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• University Bourgogne Franche-Comté (UBFC)

• University of Franche-Comté (UFC)

• FEMTO-ST Institute/CNRS, 700 researchers and staff

– Collegium Smyle with EPFL

• CNRS ranked #1 (article count) in

Nature Research Index, 2018
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Where do I come from?

Montbéliard
(Peugeot Citroën
car home city)
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Programmable matter examples
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Programmable matter
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• Nice video but we cannot do magic!
– Reconfiguration speed

• Moving is slow, moving millions of modules is VERY 
VERY slow 

• 12 hours for reconfiguring 800 sliding-cubes!!

• (or 11.66 hours for moving 1024 Kilobots)

– Reliability
• Having millions of modules, you WILL have failures

– Sturdiness
• Very few studies about mechanical resistance of such

a complex system 



Programmable matter applications
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Complex surgery Take an MRI MRI imaging 3D model

Programmable matter
representation

Interactive training
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Complex part
design

CAD model Programmable matter
representation

User modifications

Programmable matter applications



Programmable matter applications

Sculpting a shape-memory polymer sheet
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The consortium
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~meters (2006) ~decimeters (2007) ~centimeters (2007)

~millimeters (2012)

Claytronics Atoms: Catom

3D shape



1. We replace connection points by 12 square connectors.

2. Then we can place 8 hexagons and 6 octagons.

– Truncated cuboctahedron

3. Electrostatic actuators make catoms turning around neighbors.

– We place curved surface over hexagonal and octagonal faces.

– These curves are part of cylinders and planes in order to obtain 
continuous surfaces

Towards 3D: Geometrical basics
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1 2 3

Piranda Benoit and Bourgeois Julien, "Geometrical Study of a Quasi-Spherical Module for Building

Programmable Matter" in "2016 13th International Symposium on Distributed Autonomous Robotic

Systems (DARS)", London, UK, nov. 2016
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Motion examples
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Structure
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Structure
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Structure
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Power

• Experiments with 7.05 mW power consumption by an actuator
• Connected actuators 

• Work using the square of input
• No need for diode
• Higher power efficiency

Microscale ultrahigh-frequency resonant wireless powering for capacitive and resistive MEMS 
actuators, Sensors and Actuators A: Physical (Volume 275, jun 2018, Pages :75 - 87), Mita, Y., 
Sakamoto, N., Usami, N., Frappé, A., Higo, A, Stefanelli, B., Shiomi, H., Bourgeois, J., Kaiser, A.
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Actuation

LPKF Protolaser U3Pyralux flexible 
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M3 : Michigan Micro-Mote : A mm3 Sensing Platform

mm3 generic sensing platform

 Modular die-stacked structure

 Enables diverse technology

 12.3mm2 in 2.5mm3

 Swappable layers

Requires standard communication 

interface between layer

Slide from David Blaauw
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Types of Sensors

Credit:  Cubework

F Series P Series N Series

Dimension 2 x 4 x 2 mm3 5 x 5 x 3 mm3 7 x 7 x 5 mm3

Sensing
Modalities

Temp, Pressure, 
Light

Temp, Pressure, 
Light

+ Motion, 
Humidity

Lifetime
1 month

3 years (w/ harvesting)
3 – 5 years 5 – 7 years

Radio Range 5 cm 1 m 20-50m
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Optical Programming: GOC

 GOC programming interface

 Separated front-end for isolating light exposure within the system

 Up to 840bps transmission by faster clock speed and larger frontend diode

 Tradeoff between programming speed & sleep power

M3 Stack with Solar Cell and 

GOC Frontend on Top Layer

Programming M3 Stack with 

ICE Board via GOC

GOC Frontend 

Slide from David Blaauw, University of Michigan
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Integration of M3 mote and catom

• Integration on skeleton with flexible printed 
circuit
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Integration of M3 mote and catom

• Electrical interconnexions
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Integration of M3 mote and catom

• Mote unstacking 

• Chips bonded on a polyimide film with ACF
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Construction of a 3D Catom from an unfold



• Micro-controller

– ARM Cortex M0

• Sensors

– IMU: Orientation and tapping

– Microphone: Sound

• Actuators

– 2 LEDs: Glow in different colors

– Speaker: Play sounds

• Communications

– 6 USART communications  at 
6Mbps max
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The Blinky Blocks
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• VisibleSim (FEMTO-ST, http://projects.femto-st.fr/projet-visiblesim/):

– Multi-targets (Blinky Blocks, Smart Blocks, Robot Blocks, Claytronics)

– Multi-languages (C/C++, Meld, Javascript, Python)

– Interactive

– Include debugging

– Available in your web browser online at:

• http://ceram.pu-pm.univ-fcomte.fr:5015/visiblesim/

– First MSR simulator on the web thanks to WebGL!

