specifi-
cation and vice versa), most of these specifications often
require the costly computation of under-approximations
of correct executions.

We also categorise the results according to the dif-
ferent classes of workflow nets considered in our exper-
imental protocol. The average execution times reported
in the following subsections have been computed with-
out considering time-outs. Thus, since time-outs may
have occurred, similar average execution times do not
always induce similar performances from both solvers.
Nonetheless time-outs are stated and discussed sepa-
rately. Finally, for clarity, all time-outs have been with-
drawn from the plots but systematically taken into ac-
count in our feedback. The interested reader can also
study the complete data sets and results given at https:
//figshare.com/articles/Benchmarks/4708135.

Tables 6.1, 6.2, 6.3 and 6.4 summarize the median
verification times, average verification times, number of
time-outs and the overall appreciation of the results ob-
tained over the different studied workflow net classes.

Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 depict
the plots displaying the verification times spent by SIC-
Stus and Z3 as well as the distribution of time-outs with
respect to the considered workflow nets sizes for each
class of workflow nets and types of modal specifications.

The obtained results are now reported and the most
important feedback for each class of workflow nets.

6.1 State-Machine Workflow Nets Verification

May-Valid and Must-Invalid specifications.

● ●● ● ●● ●

●●
●

●

●

●● ● ●
●

●

●

●

●

●

●

●
●

● ●

● ●● ●● ●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●● ● ●

●
● ●

●

●
● ●

● ● ● ●
●

●● ● ● ● ●

● ● ●
●

● ●

● ●

●● ●

●

●● ● ●

● ●
●●

● ●● ●
● ● ●

●

●
● ● ●

● ● ●

●

● ●

●

●
●

●

●

●

●
●

●
●

● ● ● ●

● ● ●

●
●

●

●
●

● ●

●
●

●

●

●

●
●

● ● ●
●

●

●● ●
● ●

●

●
●

●

●●● ● ●

●
● ●● ●

●

●

● ● ●

●

● ●

●

●

● ● ●

●

● ● ●● ● ●
●

● ● ●
● ● ●

●
● ●

●
● ●

●

●

● ● ● ●

● ● ●●

● ● ●
● ●

● ●
● ● ●● ●

● ●
●

●
●● ● ● ●●

●

● ●●

● ●
●●

●
●

● ● ●●
●

●

●
● ●

●

●
●●

●● ● ●

●

●

● ●
● ●

●
● ● ● ● ●

● ●

●●
● ●

● ● ●●
● ●●

● ●
●

● ●
●

●
●

●

●

●

● ●

● ● ●

● ● ●
● ●

●

●
● ●

● ●

●

●

●

●

●
● ● ●

●
●●

●

● ● ● ●

● ● ●
●

●● ●

● ● ●●

●
●● ● ● ● ●

●

● ●
●

●●

●

●
●

●

●

●
●

● ●

●

●
●

●
●

● ●

●
● ● ●

●

● ● ●● ● ●

●●

●
● ●●

●

● ●
●● ●

●

●
● ●

●

● ●●

●

●
●

●

●
● ●

●

●●

● ● ●●
●

●

● ● ●

●

● ●●

●
● ●

● ● ●
● ●

●

●

●
●

● ●●
● ●

●

●

●

●

●

●

●

●
● ●● ●● ●

● ●●

●
● ● ●

●
● ●

● ●
●

●

● ●

●

●
●

●

●

● ●

●

●● ● ●

●
●

● ●

●
● ● ● ●●

●

●

●

●

● ● ●
● ●

●

●

● ● ●

●

●●
● ● ●●

● ●

●

● ●●●● ● ●

●

● ●
● ●

● ●
●

●

● ● ● ●● ●

● ●
●

●

●● ●

●

● ●
●

●
● ●● ● ●

●●
●

● ● ●
●●

●

●●

●
● ●

●
● ●●

● ● ●
●

● ● ●●

●
● ●●

●
●

● ●
● ● ● ●

● ●
●

●
●

●
● ● ●

●

●
●

● ●

●

●

●● ●●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

State−Machine − May−Valid/Must−Invalid

125 225 300 375 450 525 600 675 750 825 900 975

Sicstus
Z3

Number of timeouts: May−Valid/Must−Invalid(SM)

Size(nodes)

0
5

10
15

20

Figure 6.1. State-Machine – May-Valid/Must-Invalid

Observation. Whenever they were able to conclude
within the imposed time limit, both solvers were able to
conclude in a comparable and reasonable time. Indeed,
Z3 median execution time was 582ms whereas SICStus
median execution time was 586ms. However we observe
that SICStus is progressively overwhelmed as shown by
the growing number of time-outs with respect to the size
of considered workflow nets. Furthermore, regarding Z3
performance, we observe a clear workflow nets size bound
above which it cannot conclude within the imposed time
limit. Indeed, for workflow nets of size greater than 850
nodes Z3 is not able to provide results whereas SICStus
is still able to perform well.

16

Must-valid and May-Invalid specifications.

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

● ● ●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

● ●
● ●
●

●
● ●● ●

●
●

● ●●
●●

●
● ●

●

●

●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

State−Machine − Must−Valid/May−Invalid

50 125 225 325 425 525 625 725 825 925

Sicstus
Z3

Number of timeouts: Must−Valid/May−Invalid(SM)

Size(nodes)

0
5

10
15

20

Figure 6.2. State-Machine – Must-Valid/May-Invalid

Observation. On the one hand, we observe, with
the exception of a few instances, that SICStus is not
able to provide answers within the imposed time limit.
On the other hand, we observe that Z3 is consistently
able to complete its computations in a very reasonable
time (i.e. 207ms on average and in less than a second in
the worse case) on instances of size up to 1000 nodes.
These results clearly show that Z3 performs better than
SICStus for this type of modal specifications.

Synthesis. Over the class of State-Machines we con-
clude that SICStus is clearly overwhelmed due to the
high number of choice points arising from the structure
of State-Machine workflow nets of size greater than 100
nodes.

