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Abstract - The analysis of the active magnetic refrigeration (AMR) cycle for different wave-9 

forms of both the magnetic field and the velocity of the heat transfer fluid is an essential chal-10 

lenge in designing and implementing heating and cooling systems based on the magnetocaloric 11 

effect. One of the most important issue is the correct modelling of the magnetic and thermal 12 

behavior of the active magnetocaloric materials (MCM) in order to estimate precisely cooling 13 

capacity of the magnetocaloric system. As the multiphysics coupling implies successive calls 14 

for both the thermal and the magnetic modelling subroutines, the execution time of these sub-15 

routines has to be as short as possible. 16 

For this purpose, a new magnetostatic model based on reluctance network has been performed 17 

to calculate the internal magnetic field and the internal magnetic flux density of the active mag-18 

netocaloric material (gadolinium, Gd) inside the air gap of the magnetic circuit. Compared to a 19 

3D Finite Element Model (FEM), our magnetostatic semi-analytical model leads to a sharp drop 20 

of the computation time, while offering a similar precision for all magnetic quantities in the 21 

whole magnetocaloric system. 22 

 23 

Keywords: 24 

Magnetocaloric refrigeration 25 

Magnetocaloric regenerator 26 

                                                 
a) Author to whom correspondence should be addressed. Electronic mail: thierry.de-larochelambert@femto-st.fr 



2 

 

Magnetostatic model 27 

Reluctance network 28 

Magnetic equivalent circuit 29 

 30 

Nomenclature 31 

I electrical current intensity, A 32 

H magnetic field, A m-1 33 

B magnetic flux density, T 34 

T temperature, K 35 

R reluctance, H-1 36 

L length, m 37 

S section, m2 38 

39 

Um magnetomotive force, A 40 

N turn coil 41 

 42 

Greek symbols 43 

µ0 vacuum permeability, H m-1 44 

Φ magnetic flux, Wb 45 

Θ  magnetomotive force, A46 

1. Introduction  47 

 48 

The magnetic refrigeration and heat pumping is an emerging technology which offers 49 

environmental benefits compared to conventional vapor compression machines.  50 

The magnetic refrigeration is based on the magnetocaloric effect (MCE) exhibited by 51 

some materials at room temperature.1 The magnetocaloric effect occurs during the critical tran-52 

sition paramagnetic/ferromagnetic of these ferromagnetic materials: any change in external 53 

magnetic field around the Curie temperature induces a reversible change in the correlated elec-54 

tronic spin entropy, directly related to strong specific thermal power density production/absorp-55 

tion. When these magnetization changes occur in an adiabatic way, they produce an adiabatic 56 

temperature change ΔTad, which is a characteristic property of the magnetic material and de-57 

pends on both the magnetic field evolution and the initial temperature. Since the best ΔTad is in 58 

the range of only a few kelvins per tesla, an active magnetic refrigeration (AMR) cycle has to 59 

be imposed to magnetocaloric regenerators –micro-heat exchangers composed of magnetoca-60 

loric plates or spheres, etc.– to produce larger temperature gradients and significant thermal 61 



3 

 

power for heating or cooling purposes. An AMR cycle imposes a fluid (coolant) to flow alter-62 

natively through the regenerator while synchronizing the magnetization-demagnetization of the 63 

regenerator.2 64 

For several years, the Energy department of the FEMTO-ST Institute has been developing 65 

research on high efficiency magnetocaloric devices using magnetocaloric properties of some 66 

materials around ambient temperature.3 This technology is meant to provide large-scale eco-67 

logical solutions for refrigeration and heat pumping, since the theoretical efficiency of the AMR 68 

cycles is much higher than conventional vapor compression technologies. On the other hand, 69 

its operation does not require any use of greenhouse gases, unlike conventional refrigeration 70 

machines. 71 

However, the design of such efficient magnetocaloric devices still requires further re-72 

search for faster precise simulation codes and multiphysics models. This paper aims at exposing 73 

the theoretical basis and numerical results of a new model based on reluctance network applied 74 

to the Magnetic Equivalent Circuit of our magnetocaloric device, and showing the large im-75 

provements provided in computational time for the simulation of large magnetocaloric systems, 76 

while offering a good compromise on its accuracy.     77 

 78 

Even if models using reluctance network have been widely developed in electrical ma-79 

