
Throughput Optimization for Pipeline Work�ow

Scheduling with Setup Times

A. Benoit1, M. Coqblin2, J.-M. Nicod2, L. Philippe2, and V. Rehn-Sonigo2

1 LIP, ENS Lyon and Institut Universitaire de France
2 FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBM, Besançon

Abstract We tackle pipeline work�ow applications that are executed
on a distributed platform with setup times. Several computation stages
are interconnected as a linear application graph, and each stage holds a
bu�er of limited size where intermediate results are stored and a proces-
sor setup time occurs when passing from one stage to another. In this pa-
per, we focus on interval mappings (consecutive stages mapped on a same
processor), and the objective is the throughput optimization. Even when
neglecting setup times, the problem is NP-hard on heterogeneous plat-
forms and we therefore restrict to homogeneous resources. We provide
an optimal algorithm for constellations with identical bu�er capacities.
When bu�er sizes are not �xed, we deal with the problem of allocating
the bu�ers in shared memory and present a b/(b+ 1)-approximation al-
gorithm.

1 Introduction

In this paper, we consider pipeline work�ow applications mapped on a dis-
tributed platform such as a grid. This kind of applications is used to process
large data sets or data that are continuously produced by some source and pro-
duce some �nal results. The �rst stage of the pipeline is applied to an initial
data to produce an intermediate result that is then sent to the next stage of the
pipeline and so on until the �nal result is computed. Examples of such appli-
cations include image set processing where the di�erent stages may be �lters,
encoders, image comparison or merging and video capture processing and dis-
tribution where codecs must be applied on the video �ow before being delivered
to some device. In this context, a �rst scheduling problem is to map the pipeline
stages on the processors. Subhlock and Vondran [13,14] show that there exists
an optimal interval mapping for a given pipeline and a given platform when
communications and processors are homogeneous. An interval mapping is de-
�ned as a mapping where only consecutive pipeline stages are mapped on the
same processor. However, the cost of switching between stages of the application
on one processor is not taken into account. When a new data set arrives on
the processor, the �rst local stage starts to process it as soon as the previous
data set is output. Then this data set moves from stage to stage until the last
local stage, and it is sent to the processor in charge of the following stage. So,
at each step of the execution, we switch from one stage to the next one. As a
result, if the cost of switching cannot be neglected, several setup times must be
added to the processing cost. Benoit and Robert [4] prove that the basic interval
mapping problem is NP-hard as soon as communications or computations are



heterogeneous, even without setup times. For this reason, we restrict this work
to homogeneous platforms.

The problem of recon�guration that requires a setup time has been widely
studied, and covers a lot of domains (see survey [1]). For instance, Zhang et
al. [15] address the problem of wafer-handling robot calibration in semiconductor
factories. They propose a low-cost solution to reduce the robot end e�ector
tolerance requirements and thus the calibration times. A solution based on ant
colony optimization is proposed in [9,10] to reduce the setup costs in batch
processing of di�erent recipes of semiconductors. In the scope of micro-factories,
due to the cost of design and production of micro-assembly cells, micro-assembly
cells are being designed with a modular architecture that can perform various
tasks, at the cost of a recon�guration time between them [8]. In the domain of
pure computing, setup times may appear when there is a need to swap resources,
or to load a di�erent program in memory, e.g., to change the compiler in use [2].
Some authors have also shown interest in using bu�ers to stock temporary results
after each stage of the pipeline, in order to reduce the amount of performed
setups. Bryan and Norman [7] consider a �owshop wherein a job consists of m
stages mapped on m processors, and a processor must be recon�gured after each
job to process the next one (in their example, the clean-out of a reactor in a
chemical processing facility). They acknowledge that the problem of sequence-
dependent setup times in which a setup time depends on the previous stage
and the next one is NP-hard and they propose several heuristics. Luh et al. [11]
study scheduling problems in the manufacturing of gas insulated switchgears.
The problems involve signi�cant setup times, strict local bu�er capacities, and
few possible processing routes.

However, most of those researches consider that the number of processors is
large enough to map each stage on only one processor (one-to-one mapping) and
no recon�guration is required before the next batch. Note that the one-to-one
mapping problem can be solved in polynomial time provided that communica-
tions are homogeneous [4]. In our approach, we consider that the number of
stages is greater than the number of processors. We therefore focus on interval
mappings, where several consecutive stages are mapped onto the same processor.