Further, we note that, when considering State-Ma-
chine workflow nets the number of states of the under-
lying search space is equal to the number of states of
the reachability graph. The modelling of an execution
of a state machine workflow net requires the resolution
of the constraint systems associated with as many seg-
ments as the number of transitions in the execution mod-
elled (i.e. there is a single transition per segment). More
precisely, it therefore often requires the resolution of a
large amount of segments which is very costly in terms
of time and memory. In such (limit) cases, it is therefore
expected that explicit generation and exploration of the
reachability/coverability graphs for basic model checking
can be more efficient than the proposed method based
on constraint solving.

Furthermore, we conclude that Z3 is able to effi-
ciently verify may-valid and must-invalid modal specifi-
cation of workflow net of size up to 850 nodes and is sud-
denly overwhelmed above this size. However, when ver-
ifying must-valid and may-invalid modal specifications,
Z3 is able to efficiently conclude within less than a sec-
ond over workflow nets of size up to 1000 nodes.

We conclude from these results that the SMT ap-
proach seems to be efficient and more suited for the
modal specifications verification over State-Machine work-
flow nets.

6.2 Marked-Graph Workflow Nets Verification

May-Valid and Must-Invalid specifications.

Observation. We observe that SICStus is consis-
tently and efficiently able to conclude within the im-
posed time limit, more specifically in less than 5 seconds
(627ms on average). Regarding Z3 performances, we ob-
serve that the SMT solver is more efficient than SICStus
for workflows of size lower than 250 nodes and is less
efficient than SICStus for workflow nets of size ranging
from 250 to 650 nodes. Above this limit however, we also
observe that Z3 cannot (except for a few instances) de-
termine the validity of modal specification over workflow
nets of size greater than 650 nodes.

Must-valid and May-Invalid specifications.

Observation. Over all instances of size up to 1000
nodes, both solvers are able to efficiently and consis-
tently conclude within about 1 second (SICStus in 368ms
and Z3 in 243ms on average). Overall, we also observe
that Z3 is slightly more efficient than SICStus notably
over instances of size lower than 750 nodes.

Synthesis. Over the class of Marked-Graphs, we can
conclude that SICStus and Z3 perform similarly despite
a slight advantage (in terms of performance) for Z3 when
verifying modal specification of workflow nets of size up
to 650 nodes. However, for workflow nets of size greater
than 650, SICStus seems to perform better when veri-
fying May-Valid and Must-Invalid specifications, while

17

● ●
●●

● ● ● ●
●

●●
●

●
● ● ● ● ● ● ●

● ●● ●

●

●
● ●

●
●● ●

● ●

● ●

●
●

●

●

●
●

●
●

●
● ● ●

●

●

●

●

● ●
●

●
●

●

●
●

●
● ●

●

● ●
● ● ●

● ●

●

● ●

● ●

● ●
●

●

● ●
● ●

● ●
● ●

●

● ●
●

●

●
● ●

●
●

● ●

●

● ●
●

● ●● ●
●

● ●●●
●

●●

●
●

●
●

●
● ● ●

●
●

● ●

●

● ● ●

●
● ●● ●●

●

●

●
● ● ●

● ●●
● ●● ●

●

● ●

● ●

●
●

●●

●
●●

● ●
●

●

●

●

● ● ●
●

●
●

●

●

●
● ●●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●
●

●
● ● ●

●●
● ●

●

●● ●
●

● ● ●
●

●
●

●

●
● ● ●

● ●
● ●

●

●
●

●

●●
● ●

● ● ●
●● ●●

● ●
● ●●

●
● ●

● ●● ● ●

●

●
●

●

●
●● ●

●●
●

● ● ●
● ●

●●

● ●

● ●
● ●

●
● ● ●

●

●●

●

●

● ●●
●● ●

●
●

●
●

●

●

●
● ●

●● ●
●

●

●● ●

●
●

● ●

●

● ●
●

●
● ● ●

●

●
●

●

●
●

●
●

●●
●

●
●●

● ●

● ●
●●

●
● ● ●

●●●
●

●
●

● ●

●

● ●
●

●

●
● ●

●●
● ●

●

●
● ● ● ● ●● ● ● ●●

●
● ● ●

●
●

●
●

●
●●

●

●
●

●
●

●● ● ●
●

●
●

● ● ● ● ●

●
● ●

●
● ● ●

●
●●

● ●

●

● ● ●

● ● ●● ●● ● ●

●
●

●

●

●
●

● ●
●

●● ●
●

●
● ●

●
●

● ●

●
● ● ●

●
● ● ●

●

● ● ●

●
●

●
●

●

●

●

●

● ●

●

●

●
● ●

●

● ●
● ●

●● ●
●

●

● ● ● ●
●

● ● ●
●

●
●

●
●

● ●

●● ● ●

● ● ● ●

●
●

●
●

●

● ●
●

● ● ●
● ● ●

●
●

●
● ●

● ●
● ●●

● ● ● ●

●

●
●●

●

●

● ●
●

●
● ●

●

●

● ●

●
●●

●

●
● ●●

● ●
●

●

●

●

●●
●

● ●● ● ● ● ●
● ●

●●
● ●

●
●

●
●

● ●

●
●

● ●

●●
● ●

● ●
●●

● ●● ●

●

● ●●

● ●●
●

● ●
●

●

●
● ● ●

●
●

●
●

●
● ● ●

●
●

● ●

●

●
●

●

●
● ●

●
●

●
●

●
●

● ● ●

●

● ● ●

●

●

●
●

●

●

● ●

● ●
●

●
● ● ●

●

●
●

● ●

●
●

●

●

● ● ●
●

● ● ●
●

●

●
● ●

●

●
● ●

●
● ● ●

●
●●●

●●
●● ●

●
● ●

● ●

● ●

● ● ● ●

●

● ●
●

● ●
●●

●

● ● ●

●

●
●

● ●
● ● ●

●

●● ●

●

●
●

●

●
● ●●

●
●

● ●

●
●● ●

●

● ●●
●

● ●
●

●
● ● ●

● ●
●

● ●● ●

●
●

●
●

●

●
● ● ●

●
● ●●

●

●

●

●

●

●

●
●

100

1000

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Marked−Graph − May−Valid/Must−Invalid