chine modeling, there are very few reluctance network model in the magnetic refrigeration do-80 

main.  81 

Dai and al.4 evaluate the influence of the gadolinium stack on the magnetic flux inside 82 

the air gaps of a magnetic circuit including permanent magnet, using an average permeability 83 

of the gap based on a simplified reluctance network, with an averaged magnetic flux density in 84 

the air gap. The magnetic field inside the gadolinium plates and the permeability of gadolinium 85 

are simply calculated by the means of the average field Brillouin function. The authors show 86 

that the change in temperature of the gadolinium stack strongly modifies the magnetic field in 87 

the gap, so that iso-field phases cannot be used for an accurate modeling of Ericsson cycles. 88 

However, nonlinear behavior of the ferromagnetic circuits is not considered. 89 

More recently, Vuarnoz and al.5 express the overall reluctance of the air gap as a series-90 

parallel assembly of mean reluctances of the magnetocaloric plates, fluid layers and air gaps, 91 

allowing for the calculation of the mean magnetic flux and the corresponding magnetic flux 92 

density inside the plates. Using this model to calculate a simplified Tad-based magnetocaloric 93 

heat-source term in a simple 1D thermo-fluidic model of an AMR cycle with imposed external 94 
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magnetic field, the authors find rather underpredicted values of the plates and fluid tempera-95 

tures, however with less discrepancy compared to the results of simple uniform magnetic field 96 

models. Their calculations as well as their experimental results confirm the inability of perma-97 

nent magnets to impose a constant internal magnetic field during cold or hot blows in AMR 98 

cycles, as shown previously in Ref. 4. 99 

In this paper, a new magnetostatic model based on reluctance network is applied to the 100 

global magnetocaloric system in order to calculate the internal magnetic field and the internal 101 

magnetic flux density of the active magnetocaloric material (gadolinium, Gd). The model takes 102 

into account the non-linear behavior and non-homogeneity of the ferromagnetic materials, 103 

while highly reducing the computation time compared to a previous FEM model.  104 

 105 

2. Experimental prototype 106 

 107 

In the magnetic refrigeration domain, different prototypes based on active magnetic re-108 

generative refrigeration (AMRR) principles were built and tested for more than twenty years.6  109 

A specific experimental prototype has been developed and created in our laboratory (Fig. 110 

1), including a controlled power source for pulsed magnetic field (powerful electromagnet) and 111 

a controlled hydraulic cylinder specially designed to produce precise flow sequences through 112 

an active magnetocaloric regenerator block inserted between two micro-heat exchangers at both 113 

ends. The regenerator consists of 14 pure gadolinium rectangular parallel plates –12 central 114 

plates (13 x 1 x 45 mm3) and 2 external plates (13 x 0.5 x 45 mm3), all 0.5 mm apart from each 115 

other (Fig. 2) –; it is arranged inside the electromagnet 21 mm wide air-gap. The purpose of the 116 

bench is to characterize the thermofluidic behavior of the magnetocaloric regenerator and to 117 

optimize its refrigeration performances.7,8  118 

 119 
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 120 

FIG. 1: Femto-ST experimental prototype with gauss-meter to measure magnetic flux density 121 

 122 

 123 

FIG. 2: Experimental magnetocaloric regenerator module 124 

 125 

3. Magnetostatic modelling of the magnetocaloric system 126 

 127 

Many numerical models of AMR cycles have been developed in the last ten years. Among 128 

the most recent models, some consider the magnetic field equal to the applied field;9 some 129 

others consider the magnetic flux density to be uniform in the whole material.10 More precise 130 

models simply evaluate the internal magnetic field at each point of the regenerator by using 131 

averaged demagnetizing factors.11  132 



6 

 

In our previous work, a magnetostatic finite element model (FEM) was developed and 133 

implemented in a multiphysics analysis of the refrigeration test bench, and a significant mag-134 

netic field heterogeneity was observed.12 This heterogeneity can be explained by the strong 135 

dependence of the internal magnetization of the magnetocaloric material on the temperature 136 

close to its Curie point combined with the temperature gradient between cold and hot sides of 137 

the magnetocaloric regenerator. Another inhomogeneity factor is produced by 3D phenomena 138 

in the magnetic field distribution inside the air-gap of the magnetocaloric test bench. 13  139 