The di�culty of the mapping problem is twofold. First, as in classical interval
mapping one has to decide how to cut the di�erent stages of the pipeline work�ow
into intervals, hence which stages are mapped onto the same processor. Second,
the schedule inside a processor has to be �xed. Switching continuously between
stages may lead to a drop in performance (due to the setup times), whereas
bu�ering the data and de�ning a schedule for the processing of stages may limit
the number of setups. Hence bu�ers are introduced to store intermediate results.
This makes it possible to perform one stage several times before switching to the
next one.

Starting from the interval mapping results, we tackle in this paper the prob-
lem of optimizing the cost of switching between stages mapped on the same
processor depending on the bu�er sizes. In a �rst step, we consider the single-
processor scheduling problem where a single processor has to process several con-



secutive and dependent pipeline stages. Each stage is associated with a bu�er.
Usually, these bu�ers are limited by the available memory in the system and the
bu�er size hence in�uences the possible schedules as it limits the number of rep-
etitions. Several other parameters are also taken into account as the duration of
each stage's setup, the homogeneity or heterogeneity of bu�ers, and the available
memory. Once the single-scheduling problem has been dealt with, we study in a
second step the overall execution of the pipeline (in terms of throughput). Be-
cause of bu�er utilization, data is treated and forwarded in batches, which leads
to a data �ow in waves. This particular behavior has to be taken into account
in the solution.

We formally de�ne the optimization problem in Section 2. The main contri-
butions follow: (i) we provide optimal algorithms when bu�ers are of �xed size
(Section 3); and (ii) we discuss how to allocate memory to bu�ers on a single
processor in Section 4, both from a theoretical perspective (optimal algorithm
in some cases), and from a practical point of view (b/(b + 1)-approximation
algorithm). Finally, we conclude and discuss future work in Section 5.

2 Framework

The application is a linear work�ow application, or pipeline. It continuously pro-
cesses a large amount of consecutive data sets. Formally, a pipeline is expressed
as a set S of n stages: S = {S1, . . . , Sn}. Each data set is fed into the pipeline
and traverses the pipeline from one stage to another until the entire pipeline is
passed. A stage Si receives a task of size δi from the previous stage, treats the
data set which takes a number of wi computations, and outputs data of size δi+1.
The output data of stage Si is the input data of the next stage Si+1.

The target platform is a set P of p homogeneous processors P = {P1, . . . , Pp}
fully interconnected as a clique. Each processor Pu has a processing speed (or
velocity) v, expressed in instructions per time unit, and a memory of size M . It
takes X/v time units for Pu to execute X �oating point operations. Each proces-
sor Pu is interconnected with a processor Pv via a bidirectional communication
link of bandwidth β (expressed in input size units per time unit). We work with
a linear cost model for communications, so it takes X/β time units to send or
receive a message of size X from processor Pu to processor Pv. Furthermore
communications are based on the bi-directional one-port model [5,6], where a
given processor can send and receive at the same time, but for both directions
can only support one message at a time. Distinct processor pairs can however
communicate in parallel. Communications are non-blocking, i.e., a sender does
not have to wait for its message to be received as it is stored in a bu�er, and
the communications can be covered by the processing times provided that a
processor has enough data to process.

Each processor can process data sets from any stage. However to switch
from an execution stage Si to the next stage Sj , the processor Pu has to be
recon�gured. This induces setup times, denoted as st. The level of heterogeneity
in setup times leads to di�erent models: uniform setup times (st), where all
setup times are �xed to the same value, sequence-independent setup times (sti),



where the setup time only depends on the next stage Si to which the processor is
recon�gured, and sequence-dependent setup times (sti,j) that depend on both the
current stage Si and the next stage Sj . The problem with sequence-dependent
setup times requires to look for the best setup order in a schedule to minimize
the impact of setup times. This has already been proven to be NP-hard, and
can be modeled as a Traveling Salesman Problem (TSP) [12]. Hence we will not
study this problem in this paper, and we focus on st and sti instead.