675 725 775 825 875 925 975

Sicstus
Z3

Number of timeouts: May−Valid/Must−Invalid(MG)

Size(nodes)

0
5

10
15

20

Figure 6.3. Marked-Graph – May-Valid/Must-Invalid

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

● ●
● ●

●

●
● ●

●
●

● ●

● ●
●

●

●

●

●
●

●

●

●

●
●

● ● ●

●

●

● ●

●

●

● ● ●

●
● ●

●
●

● ●

●

●
●●

● ● ●● ●
●

● ●

●
●

●
●

●
●

●●

●

●

● ● ●
● ● ●

●

●
● ● ●

●●
●

●
●●

●

●

●

●
●

●

●
●

●
●

●●
●

●
●

●
●●

● ●●

●

●●●

● ● ●
●

●

●
●

●

●
●

● ●

●
●

● ●

●

● ● ●

●

●
● ● ● ●

●●
●

●

●

●
●

●
● ●

● ● ●●
●

● ●

●

●

●

●
●

●
● ● ●

●
● ●

●

●

●
● ●

● ● ●

●
●

● ●
●●●

●
●

●

●
●

●
●

● ● ● ●
●

●
●

●

● ●●

●
●

●
● ●

●●

●

●

●

●
●

●

●

●● ●

●

● ●
●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●
● ●

●
●

●

●

● ●
●

●●

●

● ●
●

●

●

●
● ●●

●

● ●

●

●
●

● ●

●

●

●●
● ●

●

●

●

●

●
●

●

● ●

● ●
●

●
●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

● ●

●
● ● ●

●

●

●

●

●

● ●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●●

●
● ●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●●
● ●

●

●
●

●

●
●

● ●

● ●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

● ●
●

● ●
● ●

●

●

●
●

●

●
● ●

● ●

●
●

● ●

● ●
●

●

●
●

●
●

●
●

●

● ● ●
●

●

●
●

●

● ●●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●● ●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●●

●

●

●

●●

●
● ●

● ●

●
●●

●
● ●

●
●

● ● ●
●

●●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●
● ●

●

●
●

●

●
● ● ●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●●

●●

●● ●
● ●

●
●

●

●
● ●

● ●

●

●
●

●

● ●

●

●
●

●

●

● ●

●
●

●

●

●
● ●

● ●●
● ● ●

●
●

●
●

●

●
● ●

●

●
●

● ● ● ● ●
●

●

●

●

●

● ●●
●

●

● ● ●

●

●

●

● ●

● ●

● ●

●

●

●

● ●
● ● ●

●
●

●

●
●●

● ●

●
● ● ●

●
●

●

●

● ●

●
●

● ●

●
● ●

●
●

●

● ●
● ●

● ●

●

●
●●

● ● ●
●

●

●
●

●

●

●●
●

● ●
● ●

●

●
● ●

●
●

●

●

●

●●●

●

●

● ●

● ●

●
●●

●

●
●

●●

● ●

●

● ● ●

●● ●
●

●
●

●
●

●

●

● ●

●●● ●

●
●

●
●

●

●

●

●

●

●

●

●

100

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Marked−Graph − Must−Valid/May−Invalid

Figure 6.4. Marked-Graph – Must-Valid/May-Invalid

Z3 is not able to conclude. A further investigation has
shown that, over Marked-Graphs, Z3 is more effective
than SICStus with regard to the computation of the
over-approximation used by the verification method, while
SICStus is more effective than Z3 with regard to the
computation of the segment (only one) needed to con-
clude whenever the over-approximation is not sufficient.

6.3 Free-Choice Workflow Nets Verification

May-Valid and Must-Invalid specifications.

Observation. The observations made for this class
of workflow nets are similar to the ones made for the class
of State-Machines. Overall, over workflow nets of size up
to 800 nodes, both solvers are able to conclude in a con-
sistent and efficient manner (with a median execution
time of 630ms for SICStus and 641ms for Z3) despite a
very small performance advantage for Z3 over instances
of size lower than 250 nodes. However, regarding Z3, we
observe a similar bound in terms of size (around 750
nodes) over which Z3 is overwhelmed while SICStus is
still able to obtain results.

Must-valid and May-Invalid specifications.

Observation. Once again, the observation about the
results obtained over Free-Choice workflow nets are sim-
ilar to the ones obtained over State-Machine workflow
nets. Likewise, on the one hand, we observe, with the
exception of a few instances (albeit more than in the
case of State-Machine workflow nets), that SICStus is
not able to provide answers within the imposed time
limit. On the other hand, we observe that Z3 is consis-
tently able to complete its computations in a very rea-
sonable time (i.e. 201ms on average and in less than a
second at worse) on instances of size up to 1000 nodes.
These results clearly show that Z3 outperforms SICStus
for this type of modal specifications. After investigation,
these results stem from the fact that the verification of
such modal specifications mostly relies on the results of
an over-approximation for which Z3 performs apparently
far better off.

Synthesis. Over the class of Free-Choice workflow
nets, we observe that Z3 performs better than SICStus
for workflow nets of size up to 750 nodes. Over this limit,
when verifying May-Valid and Must-Invalid modal spec-
ifications, Z3 is overwhelmed, while SICStus is still able
to conclude on some instances. This limit can be ex-
plained by the fact that Free-Choice workflow nets com-
bine the expressiveness of State-Machines and Marked
Graphs, therefore this limit is consistent with the limit
observed over the class of State Machine workflow nets.
Overall, we thus conclude from these obtained results
that the SMT approach seems to be more suited for the
modal specifications verification over Free-Choice work-
flow nets.