However, even if the magnetostatic FEM model offers a very accurate resolution of Max-140 

well equations, its main drawback is the highly time-consuming calculation to solve these equa-141 

tions in the whole magnetic domain. The computation time of the magnetostatic model is cru-142 

cial, since it has to be used in each loop of the iterative calculation process until convergence 143 

of the multiphysics analysis, which requires a huge number of calls of the magnetostatic FEM 144 

model for each magnetocaloric operating point.8 145 

In this work, a semi-analytical model is designed for both the magnetic flux density and 146 

the magnetic field calculation inside the whole magnetic system, allowing much faster calcula-147 

tion than the FEM model with comparable precision, and accounting for the heterogeneous 148 

distribution of the magnetic field in the AMR cycle.  149 

Since the main objective of our test bench is to precisely characterize the AMR cycle, it 150 

is important to estimate the magnitude of the magnetic field distribution inside the regenerator, 151 

accounting for the non-linear behavior of both the external magnetic circuit and the active mag-152 

netic regenerator.14 153 

 154 

3.1. Magnetic device geometry and AMR discretization 155 

 156 

The electromagnet working was first simulated with FEM. The ferromagnetic circuit of 157 

the experimental prototype has an “8-shaped” structure presented in Fig. 3. It is composed of 158 

soft Fe-Si sheets, and a cylindric hole is arranged along the center line to enable further optical 159 

measurements of the fluid velocity (micro-PIV measurements). The pulse-controlled magnetic 160 

field is produced by 4 large coils with 90 turns each (colored rectangles on the side view, Fig. 161 

3).  162 

 163 
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 164 

FIG. 3: Electromagnet structure  165 

 166 

The electromagnet produces a magnetic field around 1 tesla in the air-gap (90 × 50 × 21 167 

mm3). The magnetic field in the gadolinium plates is numerically simulated using a magneto-168 

static formulation.  169 

The temperature distribution in the magnetocaloric material of the AMR involves the 170 

corresponding B(H) local distribution. Therefore, the magnetic state of the gadolinium plates 171 

inserted in the air-gap is numerically simulated and different “sensors” (calculation points) are 172 

numerically placed inside the plates, in order to display the evaluated local flux density.  173 

As shown in Fig. 4, the discretization considers the number Np of indexed i rectangular 174 

parallel plates, which are divided into Ns of indexed k equal elements, leading to NsNp elements 175 

called ei,k with i  [1, Np] and k  [1, Ns]. The discretization resolution of the regenerator can 176 

thus be easily increased if higher precision is required. 177 

 178 

  179 

FIG. 4: Discretization of the gadolinium regenerator in XY plane 180 
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 181 

3.2. FEM model 182 

 183 

The internal magnetic flux density B and internal magnetic field H of each segment is 184 

calculated for electrical coil currents ranging from 0 to 50 A with 5 A steps. The results obtained 185 

with a 3D FEM using Flux© magnetostatic solver can be considered as a reference, since this 186 

computation code can take complex magnetic phenomena into account, such as 3D effects, non-187 

linear B(H) behavior, magnetic flux losses, demagnetization, etc. In particular, the demagnet-188 

izing field has a strong influence on the internal magnetic field, on the magnetic flux density 189 

and on the magnetization inside the AMR.5 Therefore, oversimplified hypothesis on demagnet-190 

izing factors should be avoided when calculating the internal magnetic field in AMR materials. 191 

FEM models lead to a very precise magnetic analysis but are highly time-consuming 192 

(about five minutes for each magnetostatic resolution point of our experimental prototype with 193 

a 2.80 GHz dual-core PC). Even if the FEM model is accurate, the computation cost seems to 194 

be prohibitive when this model is coupled to a multiphysics simulation loop. In this case indeed, 195 

a huge number of successive estimation points are required to insure convergence, leading to a 196 

very large computation time. The numerical results of FEM calculations are exhibited below 197 

and compared to those obtained with our semi-analytical model in section 4. 198 

 199 

3.3. Semi-analytical model based on reluctance network 200 

 201 

In the present work, a semi-analytical model has been designed to accurately model the 202 

distribution of the internal magnetic field at each point of the regenerator for each time step 203 

during the AMR cycle, allowing much faster calculation than FEM with comparable precision, 204 

while accounting for the heterogeneous distribution of the magnetic field in the AMR. 205 

