

Realizing Programmable Matter with Modular Robots

Julien BOURGEOIS UBFC, FEMTO-ST, CNRS France

http://members.femto-st.fr/julien-bourgeois/

Dagstuhl Seminar August 14, 2018

Work funded by: ISITE-BFC (contract ANR-15-IDEX-03), ANR (ANR-16-CE33-0022), ANR/RGC (ANR-12-IS02-0004-01 and 3-ZG1F), ANR (ANR-06-ROBO-0009), ANR (ANR-2011-BS03-005), DARPA (FA87501010215), NSF (CNS-0428738) and Intel Corporation Microsoft

Where do I come from?

- University Bourgogne Franche-Comté (UBFC)
- University of Franche-Comté (UFC)
- FEMTO-ST Institute/CNRS, 700 researchers and staff
 Collegium Smyle with EPFL
- CNRS ranked #1 (article count) in

Nature Research Index, 2018

Montbéliard (Peugeot Citroën car home city)

SCIENCES & TECHNOLOGIES

Programmable matter examples

- Nice video but we cannot do magic!
 - Reconfiguration speed
 - Moving is slow, moving millions of modules is VERY VERY slow
 - 12 hours for reconfiguring 800 sliding-cubes!!
 - (or 11.66 hours for moving 1024 Kilobots)
 - Reliability
 - Having millions of modules, you WILL have failures
 - Sturdiness
 - Very few studies about mechanical resistance of such a complex system

Programmable matter applications

Complex surgery

Take an MRI

MRI imaging

3D model

Interactive training

Programmable matter representation

Programmable matter applications

Complex part design

CAD model

Programmable matter representation

User modifications

Programmable matter applications

Sculpting a shape-memory polymer sheet

Computer Science

Industrial partners

ogramma Matter Consortium

CubeWorks

POWER

UNIVERSITY OF MICHIGAN

Electrical Engineering

Mechanical Engineering

Micro- and Nano-Electro-Mechanical Systems

THE UNIVERSITY OF TOKYO

scenocosme

Art

Computer Science

Seth Copen Goldstein Benoit Piranda, Eugen Dedu, Hakim Mabed, Dominique Dhoutaut, André Naz, Thadeu Tucci, Pierre Thalamy, **Florian** Pescher Philippe Lutz, Micky Rakotondrabe Abdenbi Mohand Ousaid, Dominique Gendreau, **Romain Catry** Wahabou Abdou, Olivier Togni, Nader Mbarek, Nicolas Gastineau

Industrial partners

Stéphane Delalande Salvatore Gora

Micro- and Nano-Electro-Mechanical Systems Yoshio Mita, Eric Lebrasseur, Gwenn Ulliac, Naoto Usami

Electrical Engineering David Blaauw, Dennis Sylvester, David Wentzlof, HunSeok Kim, Jamie Philip sortium Pawel Holobut,

gram

atter

Mechanical Engineering Jakub Lengiewicz, Pawel Chodkiewicz, Anna Górzyńska-Lengiewicz

anR

I-SITE BFC

Grégory Lasserre Anaïs met den Ancxt

Art

Claytronics Atoms: Catom

~meters (2006)

~decimeters (2007)

~centimeters (2007)

Towards 3D: Geometrical basics

- 1. We replace connection points by **12** square connectors.
- 2. Then we can place 8 hexagons and 6 octagons.
 - Truncated cuboctahedron
- 3. Electrostatic actuators make catoms turning around neighbors.
 - We place curved surface over hexagonal and octagonal faces.
 - These curves are part of cylinders and planes in order to obtain continuous surfaces

Piranda Benoit and Bourgeois Julien, "Geometrical Study of a Quasi-Spherical Module for Building Programmable Matter" *in "2016 13th International Symposium on Distributed Autonomous Roboti*<u>6/13</u> *Systems (DARS)*", London, UK, nov. 2016

Motion examples

Structure

Structure

femto-st

SCIENCES & TECHNOLOGIES

20

Structure

Power

- Experiments with 7.05 mW power consumption by an actuator
- Connected actuators
 - Work using the square of input
 - No need for diode
 - Higher power efficiency

Microscale ultrahigh-frequency resonant wireless powering for capacitive and resistive MEMS actuators, Sensors and Actuators A: Physical (Volume 275, jun 2018, Pages :75 - 87), Mita, Y₂³ Sakamoto, N., Usami, N., Frappé, A., Higo, A, Stefanelli, B., Shiomi, H., Bourgeois, J., Kaiser, A.