18

● ●
●

●
●

● ● ●

●
●

● ●
●● ● ●● ● ●

●
● ● ●

●

● ●
● ●●

● ●
● ●

● ● ● ●

● ● ●●
●●

●

●

●
●

●

●

●
● ●

●
● ●

●

●● ● ● ● ●● ●
●●

● ●● ●

● ●● ● ●● ● ●
●

● ● ●
● ● ●● ● ●●●

●

●

● ●●
● ●

● ● ● ● ● ●
●

● ● ● ● ●●
● ● ●

●

● ●

● ●

●

●●
●

●
●●

● ● ●
● ●

● ● ●

● ●
● ●

●●
● ●

● ● ● ●
● ● ● ●

● ● ●● ● ●● ● ●
● ●●

● ● ●● ● ●
●

●
● ●●

● ●
●

●
●

● ●●

● ●

● ● ● ●● ●● ● ●
● ● ● ●● ● ●

● ● ●

●

●● ● ●
●● ●

● ●
●●

●
● ●

●
● ● ● ● ● ●● ●

●
●

●

● ●

●
●

● ●● ●

●

●

● ●

●● ●
● ● ●●

● ● ● ●
● ● ● ●

●
●

● ● ●● ●
● ●

● ●
● ● ●

●

●

●
●

● ● ●●●
● ●

●
● ● ●

●● ●●
● ● ● ●

● ● ●

●

● ●
● ●● ● ●

●

●
●

● ●

●

● ●● ●●
● ●

●
●

● ●●

●
●● ● ●

●
●

● ●

●● ●
● ●

● ● ● ● ●

●

●●
●

●
●

●

●
● ●

●

● ● ●
● ●

●●

● ● ●●

●

●

●

●●●

●

●

●
● ● ●

●

●
● ●●

●
● ●

●
● ● ●

●
●

●
●

●
● ●

● ●● ● ● ●

●

● ●

●

●
●

●
● ●● ● ● ●

● ● ●● ● ●
●●

● ● ●● ●
●

●
● ● ● ● ●

● ●

●
●

● ●●
●

● ●
● ●

● ●
●●

●
●

● ●
●

●
●

●

●

● ● ●
● ● ●

●● ● ●●
● ●● ● ●

● ● ● ●

● ●
●

●
● ●●

●
● ● ●

● ● ●●
●

● ● ●●
●

●

● ●

●

●

●
●

●

●

●
● ●

● ●

●

● ● ● ●● ●
●● ● ● ●

●
● ●● ●●

●● ● ● ●●

●

●

● ●
●● ●

●
● ●

●

●
●

● ● ● ●
● ●● ● ●

● ●
●

●
● ● ●

● ● ●
● ● ●● ●●

●

● ● ●
●

●

●

● ● ●● ●●
●

●
● ● ●

●
●

● ●
●

●● ●
●

● ● ● ●
● ●

● ● ● ●
● ●

●
●

●

●

● ● ● ●

● ● ●●
●

●●
● ● ●

● ●●

●

● ● ● ●
● ●

●

●● ●
●

● ●

●● ●● ● ● ●

● ● ● ●
●

●● ●
●

● ● ● ●
● ●

● ●
●

●
● ●

●

● ● ●
●

●● ●●

●
●

●

● ● ● ●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Free−Choice − May−Valid/Must−Invalid

250 375 450 550 625 700 775 850 925 1000

Sicstus
Z3

Number of timeouts: May−Valid/Must−Invalid(FC)

Size(nodes)

0
5

10
15

20

Figure 6.5. Free-Choice – May-Valid/Must-Invalid

6.4 Ordinary Workflow Nets Verification

May-Valid and Must-Invalid specifications.

Observation. Over ordinary workflow nets, both
solvers, whenever they were able to conclude within the
imposed time limit, seem to behave similarly although
we note a very slight advantage for Z3 (with a median ex-
ecution time of 684ms for SICStus and 626ms for Z3). In-
deed, they both seem to be gradually unable to conclude
as the size of the considered workflow nets grows. Fur-
thermore, once again, as it is the case over Free-Choice
and State-Machine workflows nets, Z3 is not able to con-
clude (except on a single instance) about workflow nets
of size greater than 750 nodes.

● ●

●

●

●

● ● ● ● ●
●●

●
●

●
●

●

● ●

● ●

●

● ●

●
● ●

● ● ● ●●
●

● ●●
●

● ●

●● ●
●

● ●

●

●

● ● ●

● ●

●

●●
●

●
●

●

●
●

●
●● ●

● ●

●

●
●

●

●
●

●

●
●● ●

●
● ● ● ●●

●

● ●

●

●
●

●

●

● ●

●

●
● ●

● ● ●

●

● ●

●
●

● ●

● ●
● ●

●

●

●

●

●

●

●
● ● ●

●
● ●

●

●

●
●

●
●

● ● ●●

●

●

●
●●

●
●● ● ●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●
●

● ●

●

●

●
● ● ● ● ● ●

● ●
●

● ●
●

●
● ●

●

●
●

●

●● ●
● ●

●
● ●

● ●

●
●● ●●

● ●

●

●
● ●●

●
●

●

●

●
●

●
●● ●

●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Free−Choice − Must−Valid/May−Invalid

75 150 225 300 375 450 525 600 675 750 825 900 975

Sicstus
Z3

Number of timeouts: Must−Valid/May−Invalid(FC)

Size(nodes)

0
5

10
15

20

Figure 6.6. Free-Choice – Must-valid/May-Invalid

Must-valid and May-Invalid specifications.

Observation. The results obtained for the verifica-
tion of must-valid and may-invalid modal specifications
over Ordinary workflow nets are very similar to those ob-
tained for the verification of must-valid and may-invalid
modal specifications over Free-Choice workflow nets. In-
deed, we observe that SICStus, for most instances, is un-
able to conclude within the imposed time limit, whereas
Z3 always produces a result within about two second
(271ms on average). As for the previous classes, Z3 in-
deed performs better than SICStus to compute the over-
approximation constraints, which are often sufficient to
conclude.