3.3.1. Mapping the non-linear behavior of the external ferromagnetic yoke 206 

 207 

The first feature of our semi-analytical model is to take into account the non-linear be-208 

havior of the external ferromagnetic yoke of the test bench, by means of experimental measures 209 
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of the magnetic flux density in the empty air-gap. The calculation scheme is displayed in Fig. 210 

5.  211 

 212 

 213 

FIG. 5: Calculation scheme of mmf for the external ferromagnetic yoke with empty air-gap 214 

 215 

During this step, the magnetomotive force (mmf) of the ferromagnetic circuit UmFe is cal-216 

culated. The magnetic flux density of the central air gap B0 is precisely measured in the core of 217 

the empty air-gap with a gauss-meter (as shown in 0), for currents ranging from 0 to 55 A with 218 

a 5 A step. This leads to the magnetic flux in the central air gap 0 [Wb] depending on the 219 

magnetic flux density and the associated air-gap section S0 = 90 × 50 mm2 (red part in Fig. 6 220 

and Fig. 7): 221 

000 SB . (1)  

 222 
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FIG. 6: Air gap aspect 223 

 224 

FIG. 7: Experimental magnetic flux density measurements 225 

 226 

From there, the reluctance of the whole air-gap (2) is calculated considering the leakage 227 

flux between magnetic poles outside the central rectangular air-gap (external trapezoidal air 228 

gaps):  229 
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where Lj and Sj are the length and section of the jth among n = 50 subdivisions of the symmetric  230 

trapezoidal leakage flux zone (an example of segmentation with n = 10 is presented in blue in 231 
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Fig. 6). The magnetic flux density Bj in the externals trapezoidal air gap was measured and 232 

linearly estimated along the n = 50 subdivisions (the values for j = 1, n/2, n are displayed in Fig. 233 

7). The magnetic flux in the whole empty air gap tot [Wb] expresses then as:  234 





n

j

jjtot SBSB
1

00 2 . (3)  

In these conditions, the mmf values Um0 (equation 4) of the empty air gap are obtained 235 

using this experimental method and compared with those calculated by the FEM, leading to a 236 

relative difference smaller than 0.4%:    237 

0 0m totU R  . (4)  

An equivalent diagram of the magnetic circuit with an empty air gap is displayed in Fig. 238 

8 showing the relation between the global magnetomotive force equal to NI, the magnetomotive 239 

force of the ferromagnetic circuit and the magnetomotive force of the empty air gap. 240 

 241 

 242 

FIG. 8: Equivalent diagram for the calculation of the ferromagnetic circuit mmf 243 

 244 

Therefore, the magnetomotive force UmFe across the ferromagnetic circuit can be deduced 245 

from the equivalent Kirchhoff voltage law for magnetic circuit (5), where I is the intensity of 246 

the electric current flowing in the coils and N is the number of coil turns (Fig. 9).  247 

0 0mFe m totU N I U N I R     . (5)  
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UmFe dependence on Φtot is obtained by evaluating (5) for an experimental dataset of currents. 248 

Interpolation can map Φtot(UmFe) and UmFe(Φtot) dependences. 249 

 250 

 251 

FIG. 9: Obtaining the magnetomotive force of the ferromagnetic circuit 252 

 253 

3.3.2. Computing magnetic flux distribution in the AMR regenerator 254 

 255 

In the second step, we analyse the magnetic flux distribution in the AMR regenerator 256 

plates for an inhomogeneous temperature distribution. The magnetic flux density distribution 257 

Bi,k for each element ei,k is computed in the discretized regenerator, for a given coil current at a 258 

given temperature distribution Ti,k in the regenerator. This step considers the magnetic behavior 259 

of the ferromagnetic yoke UmFe(Φtot) obtained previously and represented in Fig. 9. 260 

Fig. 10 displays the magnetic equivalent diagram of the air-gap with gadolinium plates. 261 