Actuation

LPKF Protolaser U3

M³: Michigan Micro-Mote : A mm³ Sensing Platform

Top View

mm³ generic sensing platform

- Modular die-stacked structure
- Enables diverse technology
- 12.3mm² in 2.5mm³
- Swappable layers

Requires standard communication interface between layer

UNIVERSITY OF MICHIGAN Slide from David Blaauw

Types of Sensors

		F Series	P Series	N Series
	Dimension	2 x 4 x 2 mm ³	5 x 5 x 3 mm ³	7 x 7 x 5 mm ³
	Sensing Modalities	Temp, Pressure, Light	Temp, Pressure, Light	+ Motion <i>,</i> Humidity
	Lifetime	1 month 3 years (w/ harvesting)	3 – 5 years	5 – 7 years
	Radio Range	5 cm	1 m	20-50m
CubeWorks		Credit: Cubework		

Optical Programming: GOC

- GOC programming interface
 - Separated front-end for isolating light exposure within the system
 - Up to 840bps transmission by faster clock speed and larger frontend diode
 - Tradeoff between programming speed & sleep power

Programming M3 Stack with ICE Board via GOC

M3 Stack with Solar Cell and GOC Frontend on Top Layer

Integration of M3 mote and catom

Integration on skeleton with flexible printed circuit

Integration of M3 mote and catom

• Electrical interconnexions

Integration of M3 mote and catom

- Mote unstacking
- Chips bonded on a polyimide film with ACF

Construction of a 3D Catom from an unfold

The Blinky Blocks

- Micro-controller
 - ARM Cortex M0
- Sensors
 - IMU: Orientation and tapping
 - Microphone: Sound
- Actuators
 - 2 LEDs: Glow in different colors
 - Speaker: Play sounds
- Communications
 - 6 USART communications at 6Mbps max

Simulation environment

- VisibleSim (FEMTO-ST, <u>http://projects.femto-st.fr/projet-visiblesim/</u>):
 - Multi-targets (Blinky Blocks, Smart Blocks, Robot Blocks, Claytronics)
 - Multi-languages (C/C++, Meld, Javascript, Python)
 - Interactive
 - Include debugging
 - Available in your web browser online at:
 - http://ceram.pu-pm.univ-fcomte.fr:5015/visiblesim/
 - First MSR simulator on the web thanks to WebGL!
- One ambition: make VisibleSim the reference simulator for modular robots and distributed programming initiation

Dhoutaut Dominique, Piranda Benoit and Bourgeois Julien, "Efficient Simulation of distributed Sensing and Control Environments" *in "iThings 2013, IEEE Int. Conf. on* ³⁸ *Internet of Things"*, Beijing, China, pp. 452--459, aug. 2013

Smart Blocks, Robot Blocks and Blinky Blocks

Smart Blocks

• Robot Blocks

Blinky Blocks

Catoms

• 3D catoms

•

Algorithms for programmable matter

- Finding the center of a distributed system: ABC-Center, PC2LE, k-BFS-SumSweep [AINA 16] [IROS 15]
 - In real time
 - To optimize many algorithms
- Synchronizing large set of micro-robots: MRTP [JNCA 18] [PDP 16]
 - For synchronized actions with the external environment
 - Lighting at the same time
 - For mechanical actions
- Memory problem: CSG4PM [SAC 17]
 - Coding goal shapes
- Distributed detection of mechanically unsafe reconfiguration
 - Detecting loss of balance and breakage
- Self-assembly algorithms [AAMAS 18]
- Self-Reconfiguration algorithms
 - With map of the goal shape [NCA 16] [IEEE IoT 16] [AIM 14] [ISPA 14]
 - Without map of the goal shape [JPDC 15][CN 15][ROBIO 15][JoS 14][PDP 14][JNCA 14][AINA 14][NCA 13][SAC 13][UIC 13] [EUROCON 13]

Problem

- Catoms network is forming a graph
 - G(V,E): V = modules, E = connections
- Is it difficult to find a central node?
 - Center: minimizes the maximum distance to all others

$$Center = \operatorname*{argmin}_{v_i \in V} ecc(v_i) = \operatorname*{argmin}_{v_i \in V} \max_{v_j \in V} d(v_i, v_j)$$

Centroid: minimizes the average distance to all others

$$Centroid = \underset{v_i \in V}{\operatorname{argmin}} \frac{1}{|V|} \sum_{v_j \in V} d(v_i, v_j)$$

Our contribution

- 3 distributed algorithms
 - K-BFS SumSweep
 - ABC-Center (two versions), ABC-Center-Tree (also known ABC-Center-V2)
 - Probabilistic Counter based Central Leader Election (PC2LE)
- Inspired from existing external-graph analysis algorithms
- All based on intuitive heuristics
- Experimental evaluation of the accuracy

Name	Type of center	Time	Memory (per module)	Message
<i>k</i> -BFS SumSweep	center, centroid	O(k imes d)	$O(\Delta)$	$O(m \times n^2)$
ABC-CenterV2	center	O(# steps imes d)	$O(\Delta)$	$O(m \times n^2)$
PC2LE	center, centroid	O(<i>d</i>)	$O(\Delta + $ probabilistic counter $)$	$O(m \times n^2)$

Notation:

n = #modules, m = # links, d = diameter, $\Delta =$ maximum number of neighbors

Time Synchronization

Needed for distributed coordination

72-Blinky-Blocks scroller synchronized with our protocol (MRTP)

Unsychronized scroller

1min20s later

1m20s later...