19

●
●

● ●●
●

●
●

●
●

●

●

●
●

● ●
●

●

●
●● ●

●
●

●

●

●

●

●
●

●

●
● ●

●

● ●

● ●
● ●

●
●

●
●

●

●
●

●
●

●

● ●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

● ●
●

●

●● ●

●

●

●
● ●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●
●● ●

●

●
●● ● ●● ●

●

●

●

●
●

● ● ●●
●●

●

● ●

● ●
●●

●

●

●
●●

●
● ●●

●

●●

●
●● ●

● ●
●

●●

●

● ●

● ●

●

●
● ●

● ● ● ●

●
●

●
● ●

●

●

● ●

●
● ● ●

●

●
●

●
●

●
●

●
●

●
●●

●

● ●

●
●

● ●
●

● ● ●

●
●

● ●

●

●

●
●

●

●● ● ● ●
●

●
●

● ●

●
●

●

●● ● ●

●

● ● ● ●

●
●

●
●

●

● ●
●

●

●

●
●

●

●

●
●

●
● ●

●

●
●

●
●

●

● ●

●

●

●

● ●
●●

●

●

●
● ●

●

●

●

● ●●

●
●

●
●

●

●
●

●

●

● ●

●
●

● ●
● ●

● ●

● ●
● ●● ● ●● ●

● ●
● ● ● ●

● ●●

●

● ●●
●

●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●
●

●
●

●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Ordinary − May−Valid/Must−Invalid

50 125 225 325 425 525 625 725 825 925

Sicstus
Z3

Number of timeouts: May−Valid/Must−Invalid(Ordinary)

Size(nodes)

0
5

10
15

20

Figure 6.7. Ordinary Workflow – May-Valid/Must-Invalid

Synthesis. Over the class of Ordinary workflow nets,
we observe that Z3 performs better than SICStus with
workflows of size up to 750 nodes. Over this limit, both
solvers are for most instances unable to conclude when
verifying may-valid and must-invalid modal specifica-
tions. Z3, however, is always able to produce a result
when verifying must-valid and may-invalid modal spec-
ifications, whereas SICStus is almost always unable to
produce an answer. Overall, we thus conclude that the
SMT approach seems to be more suited for the verifica-
tion of modal specifications over Ordinary workflow nets.

The next section summarizes the lessons learned and
the benefits noticed from these experiments according to
the initial challenges.

● ●

●
●

●
●

●●
●

● ●

●

●
●

●

●
● ●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●
● ● ● ●

●

●

●
● ● ●

● ● ●●

● ●

●

●
●

●
●

●

●

● ●
● ●

●

●
●

●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●
● ●

● ●

● ●

●
●

●●

●

● ●
●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

1e+03

1e+05

0 250 500 750 1000
Size(nodes)

t(
m

s)

● Sicstus Z3

Ordinary − Must−Valid/May−Invalid

75 150 225 300 375 450 525 600 675 750 825 900 975

Sicstus
Z3

Number of timeouts: Must−Valid/May−Invalid(Ordinary)

Size(nodes)

0
5

10
15

20

Figure 6.8. Ordinary Workflow – Must-valid/May-Invalid

6.5 Lessons Learned from Experience

Effectiveness. Overall the modal specification verifica-
tion method based on constraints solving and its im-
plementation appear to be rather effective over work-
flow nets of size up to a 1000 nodes. More precisely,
on the one hand, our experiments highlight the very
good effectiveness of the verification method when con-
sidering the verification of must-valid/may-invalid (resp.
may-valid/must-invalid) modal specifications over work-
flow nets of size up to a 1000 nodes (resp. up to a
750 nodes). On the other hand, when considering may-
valid/must-invalid modal specifications of workflow nets
of size greater than 750 nodes, both solvers tend to have
difficulties to produce a verdict.

20

Efficiency. The presented toolchain, based on the
verification method proposed in [3] and the underlying
constraint solvers–Z3 and SICStus, has been shown to
be very efficient for the intended verification computa-
tion. Indeed, whenever the toolchain is able to conclude
about the (in)validity of modal specification, it is usually
able to do so in less than a few seconds independently of
the considered class of workflow nets and modal specifi-
cation type. Such a short analysis time means that this
procedure could be automatically applied by integrated
development environment to provide feedback as well as
useful diagnostic information during workflow nets de-
velopment. Regarding the performances with respect to
formula size, we do not observe any consistent nor sig-
nificant variations.

Scalability. On the basis of the results, we can confi-
dently state that the verification method proposed in [3]
is scalable in terms of modal specification size and work-
flow net complexity, as well as regarding their size (up to
750 nodes at least). Such results enable the authors to
confidently state that the verification of modal specifi-
cations is feasible within real-life industrial settings and
can therefore benefit workflow engineers in their work-
flow validation and verification activities.

Further, we observe that, when using the proposed
verification method, the size of the reachability graph of
the studied workflow net is not directly influencing the
results. Instead, we observe that the size of the under-
lying search space whose state are markings and whose
transitions are not single basic transitions but maximal
segments is directly influencing the results. Notably, a
large reachability graph does not necessary imply a large
underlying search space, e.g. when considering Marked
graph workflow nets.

SMT vs CLP. According to these experiments, we
can infer that the SMT approach (computed using Z3)
generally performs significantly better than the CLP one
(computed using SICStus). However, they also highlight
that the CLP approach performs better, especially when
verifying modal specifications over Marked-Graph work-
flow nets. Indeed, we observed that the CLP approach is
less efficient than the SMT approach when the number
of choice points increases as shown by the results over
State-Machine workflow nets. It stems from the label-
ing done after constraints propagation by CLP solvers:
an exponential number of backtracking steps may occur
w.r.t. the number of pending choice points. Nonetheless,
choosing more specific heuristics can often greatly im-
prove performance. Indeed, our experiments have high-
lighted that among a large number of heuristics seen in
Sect. 5.2, the most efficient, and therefore the most ef-
fective, seems to be first fail cut (ffc), which in our case
prioritizes the valuation of the most constrained vari-
ables instead of using an unplanned order (i.e. default
order).