To execute a pipeline on a given platform, each processor is assigned an
interval of consecutive stages. Hence, we search for a partition of [1..n] intom ≤ p
intervals Kk = [Ik, Jk] such that Ik ≤ Jk for 1 ≤ k ≤ m, I1 = 1, Ik+1 = Jk + 1
for 1 ≤ k ≤ m−1 and Jm = n. Interval Kk is mapped onto a processor Pu. Once
the mapping is �xed, the processor internal schedule has to be decided, since it
in�uences the global execution time. Each processor is indeed able to perform
sequentially its allocated stages. However, setup times are added each time a
processor switches from one stage to another. To reduce setup times a processor
may process several consecutive data sets for a same stage. The intermediate
results are stored in bu�ers, and each stage Si mapped on Pu has an input
bu�er Bi of size mi,u.

The sizes of these input bu�ers depend on the memory sizeM available on Pu
and on the number of allocated stages, as well as on the input data sizes. The
capacity bi,u of bu�er Bi is the number of input data sets that the bu�er is
able to store within the allocated memory mi,u. Hence, a processor is able to
process data sets for a stage Si as long as Bi is not empty, and Bi+1 is not full.
Actually if Si is the last stage of the interval mapped on Pu, we allocate an
output bu�er BOu of size mou with a capacity bou.

The objective function is to maximize the throughput ρ of the application,
ρ = 1

P , where P is the average period of time between the output of two consec-
utive data sets. Therefore, we aim at minimizing the period of the application.
Since our framework model allows us to cover communication time by compu-

tation time, P is formally de�ned by: P = maxu

(
max

(
in(u), cpu(u), out(u)

))
,

where in(u), cpu(u), out(u) are respectively the mean time to input, process and
output one data set onto Pu ∈ P . In the next two sections, we explicitly evaluate
the application period depending on �xed or variable bu�er sizes.

3 Fixed Bu�er Sizes

In this section, we deal with the scheduling problem with �xed bu�er sizes for
both single and multiple processors. We consider that bu�ers that are allocated
on the same processor Pu are homogeneous, i.e., they have the same capacity bu.

Single processor scheduling (bi = b). With a single processor, the mapping
is known, since stages S1 to Sn form a single interval. We propose a polynomial
time greedy algorithm to solve the problem of single processor scheduling and
prove its optimality. The idea is to maximize the number of data sets that are
processed for a stage between each setup. This is done by selecting a stage for
which the input bu�er is full and the output bu�er is empty, so that we can
compute exactly b data sets, where b is the number of data sets that �ts in each



bu�er. Therefore, we compute b data sets for stage S1, hence �lling the input
bu�er of S2, and then perform a setup so that we can compute b data sets for
stage S2, and so on, until these b data sets exit the pipeline. Then we start with
stage S1 again. We call the proposed algorithm GREEDY-B in the following.

To prove the optimality of GREEDY-B, we introduce a few de�nitions: during
the whole execution, for 1 ≤ i ≤ n, nbout is the total number of data sets that are
output; nbsti is the number of setups performed on stage Si; nbst =

∑n
i=1 nbsti

is the total number of setups; and nbcompi is the average number of data sets
processed between two setups on stage Si. We have for 1 ≤ i ≤ n:
nbcompi =

nbout
nbsti

, nbsti =
nbout
nbcompi

, and nbst =
∑n
i=1

nbout
nbcompi

.

Proposition 1. For each stage Si (1 ≤ i ≤ n), nbcompi ≤ b.
Proof. For each stage Si, the number of data sets that can be processed after a
setup is limited by its surrounding bu�ers. Once a setup is done to any stage Si,
it is not possible to perform more computations than there are data sets or than
there is room for result sets. Since all bu�ers can contain exactly b data sets, we
have nbcompi ≤ b.
Proposition 2. On a single processor with homogeneous bu�ers, the period can
be expressed as P =

∑n
i=1

wi

v +
∑n
i=1

sti
nbcompi

.

Proof. The period is the total execution time divided by the total number of
processed data sets nbout. The execution time is the sum of the time spent
computing, and the time to perform the setups. The computation time is the
time to compute each stage once (wi/v for stage Si), multiplied by the number
of data sets nbout. The recon�guration time is the sum of the times required
to perform each setup: nbsti × sti. Therefore, the period can be expressed as
P = 1

nbout

(∑n
i=1

wi

v × nbout+
∑n
i=1 sti × nbsti

)
, and we conclude the proof by

stating that nbsti =
nbout
nbcompi

.