• One ambition: make VisibleSim the reference simulator for 
modular robots and distributed programming initiation
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Simulation environment

Dhoutaut Dominique, Piranda Benoit and Bourgeois Julien, "Efficient Simulation of

distributed Sensing and Control Environments" in "iThings 2013, IEEE Int. Conf. on

Internet of Things", Beijing, China, pp. 452--459, aug. 2013

http://projects.femto-st.fr/projet-visiblesim/
http://ceram.pu-pm.univ-fcomte.fr:5015/visiblesim/


• Smart Blocks
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Smart Blocks, Robot Blocks and Blinky Blocks

• Robot Blocks • Blinky Blocks



• 3D catoms
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Catoms

• 2D catoms
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• Finding the center of a distributed system: ABC-Center, PC2LE, k-BFS-SumSweep [AINA 
16] [IROS 15]
– In real time
– To optimize many algorithms

• Synchronizing large set of micro-robots: MRTP [JNCA 18] [PDP 16]
– For synchronized actions with the external environment

• Lighting at the same time
• For mechanical actions

• Memory problem: CSG4PM [SAC 17]
– Coding goal shapes

• Distributed detection of mechanically unsafe reconfiguration
– Detecting loss of balance and breakage

• Self-assembly algorithms [AAMAS 18]

• Self-Reconfiguration algorithms
– With map of the goal shape [NCA 16] [IEEE IoT 16] [AIM 14] [ISPA 14] 
– Without map of the goal shape [JPDC 15][CN 15][ROBIO 15][JoS 14][PDP 14][JNCA 14][AINA 

14][NCA 13][SAC 13][UIC 13] [EUROCON 13]

42

Algorithms for programmable matter



• Catoms network is forming a graph

– G(V,E): V = modules, E = connections

• Is it difficult to find a central node?

– Center: minimizes the maximum distance to all others

– Centroid: minimizes the average distance to all others

43

Problem



• 3 distributed algorithms

– K-BFS SumSweep

– ABC-Center (two versions), ABC-Center-Tree (also known ABC-Center-V2)

– Probabilistic Counter based Central Leader Election (PC2LE)

• Inspired from existing external-graph analysis algorithms

• All based on intuitive heuristics

• Experimental evaluation of the accuracy

44

Our contribution
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ABC-Center-Tree: Examples
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Time Synchronization

• Needed for distributed coordination

47

72-Blinky-Blocks scroller
synchronized with our
protocol (MRTP)

• Unsychronized scroller
Start 1min20s later 20mins later
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Target shape encoding
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Using Constructive 
Solid Geometry
(CSG) for describing
the shape

CSG file is
transferred to 
catoms

Each catom decides if 
it is in the shape or 
not

Efficient scene encoding for programmable matter self-reconfiguration algorithms
T Tucci, B Piranda, J Bourgeois - ACM SAC, 2017



Target shape encoding
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• Self-assembly algorithms 

– With CSG map of the goal shape [AAMAS 18]

• Self-Reconfiguration algorithms

– With map of the goal shape

• For 2D horizontal shape [PDP 16] 

• For 2D Vertical shape [NCA 16]

– Without map of the goal shape 

• Meta algorithm [IEEE IoT 16] [AIM 14] [ISPA 14]

• Chain to square

– Sequential movements [NCA 13] [SAC 13] [UIC 13] [JoS 14]

– Parallel movements [JPDC 15] [EUROCON 13] [AINA 14] [PDP 14] [CN 15] [ROBIO 15]

• X to square [JNCA 14]
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Self-reconfiguration and self-assembly
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Mechanical modeling

• Distributed detection of mechanically unsafe
reconfiguration

– Detecting loss of balance and breakage

54

Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub 
Lengiewicz, « Distributed autonomous detection of mechanically unsafe
reconfiguration scenarios », in preparation



Mechanical modeling

• Detecting loss of balance
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Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub 
Lengiewicz, « Distributed autonomous detection of mechanically unsafe
reconfiguration scenarios », in preparation



Mechanical modeling

• Detecting breakage
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Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub 
Lengiewicz, « Distributed autonomous detection of mechanically unsafe
reconfiguration scenarios », in preparation
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Conclusion
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What’s next?

• Hardware
– Latching and actuation 

– Integration of the first 3D catoms

– Scaling down the catom

– First experiments

– New catom design (deformation)

• Software
– 3D Self-reconfiguration algorithm

– More real test cases (gravity and forces)

– Comparison between SR algorithms
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Thank you for your attention!

Questions
http://github.com/claytronics

« An adult scientist is a kid that never grew up », Neil DeGrasse Tyson

http://projects.femto-st.fr/programmable-matter/

OMNI Team (FEMTO-ST/DISC/OMNI)

More information at:

All the source code at:

All videos at:

http://github.com/claytronics
http://projects.femto-st.fr/programmable-matter/