Table 1. Bench1 – Must-Valid

t(s)

#Nodes SM FC Ordinary

25 0.6 0.1 1.1

50 0.8 0.2 0.4

75 1.0 106.3 201.4

100 28.8 1070.7 *

125 70.6 * *

150 322.2 * *

175-1000 * * *

On the basis of these experimental results we are
able to draw the following modal specification verifi-
cation strategy. When verifying may-valid/must-invalid
modal specifications, whenever the size of the workflow
nets under analysis is not greater than 750 nodes, we
advise to use Z3 with a low time-out (10 seconds). If
this is not conclusive, we then recommend using SICS-
tus. Otherwise, when considering workflow nets of size
greater than 750 nodes we advise the use of SICStus.

Furthermore, when verifying must-valid/may-invalid
modal specifications we recommend using Z3.

Overall, we observe that, for instances of size up to
a 1000 nodes, a result is generally produced within a
few seconds (10 seconds) or requires a unreasonable time
(greater than 20 minutes in the presented experiments
and more than 24 hours according to additional inves-
tigations). For that matter, if a result is not obtained
within this short duration then switching to an alterna-
tive solver is preferable.

Comparison with model checking approach.
As stated in Section 2 modal specifications are a proper
subset of CTL, it is therefore possible to check any modal
specifications of a given workflow net using any CTL
Petri net model checker (see Appendix A).

As a point of reference, we provide new additional
experimental results obtained using traditional model
checker to further support the relevance as well as the
advantages in terms of efficiency and scalability of the
constraint solving based verification approach studied in
this paper when verifying modal specifications.

Table 1 reports on the execution time necessary to
verify the validity of Must-Valid modal specification over
State-Machine, Free-Choice, and Ordinary workflow nets
of growing size issued from one of the previously used
benchmarks (Bench1). These results have been obtained
using LoLa [30] – a state of the art CTL Petri net model
checker, winner of the 2017 Model Checking Contest
(CTL Formulas Category) [20]. In Table 1 cells marked
by an asterisk (*) represent computation that ran out of
memory before completion.

21

We observe that LoLa appears efficient when verify-
ing modal specifications over workflow nets of small size
(< 100 nodes) but gets rapidly overwhelmed when veri-
fying modal specifications over workflow nets of greater
size. It is notably unable to conclude about the valid-
ity of modal specifications over workflow nets of size
greater than 175 nodes, mainly due to memory con-
straints. These results clearly demonstrate the benefit
of the constraint solving approach evaluated in the pa-
per, both in terms of efficiency and scalability. This can
be explained by the fact that LoLa is a general purpose
model checker capable of verifying a greater range of
properties, whereas the method proposed in this paper
is tailored to the verification of modal specifications.

7 Related Work

Verifying properties over business processes has been
widely investigated using approaches based on Petri nets.
Among them, workflow nets constitute a suited class
for modelling business process as reported, among oth-
ers, in [35]. Thus, approaches and tools [3,2,40] have
emerged to verify properties over these workflow nets
and, as a consequence, over the business processes they
model. However, regarding verification of such WF-nets,
the reachability problem, arising with most problems re-
lated to workflow nets, and proved to be an EXPSPACE
problem in [18], is the key problem that all approaches
are facing. To tackle this issue, the formal method given
in [3] and experimented in a further and wider manner
in this paper, is inspired from [41,40].

Regarding verification methods, some research re-
sults have also been proposed to express and verify prop-
erties against a given system. Let us quote [23] where the
expression of properties with modalities is investigated
for automata/transition systems, and also [21] where
they are studied for Petri nets. In this context, the great
expressiveness of modalities makes them popular and rel-
evant for precisely describing a possible or necessary be-
havior over a system. This paper precisely evaluates two
CSP resolution techniques to verify modal specifications
over large-scale WF-nets, using the approach given in [3].

Formal verification methods based on constraints solv-
ing have been studied intensively, with most concrete
implementations using the SMT or CLP approaches. On
the one hand, for example, SMT has been used in [25] for
checking the reachability of bounded Petri nets, as well
as in [28] for verifying properties of business processes
where execution paths are modelled as constraints. On
the other hand, CLP has been also extensively experi-
mented to verify business processes [19] as well as Petri
nets [40]. In a very similar way, a CLP approach has
been used in [31] to detect the presence of structures po-
tentially leading to deadlocks in Petri nets. The present
paper has the originality to compare SMT and CLP res-
olution methods to implement the constraint-based ver-
ification approach in [3].

8 Conclusion

This paper aimed to evaluate the efficiency and the scal-
ability of the constraint-based approach, proposed in [3]
and [4], able to verify modal specifications over workflow
nets. To reach this objective, a dedicated toolchain, inte-
grating both SMT and CLP solving, has been developed
to support the full verification process. This toolchain
made it possible to conduct an accurate experimentation
to validate and evaluate the approach and to provide a
precise comparison regarding the scalability of the both
above-mentioned resolution methods, i.e. SMT and CLP,
to verify modal specifications over workflow nets using
constraint solving.

Compared to previous work [6,7], the experiments
have been carried out with a finer and broader range
of four classes of workflow nets that cover a wide spec-
trum of model variations. The present paper has indeed
reported on a new extensive experimentation campaign
involving more workflow nets (6400 against 960 previ-
ously), classified according to their size (size up to 1000
nodes against 500 previously), and conducted using a
time-out of 20 minutes per resolution (against 10 min-
utes previously).