 262 
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 263 

FIG. 10: Magnetic equivalent diagram of the air-gap with gadolinium plates 264 

 265 

The parallel-series circuit, supplied with the coil’s mmf (NI) involves the non-linear be-266 

havior UmFe(Φtot) of external ferromagnetic yoke, the non-linear dependence Φi,k(UmGd i,k) of 267 

each discretization element ei,k of the regenerator and the reluctances of air regions. We can 268 

observe two kinds of air regions: a region in the air gap, corresponding to the external magnetic 269 

flux ΦAir through the Rair reluctance, and a set of NpNs regions located on the path of the mag-270 

netic flux through each element ei,k of the regenerator of R1 reluctance. Each element ei,k is 271 

bounded by two R1 reluctances in series with its non-linear UmGd i,k(Φi,k) (as shown in Fig. 11).  272 

Since the temperature Ti,k of each element ei,k is known, the curve Bi,k(Hi,k) is determined 273 

by the approximation of the experimental MCM characteristic curves B(H, T) for T = Ti,k. This 274 

allows to calculate the spatial distribution of the characteristic UmGd i,k(i,k), using (6) and (7), 275 

where Si,k is the element section and l the width of the element: 276 

, , , , ,( , )i k i k i k i k i kB H T S  , (6)  
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Gd , ,m i,k i k i kU H dl H l  . (7)  

 277 

The mmf UmGd i,k of each element in series with two R1 reluctances leads to the global 278 

mmf Um0 in the air gap, as a function of the flux Φi,k  through the element ei,k :  279 

1,,Gd0 2 RUU kikimm  . (8)  

 280 

 281 

FIG. 11: 3D view of the air-gap with some gadolinium plates 282 

 283 

In order to identify the magnetic flux distribution in the air spacing of the air-gap, it is 284 

necessary to compute the reluctance Rair with (9): 285 
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where Rk is the reluctance of the parallelipedic air space crossed by the magnetic flux flowing 286 

through the cross-section Sk of the gadolinium k plate. 287 

 288 

The magnetic flux of the air spacing inside the air-gap is calculated by (10), considering 289 

the linear dependence of the magnetic flux in the air gap: 290 
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air

m

air
R

U 0 . (10)  

This leads to the mapping function Φtot(Um0) of the global air gap flux noted tot function of the 291 

total mmf of the gap including the regenerator (Um0). For a given magnetomotive force Um0, the 292 

global magnetic flux is obtained by adding all element fluxes i,k with the magnetic flux air 293 

in the air gap (11): 294 
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0,0 . (11)  

What remains to be done is to compute the cartography (tot) of the total magnetomo-295 

tive force corresponding to a total magnetic flux, by adding the magnetomotive force in the 296 

global air gap, using the inverse interpolation of Φtot(Um0) obtained with (11). Thus, (N.I) is 297 

obtained by interpolation of Θ for a regular dataset of the magnetic flux between 0 and a max-298 

imum value, according to Kirchhoff's law for magnetic circuit (12): 299 

   0mFe tot m totN I U U      . (12)  

The proposed algorithm contains several sub-functions considering the nonlinearities in 300 

active magnetic materials (gadolinium plates, ferromagnetic yoke). In Table. I, we observe the 301 

complete scheme of the algorithm. The different steps are exposed in detail below, and two 302 

preliminary computations are necessary: 303 

- external ferromagnetic circuit behavior tot(UmFe) 304 

- Rair and R1 air reluctances 305 

① Inputs: Ti,k, I  

② Mapping Φi,k(Um0), equations (6) to (8) 

a) Obtaining magnetic behavior interpolation functions B(H)i,k for each element ei,k. 

b) Transforming B(H)i,k into a flux mmf interpolation function Φi,k(UmGd i,k) – Eq (6) and (7) 

c) Transforming UmGd variable in Um0 – Eq (8) 

③ Considering the linear dependence of the magnetic flux Φair(Um0) in the air gap – Eq (10) 

④ Mapping function of the global air gap flux Φtot(Um0) – Eq (11) 

⑤ Computing the cartography Θ(Φ) – Eq (12) 

⑥ Computing the total mmf Φtot for a given current I 
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⑦ Obtaining the gap mmf Um0 by interpolation of Φtot(Um0) 

⑧ Obtaining the magnetic flux Φi,k through each element by interpolation of Φi,k(Um0) 

⑨ Obtaining the mmf UmGd i,k of each element with the dependence Φi,k(UmGd i,k) 

⑩ Obtaining the internal magnetic flux density Bi,k and internal magnetic field Hi,k of each element  