Lemma 1. On a pipeline with homogeneous bu�ers, the lower bound of the pe-
riod on a processor is Pmin =

∑n
i=1

wi

v +
∑n
i=1

sti
b .

Proof. The result comes directly from Propositions 1 and 2:
P =

∑n
i=1

wi

v +
∑n
i=1

sti
nbcompi

≥
∑n
i=1

wi

v +
∑n
i=1

sti
b = Pmin.

Theorem 1. The scheduling problem on a single processor can be solved in poly-
nomial time, using the GREEDY-B algorithm.

Proof. It is easy to see that GREEDY-B is always performing b computations
between two setups, and therefore nbcompi = b for 1 ≤ i ≤ n. Therefore, the
period obtained with this algorithm is exactly Pmin, which is a lower bound on
the period and hence it is optimal.

Multi processor scheduling (bi = bu). The interval mapping problem on
fully homogeneous platforms without setup times can be solved in polynomial
time using dynamic programming [13,14]. We propose the use of this dynamic
programming algorithm for homogeneous platforms, taking into account the
setup times in the calculation of a processor's period. To be precise, the cal-
culation of the period is the one obtained by the GREEDY-B algorithm.



Let c(j, k) be the optimal period achieved by any interval mapping that maps
stages S1 to Sj and that uses at most k processors. Let per(i, j) be the average
period of the processor on which stages Si to Sj are mapped. Note that per(i, j)
takes the communication step into account. We have:

c(j, k) = min
1≤l≤j−1

(max(c(l, k − 1), per(l + 1, j))),

with the initial condition c(j, k) = +∞ if k > j. Given the memory M , we can

compute the corresponding bu�er capacity b(i, j) =
⌊

M∑j+1
k=i δk

⌋
= bu, since we

assume identical bu�er capacities. Therefore:

per(i, j) = max

(
δi
β
,

j∑
k=i

(wk
v

+
stk
b(i, j)

)
,
δj+1

β

)
The main di�erence with the ordinary use of the dynamic programming algo-
rithm is that Pu consumes bu input data sets or outputs bu data sets in waves
because of GREEDY-B. So c(n, p) returns the optimal period if and only if the
period is actually dictated by the period of the slowest processor, i.e., the slowest
processor cannot be in starvation or in saturation because of intermittent access
to the input/output bu�ers. The following theorem ensures that this is true:

Theorem 2. On a pipeline with inner-processor homogeneous bu�er capaci-
ties bu, the period P is dictated by the period of the slowest processor.

The proof can be found in the companion research report [3]. It is a proof
by induction, and several cases need to be discussed considering a pipeline of
processors: we prove that the slowest of the processors is never slowed down
either by a lack of data inputs or by a saturation of its output bu�er.

Single processor scheduling with di�erent bu�er sizes. We complete the
�xed bu�er size study by considering bu�ers with di�erent sizes. GREEDY-B
chooses either a stage whose input bu�er is full and we have enough space to
fully empty it, or a stage whose output bu�er is empty and we have enough
data sets to compute in order to fully �ll it. That way, we still maximize the
amount of data sets processed after each setup: we are limited by the lowest
capacity bu�er, which is either a fully emptied input bu�er, or a fully �lled output
bu�er. It may not return an optimal schedule in the general case, but we can
prove its optimality in the case of multiple bu�ers, i.e., each bu�er capacity is a
multiple of the capacities of both its predecessor and its successor: for 1 ≤ i ≤ n,
min(bi, bi+1)|max(bi, bi+1).

Theorem 3. The scheduling problem with multiple bu�ers on a single processor
can be solved in polynomial time, using the GREEDY-B algorithm.

The proof of this theorem can be found in the companion research report [3].
Note that GREEDY-B is not optimal for multiple processor scheduling with
multiple bu�ers.



4 Variable Bu�er Sizes

In this section, we tackle the problem of allocating the bu�ers for all stages on
a single processor P from an available memory M . We �rst focus on platforms
with homogeneous data input sizes (δi = δ) and setup times (sti = st).

Allocation algorithm. If n stages are mapped on one processor then it needs
n + 1 bu�ers. Given the memory M and the size of the data δ, if we want all
bu�ers to contain the same number of data sets, then the maximum number of

data sets that can �t in each bu�er can be computed as b =
⌊

M
(n+1)δ

⌋
.