The obtained experimental results empirically demon-
strate that the verification method is efficient and scal-
able over workflow nets of size up to 1000 nodes. In
general, the SMT approach performs significantly bet-
ter than the CLP approach, except when verifying modal
specifications over conflict-free workflow nets, i.e. Marked-
Graphs. However, the results also highlight the efficiency
of the CLP approach when verifying modal specifications
over Marked-Graphs. Moreover, on the basis of the ex-
perimental results, we have drawn a modal specification
verification strategy that combines SMT and CLP meth-
ods according to the features of the workflow net under
verification, and the nature of the modal specification to
be verified.

As a future work, we would like to investigate in a
further way and evaluate such strategies, mixing both
SMT and CLP methods, in order to embrace the ben-
efits from each of them and to take advantage of the
potential synergy. Moreover, we plan to apply our ap-
proach to more real-life industrial workflows to confirm
its efficiency, and to gather more feedback to propose
possible further improvements.

References

1. F. Bellegarde, C. Darlot, J. Julliand, and
O. Kouchnarenko. Reformulation: a way to com-
bine dynamic properties and b refinement. In FME,
volume 2021, pages 2–19. Springer, 2001.

2. H.H. Bi and J.L. Zhao. Applying propositional logic to
workflow verification. Information Technology and Man-
agement, 5(3-4):293–318, 2004.

22

3. H. Bride, O. Kouchnarenko, and F. Peureux. Verify-
ing modal workflow specifications using constraint solv-
ing. In Proc. of Int. Conf. on Integrated Formal Methods
(IFM’14), volume 8739 of LNCS, pages 171–186, Berti-
noro, Italy, September 2014. Springer.

4. H. Bride, O. Kouchnarenko, and F. Peureux. Constraint
solving for verifying modal specifications of workflow nets
with data. In Proc. of 10th Int. Ershov Informatics
Conf. - Perspectives of Syst. Informatics (PSI’15), vol-
ume 9609 of LNCS, pages 75–90, Kazan, Russia, August
2015. Springer.

5. H. Bride, O. Kouchnarenko, and F. Peureux. Reduction
of workflow nets for generalised soundness verification.
In Proc. of the 18th Int. Conf. on Verification, Model-
Checking, and Abstract Interpretation (VMCAI’17), vol-
ume 10145 of LNCS, pages 91–111, Paris, France, Jan-
uary 2017. Springer.

6. H. Bride, O. Kouchnarenko, F. Peureux, and G. Voiron.
Comparaison des approches SMT et CSP appliquées à la
vérification de réseaux workflows. In Actes des 15èmes
journées sur les Approches Formelles dans l’Assistance
au Développement de Logiciels (AFADL’16), pages 11–
12, Besançon, France, June 2016.

7. H. Bride, O. Kouchnarenko, F. Peureux, and G. Voiron.
Workflow nets verification: SMT or CLP? In Proc. of the
21st Int. Wsh. on Formal Methods for Industrial Crit-
ical Syst. and Automated Verification of Critical Syst.
(FMICS-AVoCS’16), volume 9933 of LNCS, pages 1–17,
Pisa, Italy, September 2016. Springer.

8. M. Carlsson et al. SICStus Prolog user’s manual (Release
4.2.3). Swedish Institute of Computer Science, Kista,
Sweden, October 2012.

9. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using tem-
poral logic specifications. ACM Trans. on Programming
Languages and Syst. (TOPLAS), 8(2):244–263, 1986.

10. L. De Moura and N. Bjørner. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Anal-
ysis of Systems, pages 337–340. Springer, 2008.

11. L. De Moura and N. Bjørner. Satisfiability modulo the-
ories: Introduction and applications. Commun. ACM,
54(9):69–77, September 2011.

12. P. K. T. Edward. Foundations of constraint satisfaction.
Computation in cognitive science. Academic Press, 1993.

13. D. Elhog-Benzina, S. Haddad, and R. Hennicker. Re-
finement and asynchronous composition of modal petri
nets. Trans. Petri Nets and Other Models of Concur-
rency, 5:96–120, 2012.

14. M. V. Espada and J. van de Pol. Accelerated modal ab-
stractions of labelled transition systems. In Int. Conf. on
Algebraic Methodology and Software Technology, pages
338–352. Springer, 2006.

15. D. Fahland, C. Favre, J. Koehler, N. Lohmann,
H. Völzer, and K. Wolf. Analysis on demand: Instanta-
neous soundness checking of industrial business process
models. Data & Knowledge Engineering, 70(5):448–466,
2011.

16. S. Goedertier and J. Vanthienen. Designing compli-
ant business processes with obligations and permissions.
In Business process management workshops, pages 5–14.
Springer, 2006.

17. G. Governatori, Z. Milosevic, and S. Sadiq. Compli-
ance checking between business processes and business

contracts. In Enterprise Distributed Object Computing
Conf., 2006. EDOC’06. 10th IEEE Int., pages 221–232.
IEEE, 2006.

18. S. Haddad. Decidability and complexity of Petri net
problems. Petri Nets: Fundamental Models, Verification
and Applications, pages 87–122, 2009.

19. M. Kleine and T. Göthel. Specification, verification and
implementation of business processes using CSP. In
TASE, pages 145–154. IEEE Computer Society, 2010.

20. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-
Hubard, B. Berthomieu, G. Ciardo, M. Colange, S. Dal
Zilio, E. Amparore, M. Beccuti, T. Liebke, J. Mei-
jer, A. Miner, C. Rohr, J. Srba, Y. Thierry-Mieg,
J. van de Pol, and K. Wolf. Complete Results for
the 2017 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2017/results.php, June 2017.

21. O. Kouchnarenko, N. Sidorova, and N. Trcka. Petri Nets
with May/Must Semantics. In Wsh. on Concurrency,
Specification, and Programming - CS&P 2009, volume 1,
Kraków-Przegorzaly, Poland, September 2009.

22. K. G. Larsen. Modal specifications. In Proc. of the
Int. Wsh. on Automatic Verification Methods for Finite
State Syst., pages 232–246, London, UK, 1990. Springer-
Verlag.