TABLE. I: Complete scheme of the air-gap with gadolinium plates and equivalences 306 

 307 

3.3.3. Graphical interpretation of the algorithm 308 

 309 

Thereafter, in these conditions, a series of interpolations have to be performed in order to 310 

obtain the internal Bi,k and Hi,k values of each element of the magnetocaloric material:  311 

- the global magnetic flux through the gap Φtot is calculated from the current I in the coils 312 

(consequently NI) and the mapping tot(NI). Thus, the first curve fit method can be per-313 

formed (step ⑥ in Table. I and interpolation ❶ in Fig. 12); 314 

- the second interpolation is performed to obtain the mmf of the gap Um0, which depends 315 

on the curve tot(Um0), using the values of the magnetic flux in the gap obtained with the 316 

previous interpolation (step ⑦ in Table. I and interpolation ❷ in Fig. 12); 317 

- the next interpolation aims at obtaining the magnetic flux in each segment using the mmf 318 

calculated previously. For this purpose, it is necessary to use the curve connecting the 319 

magnetic flux of the segment and the mmf of the gap since the dependence i,k(Um0) is 320 

known for each element ei,k (step ⑧ in Table. I and interpolation ❸ in Fig. 12); 321 

- the last curve fit method is achieved to obtain the mmf of each element, which depends 322 

on the curve i,k(UmGd i,k), using the values of the magnetic flux of the corresponding 323 

segment obtained with the previous interpolation (step ⑨ in Table. I and interpolation 324 

❹ in Fig. 12). 325 

 326 
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 327 

FIG. 12: Successive interpolations for obtaining the magnetic flux and the magnetomotive force in 328 

each segment  329 

 330 

The ultimate step is to get the internal magnetic flux density Bi,k and internal magnetic 331 

field Hi,k of each element, by dividing i,k and UmGd i,k  respectively by the section Si,k and the 332 

length l (see example in Fig. 13). So, the characteristics Bi,k (Hi,k) of the magnetocaloric material 333 

(gadolinium in our case) are obtained after achievement of all the steps with our code developed 334 

in Python language. 335 

 336 
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 337 

FIG. 13: Obtaining the internal magnetic flux density and magnetic field of an element ei,k 338 

4. Results and comparisons 339 

 340 

The results obtained by the FEM (Flux3D©) for the magnetic flux density calculation in 341 

a ten-fold segmented plate of gadolinium at imposed uniform temperature T = 293 K are com-342 

pared to the results of our semi-analytical model. The outputs for the central and the external 343 

elements of the central plate are presented in Fig. 14 and Fig. 15, respectively (the correspond-344 

ing segments are highlighted in blue in Fig. 4). The maximum difference between these results 345 

is lower than 2%. 346 

 347 

 348 

FIG. 14: Magnetic curve of the central element (central gadolinium plate) 349 

 350 
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 351 

FIG. 15: Magnetic curve of the external element (central gadolinium plate) 352 

353 

 354 

The difference between the magnetic flux density curves of the two elements shows how 355 

much the magnetic flux density is depending on the position of the element inside the air gap, 356 

even if the temperature is uniform. Indeed, the external lines of the magnetic flux density con-357 

centrate at the ends of the regenerator plates, so that the magnetic flux density is higher (0.05 358 

T) at the ends than at the center of the plates. 359 

More thoroughly, it has been shown in Ref. 13 that strong inhomogeneities in the mag-360 

netic field inside an empty air gap are induced when introducing a magnetocaloric plate into an 361 

applied magnetic field, leading to a higher magnetic field intensity in the air, along with a large 362 

drop of the latter inside the plate very close to the ends. This is due to both the magnetic per-363 

meability of gadolinium (µr ~ 1.5) and the demagnetizing field on the boundary surfaces, which 364 

increases the axial demagnetization factor close to the ends of the regenerator plate. Since the 365 

magnetic flux is conservative, the decrease of the magnetic field intensity at each end of the 366 

magnetocaloric plate leads to a shift of the magnetic curve toward lower values of H, as shown 367 

in Fig. 15.   368 

 369 

Moreover, both the magnetic flux density and the magnetic field depend strongly on tem-370 

perature, more particularly around the Curie temperature (Tc  293 K for gadolinium). The 371 

comparison will further focus on the magnetic flux distribution in the central gadolinium plate, 372 

with imposed temperatures at each end (left cold side 290 K; right hot side 299 K). For this 373 

purpose, Fig. 16 shows the magnetic flux density distributions in the central gadolinium plate 374 
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that have been obtained by the FEM and semi-analytical models respectively, with 50 A current 375 

intensity in the coils producing 1 T magnetic flux density in the empty air gap. 376 