The ALL-B algorithm allocates memory for each bu�er according to this
uniform distribution. The actual memory allocated for each bu�er is mi = m =

bδ =
⌊
M
n+1

⌋
. The memory used by this allocation is then (n+ 1)δ × b ≤M , and

we call R = M − (n + 1)δ × b the remainder of memory after the allocation,
i.e., the unused part of the memory. We prove that this allocation algorithm is
optimal if the remainder is lower than δ.

Theorem 4. The algorithm ALL-B is optimal on a single processor (i.e., the

period is minimized with this allocation) when R =M− (n+1)δ×
⌊

M
(n+1)δ

⌋
< δ.

The proof can be found in the companion research report [3]. It is a proof
by induction on n, and by expressing the general period (with any bu�er sizes),
we prove that the minimum is reached when all bu�ers are identical. The idea
behind this proof is that, starting from a uniform allocation (same bu�er sizes),
raising the size of a bu�er means reducing the size of another. The period is based
on the amount of computations done before a setup (the st

min(bi,bi+1)
part of the

period), and this value depends on the minimum of two consecutive bu�ers.
Therefore we would need to raise more bu�ers than we lower to balance this
value.

Memory remainder. If there is a remainder in the memory after the allocation
of bu�ers ALL-B, it is under certain conditions possible to use this remainder
to increase the size of some bu�ers. It may also be possible to have another allo-
cation, not based on ALL-B, that would make better or full use of the memory.
In both cases, the period achieved by some scheduling algorithm may be lower
than the one we have.

Proposition 3. Given an application with homogeneous setup times st and in-
put sizes δ, ALL-B may not give an optimal solution if R ≥ δ.

Proof. Let us consider a single processor, with a memory M = 20, and a speed
v = 1. A total of n = 6 stages are mapped on this processor, and we have
δ = w = st = 1. There are seven bu�ers, and therefore ALL-B returns bu�ers
of size b = 2, and the remainder is R = 20− 2× 7 = 6. The optimal period
using this distribution is obtained by scheduling the stages with the GREEDY-
B algorithm (see Theorem 1), and therefore:

P =
∑6
i=1

wi

v +
∑6
i=1

st
b = 6 +

(
1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2

)
= 9.



However, let us consider the following allocation: b1 = b2 = b3 = b4 = 2 and
b5 = b6 = b7 = 4. This allocation uses all the memory, and it corresponds to
the de�nition of multiple bu�ers. Therefore, the optimal period is obtained by
scheduling the stages with the GREEDY-B algorithm, and:

P =
∑6
i=1

wi

v +
∑6
i=1

st
min(bi,bi+1)

= 6 +
(

1
2 + 1

2 + 1
2 + 1

2 + 1
4 + 1

4

)
= 8.5.

This allocation leads to a smaller period than ALL-B, which concludes the proof.

We propose an heuristic to deal with the memory remainder created by ALL-
B (∀1 ≤ i ≤ n+ 1, bi = b). In some cases, it is possible to use R to increase the
size of several (but not all) bu�ers. According to Proposition 3, the use of this
remainder may lead to a decrease of the period. We restrict to the construction
of multiple bu�ers as de�ned above, so that we are able to �nd optimally the
period thanks to the GREEDY-B algorithm. Hence, if there is enough memory
to increase the size of bu�ers by steps of b, and if there is as least 2bδ memory
left, then the size of two consecutive bu�ers can be doubled, resulting in halving
the number of setups for the corresponding stage.

The heuristic, that we call H-REMAIN, starts o� by doubling the size of the
two last bu�ers if there are 2bδ memory units left, then will continue to increase
the capacity of the adjacent bu�ers by b as long as bδ memory units are still
available. Note that since R < (n + 1)δ, the algorithm is guaranteed to end
before having doubled the size of all bu�ers.

Given the available memory M , Pb(M) is the period obtained if ∀i ∈ [1, n+
1], bi = b; Palgo(M) is the period obtained by our heuristic; and Popt(M) is the
optimal (minimal) period that can be achieved with memory M .