20mins later

20m later...

Target shape encoding

Efficient scene encoding for programmable matter self-reconfiguration algorithms T Tucci, B Piranda, J Bourgeois - ACM SAC, 2017

Console Console CGAL Cache insert: multimatrix([[1.0.0-48][0.1.0.0][0.0.1 (3226320 bytes) CGAL Cache insert: dinfid/inder(5h=60.054a=12.5fs=2.h.e1375032 bytes) CGAL Cache insert: dinfid/inder(5h=60.054a=12.5fs=2.h.e1375032 bytes) CGAL Cache insert: dinfider(11.0.0.17][0.1.0.010.0.1 (5371088 bytes) CGAL Cache insert: dinfider(11.0.0.17][0.1.010.0.1 (5371088 bytes) CGeometry cache size in bytes: 742136 CGAL Cache size in bytes: 53170240 CGAL Cache size in bytes: 53170240 Top level object is 300 bject: Simple: yes Vertices: 3998 Halfacet: 3998 Facets: 1999 Volumes: 2 Rendening (mished.

Viewport: translate = [-0.00 -0.00 -0.00], rotate = [66.20 0.00 191.80], distance = 361.36

Self-reconfiguration and self-assembly

- Self-assembly algorithms
 - With CSG map of the goal shape [AAMAS 18]
- Self-Reconfiguration algorithms
 - With map of the goal shape
 - For 2D horizontal shape [PDP 16]
 - For 2D Vertical shape [NCA 16]
 - Without map of the goal shape
 - Meta algorithm [IEEE IoT 16] [AIM 14] [ISPA 14]
 - Chain to square
 - Sequential movements [NCA 13] [SAC 13] [UIC 13] [JoS 14]
 - Parallel movements [JPDC 15] [EUROCON 13] [AINA 14] [PDP 14] [CN 15] [ROBIO 15]
 - X to square [JNCA 14]

- n of mechanically unsafe
- Distributed detection of mechanically unsafe reconfiguration
 - Detecting loss of balance and breakage

Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub Lengiewicz, « *Distributed autonomous detection of mechanically unsafe reconfiguration scenarios* », in preparation

Mechanical modeling

• Detecting loss of balance

Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub Lengiewicz, « *Distributed autonomous detection of mechanically unsafe reconfiguration scenarios* », in preparation

Mechanical modeling

• Detecting breakage

Benoit Piranda, Pawel Chodkiewicz, Pawel Holobut, Julien Bourgeois, Jakub Lengiewicz, « *Distributed autonomous detection of mechanically unsafe reconfiguration scenarios* », in preparation

Reactive matter / Interactive sculptures / membranes experimentation

Scenocosme : Grégory Lasserre & Anaïs met den Ancxt

Reactive matter / Interactive sculptures / Lighting and sonorous feedbacks

Reactive matter / Interactive sculptures / Mashrabiya design

Reactive matter / Murmuration

What's next?

- Hardware
 - Latching and actuation
 - Integration of the first 3D catoms
 - Scaling down the catom
 - First experiments
 - New catom design (deformation)
- Software
 - 3D Self-reconfiguration algorithm
 - More real test cases (gravity and forces)
 - Comparison between SR algorithms

Bibliography

- [1] S. C. Goldstein and T. C. Mowry, "Claytronics: An instance of programmable matter," in Wild and Crazy Ideas Session of ASPLOS, Boston, MA, October 2004.
- [2] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J. Wood, "Programmable matter by folding," Proceedings of the National Academy of Sciences, vol. 107, no. 28, pp. 12 441–12 445, 2010.
- [3] S. Tibbits, C. McKnelly, C. Olguin, D. Dikovsky, and S. Hirsch, "4d printing and universal transformation," pp. 539–548, 2014.
- [4] K. Gilpin, A. Knaian, and D. Rus, "Robot pebbles: One centimeter modules for programmable matter through self-disassembly." in IEEE International Conference on Robotics and Automation (ICRA), 3–7 May 2010, pp. 2485–2492.
- [5] W. McCarthy, "Programmable matter," Nature, vol. 407, no. 6804, pp. 569– 569, 2000.
- [6] Y. Ke, L. L. Ong, W. M. Shih, and P. Yin, "Three-dimensional structures selfassembled from dna bricks," science, vol. 338, no. 6111, pp. 1177–1183, 2012.
- [7] J.-W. Kim, J.-H. Kim, and R. Deaton, "Dna-linked nanoparticle building blocks for programmable matter," Angewandte Chemie International Edition, vol. 50, no. 39, pp. 9185–9190, 2011.

Thank you for your attention!

Questions

All the source code at: http://github.com/claytronics

More information at:

http://projects.femto-st.fr/programmable-matter/

All videos at:

OMNI Team (FEMTO-ST/DISC/OMNI)

« An adult scientist is a kid that never grew up », Neil DeGrasse Tyson