23. K.G. Larsen and B. Thomsen. A modal process logic.
In Logic in Computer Science, 1988. LICS ’88., Proc. of
the Third Annual Symposium on, pages 203–210, 1988.

24. Ernst W Mayr. An algorithm for the general petri net
reachability problem. SIAM J. on computing, 13(3):441–
460, 1984.

25. G. Monakova, O. Kopp, F. Leymann, S. Moser, and
K. Schäfers. Verifying business rules using an SMT solver
for BPEL processes. In BPSC, volume 147 of LNI, pages
81–94. GI, 2009.

26. T. Murata. Petri nets: Properties, analysis and applica-
tions. IEEE, 77(4):541–580, April 1989.

27. C. A. Petri. Kommunikation mit Automaten. PhD thesis,
Universität Hamburg, 1962.

28. A. Pólrola, P. Cybula, and A. Meski. Smt-based reach-
ability checking for bounded time Petri nets. Fundam.
Inform., 135(4):467–482, 2014.

29. K. Salimifard and M. Wright. Petri net-based modelling
of workflow systems: An overview. European J. of oper-
ational research, 134(3):664–676, 2001.

30. Karsten Schmidt. Lola a low level analyser. In Inter-
national Conference on Application and Theory of Petri
Nets, pages 465–474. Springer, 2000.

31. S. Soliman. Finding minimal p/t-invariants as a csp. In
Proc. of the 4th Wsh. on Constraint Based Methods for
Bioinformatics WCB, volume 8, 2008.

32. I. Suzuki and T. Murata. A method for stepwise refine-
ment and abstraction of petri nets. J. of computer and
syst. sciences, 27(1):51–76, 1983.

33. W. M. P. Van Der Aalst. Three good reasons for us-
ing a petri-net-based workflow management system. In
Proc. of the Int. Working Conf. on Information and Pro-
cess Integration in Enterprises (IPIC’96), pages 179–201.
Cambridge, Massachusetts, 1996.

34. W. M. P. van der Aalst. Verification of workflow nets. In
Proc. of the 18th Int. Conf. on Application and Theory
of Petri Nets, ICATPN ’97, pages 407–426, London, UK,
1997. Springer-Verlag.

23

35. W. M. P. van der Aalst. The application of Petri nets
to workflow management. J. of Circuits, Syst. and Com-
puters, 08(01):21–66, 1998.

36. W. M. P. Van Der Aalst. Woflan: a petri-net-based work-
flow analyzer. Syst. Anal. Model. Simul., 35(3):345–358,
1999.

37. W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter
Hofstede, N. Sidorova, H. M. W. Verbeek, M. Voorho-
eve, and M. T. Wynn. Soundness of workflow nets: clas-
sification, decidability, and analysis. Formal Aspects of
Computing, 23(3):333–363, 2011.

38. K. Van Hee, N. Sidorova, and M. Voorhoeve. Sound-
ness and separability of workflow nets in the stepwise
refinement approach. In ICATPN, volume 2679, pages
337–356. Springer, 2003.

39. K. M. Van Hee and Z. Liu. Generating benchmarks
by random stepwise refinement of Petri nets. In ACS-
D/Petri Nets Workshops, pages 403–417, 2010.

40. H. Wimmel and K. Wolf. Applying CEGAR to the Petri
net state equation. Logical Methods in Computer Science,
8(3), 2012.

41. P. Y. H. Wong and J. Gibbons. A process-algebraic ap-
proach to workflow specification and refinement. In Proc.
of the 6th Int. Conf. on Software Composition, SC’07,
pages 51–65, Berlin, Heidelberg, 2007. Springer-Verlag.

A Appendix - Verifying Modal Specification
Using Model Checking

In this appendix we describe the methodology used to
verify modal specifications using a CTL Petri net model
checker such as LoLa [30].

As stated in Section 2 modal specifications are a
proper subset of CTL, it is therefore possible to check
any modal specifications of a given workflow net using
any CTL Petri net model checker. To this end, the con-
sidered workflow net needs to be transformed into an
equivalent Petri net such that the validity of any modal
specifications is equivalent to the validity of the the cor-
responding CTL formulae. The aim of this transforma-
tion is to introduce for each transition t a new place pt
which is marked if and only if t has been fired at least
once during an execution marking the final place o.

To produce a Petri net Ñ from a workflow net N =
〈P, T, F 〉 the transformation proceeds as follows. For each
transition t ∈ T the transformation introduces two new
places respectively denoted ft and pt. Further, the trans-
formation then replaces each transition t by two transi-
tions respectively denoted tf and te such that:

– •tf =• t ∪ {ft}
– t•f = t• ∪ {pt}
– •te =• t ∪ {pt}
– t•e = t• ∪ {pt}

Note that if the state space of N is finite, then the
state space of Ñ is finite too.

The initial marking of Ñ is the marking assigning a
single token to place i and places ft where t ∈ T (and
none to other places).

By construction, for any execution σ of N , there exist
a corresponding execution σ̃ of Ñ obtained by replacing,
for every transition t ∈ T , the first occurrence of t by tf
and the following occurrences of t by te. Conversely, for
any execution σ̃ of Ñ there exists a corresponding exe-
cution σ of N obtained by replacing, for every transition
t ∈ T , all occurrences of tf and te by t.

Further, given a modal formula f ∈ S of the workflow
net N , we define CTL(f) as the formula obtained after
replacing, for every transition t ∈ T , the corresponding
terminal symbols of the modal formula f by pt = 1.

Consequently, as for each transition t the new place
pt is marked if and only if t has been fired at least once
during an execution, we have:

– N |=may f ⇔ Ñ |= EF (o = 1)⇒ (CTL(f))

– N |=must f ⇔ Ñ |= AF (o = 1)⇒ (CTL(f))

This enables the verification of modal specifications
described in this paper using CTL model checker, and
consequently this link makes it possible to compare ver-
ification approaches by constraint solving and by model
checking.

24