We compute the value of b obtained by the ALL-B algorithm, and therefore
M = b(n+1)δ+R, withR < (n+1)δ. It has already been proved (see Theorem 4)
that if there is no remainder after ALL-B, Pb(M) is optimal. More formally,
M = b(n + 1)δ ⇐⇒ Pb(M) = Popt(M). We de�ne M∗ = (b + 1)(n + 1)δ =
M+(n+1)δ−R. With a memoryM∗, there is also no remainder and Pb+1(M

∗) =
Popt(M∗). We �rst prove that both Palgo(M) and Popt(M) can be bounded by
Pb(M) and Pb+1(M

∗) respectively:

Lemma 2. We have Pb(M) ≥ Palgo(M) ≥ Popt(M) ≥ Pb+1(M
∗).

Proof. By de�nition, we have Palgo(M) ≥ Popt(M). For the upper bound, H-
REMAIN is potentially improving Pb(M) by exploiting the remainder, and the
period cannot be increased by the allocation of the remainder of the memory.

For the lower bound, note that Pb+1(M
∗) is the optimal period with mem-

oryM∗ > M , and therefore Popt(M) cannot be better, otherwise we would have
a better solution with M∗ that would not use all memory.

Theorem 5. The two algorithms ALL-B and H-REMAIN are b+1
b -approximation

algorithms.

Proof. Let W =
∑n+1
i=1

(
wi

v

)
. We have Pb(M) = W + (n+1)st

b , and Pb+1(M
∗) =

W + (n+1)st
b+1 . Therefore,



Pb(M)

Pb+1(M∗)
=
W + (n+1)st

b

W + (n+1)st
b+1

≤
(n+1)st

b
(n+1)st
b+1

=
b+ 1

b
,

since W > 0 and (n+1)st
b+1 ≤ (n+1)st

b . Finally, thanks to Lemma 2, we have:

Palgo(M) ≤ Pb(M) ≤ b+ 1

b
Pb+1(M

∗) ≤ b+ 1

b
Popt(M) ,

which concludes the proof (recall that Pb(M) is the period obtained by algorithm
ALL-B). Note that the worst approximation ratio is achieved for b = 1, and
then we have 2-approximation algorithms. However, when b increases, the period
achieved by the algorithms tend to the optimal solution.

With heterogeneous setup times or data input sizes (sti, δi). The case
of heterogeneous setup times (sti) is kept for future work, since it turns out
to be much more complex. Indeed, allocating bu�ers while taking setup times
into account requires to prioritize higher setup times by allocating larger bu�er
capacities. However, this requires both the input and output bu�ers of the cor-
responding stage to be larger, and it will inevitably lead to side e�ects on sur-
rounding stages.

For heterogeneous data input sizes (δi), we can use a variant of the ALL-B
algorithm to allocate bu�ers of identical capacities, in terms of data sets: bi =⌊

M∑n+1
k=1 δk

⌋
= b. In this case, the memory used is

∑n+1
i=1 b × δi ≤ M , and the

remainder is R =M −
∑n+1
i=1 b× δi. However, even if there is no remainder, the

allocation may not be optimal:
Let us consider a single processor, with a memory M = 301, speed v = 1.

There are n = 4 stages with w = st = 1. The di�erent input sizes are: δ1 =
20, δ2 = 20, δ3 = 1, δ4 = 1, δ5 = 1. ALL-B returns bu�ers of size b = 7, and the
remainder is R = 301 − (20 × 7 + 20 × 7 + 1 × 7 + 1 × 7 + 1 × 7) = 0. The
optimal period using this distribution is obtained by scheduling the stages with
the GREEDY-B algorithm (see Theorem 1), and therefore:

P =
∑4
i=1

wi

v +
∑4
i=1

st
b = 4 +

(
1
7 + 1

7 + 1
7 + 1

7

)
= 4.571.

However, let us consider the following allocation: b1 = b2 = 6 and b3 = b4 =
b5 = 18. This allocation uses less memory, yet has way higher capacity bu�ers for
b3 to b5, with the only trade-o� being the reduction of the capacity of b1 and b2 by
one. This allocation corresponds to the de�nition of multiple bu�ers. Therefore,
the optimal period is obtained by scheduling the stages with GREEDY-B, and

P =
∑4
i=1

wi

v +
∑4
i=1

st
min(bi,bi+1)

= 4 +
(

1
6 + 1

6 + 1
18 + 1

18

)
= 4.444.