 377 

 378 

FIG. 16: Magnetic flux density distribution comparison 379 

 380 

The accuracy of the semi-analytical model can be highlighted in the case of a linear tem-381 

perature gradient from 290K to 299K imposed between the cold and the hot sides of the regen-382 

erator. The dependency of the internal magnetic flux density on the internal magnetic field in 383 

the gadolinium central plate divided into 10 equal elements is calculated with our semi-analyt-384 

ical model and with Flux3D© and displayed on Fig. 17 and Fig. 18, respectively. 385 

 386 

 387 

FIG. 17: B(H) curves at each point of the regenerator at corresponding temperature (semi-analytical) 388 
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 389 

FIG. 18: B(H) curves at each point of the regenerator at corresponding temperature (FEM) 390 

 391 

As can be seen in both figures, the magnetic flux density is much higher at the cold side 392 

of the plate, because of a higher magnetization due to the ferromagnetic state of the gadolinium 393 

under its Curie temperature, while being much lower at the hot side above the Curie temperature 394 

(paramagnetic state). 395 

No significant difference can be detected between the two figures, which confirms the 396 

good accuracy of our semi-analytical model. No discrepancy higher than 3% was obtained be-397 

tween these two simulations. 398 

 399 

As a final comparison, the two different methods for obtaining internal magnetic field 400 

and magnetic flux density of the magnetocaloric material exhibit the following advantages and 401 

drawbacks: 402 

-  the finite element method (FEM) leads to very precise magnetic analysis (3D phenomena) 403 

but is highly time-consuming when using a fine spatial resolution grid. For instance, the 404 

calculation time needed for achieving the FEM numerical simulation applied to the evolution 405 

of internal magnetic field and magnetic flux density in the whole magnetic system with a 5A 406 

step [0 : 50, 5A] is around 35 min with a 2.80 GHz dual-core PC; 407 

-  the semi-analytical model always requires much less time than the FEM resolution and offers 408 

good analysis precision with very similar results. The calculation time needed for the same 409 

analysis under same conditions drops to around 5 s with the same computer. 410 

 411 
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5. Conclusions 412 

 413 

A semi-analytical model based on a reluctance network is proposed to calculate the inter-414 

nal magnetic field H and internal magnetic flux density B when introducing a magnetocaloric 415 

stack of parallel plates into a magnetic air gap. The computation time needed with our model 416 

for obtaining internal magnetic field H and magnetic flux density B at each point of the whole 417 

magnetic system is around four hundred time shorter, compared to a complete FEM solver 418 

resolution for the same system in the same conditions.  419 

The semi-analytical model is directly applicable and can easily be extended to rotary 420 

magnetocaloric devices. A multiphysics analysis will be described in a further paper, in which 421 

the presented magnetostatic model is combined with a thermo-fluidic model, allowing to 422 

achieve the simulation of 5 AMR cycles applied to the whole system within only 5 minutes, 423 

instead of 4 hours with 3D FEM12 (using a 2.80 GHz dual-core PC). Besides, the magnetic 424 

results obtained with our semi-analytical model are very close to those of the FEM solver 425 

Flux3D©, which proves the efficiency of our model.  426 

Moreover, our semi-analytical model was applied efficiently to an optimization process 427 

of an AMR refrigeration system. The model involves the multi-physics phenomena occurring 428 

during the magnetic refrigeration process and simulates both the magnetocaloric material be-429 

havior, the instantaneous heat exchanges and the evolution of the whole magnetocaloric system 430 

undergoing successive AMR cycles with a controlled periodic applied magnetic field. This al-431 

lows to simulate the experimental behavior of our magnetocaloric test bench developed at the 432 

FEMTO-ST Institute.  433 

More generally, our analytical reluctance-based model could easily be adapted to any 434 

other magnetocaloric regenerator device to save huge calculation time without losing precision 435 

and to allow easier multi-parametric optimization. 436 

 437 

 438 

 439 
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