This allocation leads to a smaller period than ALL-B.

5 Conclusion

In this paper, we present solutions to the problem of optimizing setup times
and bu�er use for pipeline work�ow applications. For the problem of �xed bu�er
sizes of identical size within a same processor, we provide an optimal greedy
algorithm for a single processor, and a dynamic programming algorithm for



multiple processors. In the latter case, the application period is equal to the
period of the slowest processor. In the case of variable bu�er sizes, we tackle the
problem of distributing the available processor memory into bu�ers such that the
period is minimized. When the memory allocation results in no remainder (the
whole memory is used), the algorithm turns out to be optimal, and we propose
some approximation algorithms for the other cases.

In future work, we plan to consider sequence-dependent setup times (sti,j),
a problem that is already known to be NP-complete. We envisage the design of
competitive heuristics, whose performance will be assessed through simulation.
Furthermore, for the sti case, we plan to investigate the memory allocation
problem on a single processor. On the long term, we will consider the case of
heterogeneous bu�er capacities bi. This case is particularly interesting, as the
bu�er allocation heuristics lead to heterogeneous bu�er sizes.

References

1. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.: A survey of scheduling problems
with setup times or costs. European J. of Op. Research 187(3), 985�1032 (2008)

2. Allahverdi, A., Soroush, H.: The signi�cance of reducing setup times/setup costs.
European Journal of Operational Research 187(3), 978 � 984 (2008)

3. Benoit, A., Coqblin, M., Nicod, J.M., Philippe, L., Rehn-Sonigo, V.: Throughput
optimization for pipeline work�ow scheduling with setup times. Research Report
7886, INRIA (2012), http://graal.ens-lyon.fr/~abenoit/papers/RR-7886.pdf

4. Benoit, A., Robert, Y.: Mapping pipeline skeletons onto heterogeneous platforms.
J. Parallel and Distributed Computing 68(6), 790�808 (2008)

5. Bhat, P., Raghavendra, C., Prasanna, V.: E�cient collective communication in
distributed heterogeneous systems. In: 19th ICDCS'99. pp. 15�24 (1999)

6. Bhat, P., Raghavendra, C., Prasanna, V.: E�cient collective communication in
distributed heterogeneous systems. JPDC 63, 251�263 (2003)

7. Bryan, A., Norman: Scheduling �owshops with �nite bu�ers and sequence-
dependent setup times. Comp. & Indus. Engineering 36(1), 163 � 177 (1999)

8. Gendreau, D., Gauthier, M., Hériban, D., Lutz, P.: Modular architecture of the
microfactories for automatic micro-assembly. Journal of Robotics and Computer
Integrated Manufacturing 26(4), 354�360 (2010)

9. Li, L., Qiao, F.: Aco-based scheduling for a single batch processing machine in
semiconductor manufacturing. In: IEEE Int. CASE'08. pp. 85�90 (2008)

10. Li, L., Qiao, F., Wu, Q.: Aco-based scheduling of parallel batch processing machines
to minimize the total weighted tardiness. In: Int. CASE'09. pp. 280�285 (2009)

11. Luh, P.B., Gou, L., Zhang, Y., Nagahora, T., Tsuji, M., Yoneda, K., Hasegawa,
T., Kyoya, Y., Kano, T.: Job shop scheduling with group-dependent setups, �nite
bu�ers, and long time horizon. Annals of Operations Research 76, 233�259 (1998)

12. Srikar, B., Ghosh, S.: A milp model for the n-job, m-stage �owshop with sequence
dependent set-up times. Int. J. of Production Research 24(6), 1459�1474 (1986)

13. Subhlok, J., Vondran, G.: Optimal mapping of sequences of data parallel tasks. In:
ACM SIGPLAN Notices. vol. 30(8), pp. 134�143 (1995)

14. Subhlok, J., Vondran, G.: Optimal latency-throughput tradeo�s for data paral-
lel pipelines. In: Proceedings of the eighth annual ACM symposium on Parallel
algorithms and architectures. p. 71. ACM (1996)

15. Zhang, M., Goldberg, K.: Calibration of wafer handling robots: A �xturing ap-
proach. In: IEEE Int. CASE'07. pp. 255�260 (2007)


