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Abstract—Controlling multi-DOF (Degree of Freedom) mi-
cropositioning systems always represents great challenge because
of the high sensitivity to the environment at this scale and
the cross-coupling effects present between the different axes. A
robust Luenberger observer-based state feedback design using
interval analysis and regional pole assignment technique are
introduced to control such systems. This robust control design
keeps the same structure of the classical state-feedback with
the usual Luenberger observer. However, the synthesises of the
observer and the feedback controller are performed by means
of interval techniques to find the set of gains that are robust
against system uncertainties and that satisfy some predefined
performances. For this matter, an algorithm based on Set
Inversion Via Interval Analysis (SIVIA) combined with interval
eigenvalues computation is proposed to find these robust gains.
The control approach is validated in simulation and then tested
experimentally to control a multi-DOF positioning structure.

Index Terms—Luenberger observer-based state feedback, in-
terval models, SIVIA, micropositioner.

I. INTRODUCTION

During the last decades, the design of micropositioning
systems based on smart materials such as piezoelectric ac-
tuators have gained much attention [1]. Unfortunately the
micropositioning systems are subjected to several uncertain-
ties produced by various factors such as vibrations, ambient
temperature, sensors limitation, dynamics modeling, and the
nonlinear characteristics of the used piezoelectric actuators
(hysteresis, time varying parameters, creep, etc), which make
the control of these structures not a trivial task. These factors
must be considered during the control design by including
enough robustness to the controller otherwise the control
system will fail.

There are various methods to control piezoelectric-based ac-
tuators including real-time adaptive, nonlinear techniques and
robust approaches that take into account these uncertainties
[1], [2]. There are also other robust approaches on the basis of
interval linear models that embrace the nonlinearities and the
uncertainties of the system [3], [4]. These interval techniques
present a very interesting method to represent system uncer-
tainties and to synthesize a robust controller [1]. However, the
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previous studies of interval control design focus on modeling
the processes by an interval transfer function representation
which is not well adapted to multivariable systems. Indeed,
the recent advance on the design of actuators with multi-
DOF especially for micro/nano-world raises the problem of
designing robust controller for multivariable systems [1], [2].
Therefore, the state-space based interval modeling which is
adequate to multivariable systems is studied in this paper.

The robust state-feedback controller synthesis for interval
state-space models using pole placement technique has been
considered in several works [5], [6], [7]. However the above
works focus only on the study of robust state-feedback control
design using interval Ackermann’s equation and closed-loop
characteristic polynomial. Furthermore, they are limited to
systems with state and input matrices of special structures as
explained in [5].

This paper addresses the problem of robust Luenberger
observer-based state feedback design to control multi-DOF
micropositioner under system uncertainties described by an
interval state-space model. Indeed, we propose to employ the
interval analysis techniques to find easily the set of robust
gains for both the observer and the controller, separately, that
ensure the stability and satisfy the desired performances. For
this purpose, a recursive algorithm has been introduced to
obtain the set of robust gains using regional pole assignment
techniques and interval eigenvalue computation. The proposed
design approach is guaranteed for a large class of interval lin-
ear systems. Finally, the proposed control strategy is validated
experimentally using a multi-DOF positionner stage based on
a monolithic skeleton driven by piezoelectric actuators.

The paper is organized as follows. Section 2 is dedicated
to brief preliminaries on interval eigenvalues computation.
Section 3 presents the structure of the observer-based state
feedback scheme and problem formulation. The experimental
setup and system identification are given in section 4. Whereas,
a simulation validation and experimental results are discussed
in Section 5 and 6. Finally, conclusion is given in Section 7.

II. INTERVAL EIGENVALUE COMPUTATION

This section brings a brief preliminaries on interval eigen-
values computation. The preliminaries of interval analysis and
interval matrix theory can be found in [8].

The interval eigenvalue Λ of an interval matrix is defined
as the set of all eigenvalues over all A ∈ A, that is [6],
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Λ(A) = {λ+ iµ | ∃A ∈ A, ∃x 6= 0 : Ax = (λ+ iµ)x)} (1)

The interval eigenvalue computation can be summarized by
estimating an outer bound in which all eigenvalues of the
matrix A ∈ A are bounded.

Recent advances in interval analysis computation have pro-
vided a new opportunity to estimate easily an outer bound
of the interval eigenvalue for any class of interval matrices
including real symmetric and asymmetric interval matrices. In
the case of a real symmetric interval matrix, it is worthy to
note that the matrix A

S

has only real eigenvalues.
To estimate the outer bound of the interval eigenvalue, there

are several methods existing in the literature. In [9] and [10],
the authors proposed some approaches to provide the exact
bound for the interval eigenvalue, however, these methods are
based on hard assumptions which are not easy to verify as
explained in [11]. Furthermore, in [12] and [13], the authors
employed the Taylor expansion and Perturbation theorems
to estimate the outer bound for real and complex interval
matrices. Recently, cheap formulas to estimate the outer bound
of the interval eigenvalue are introduced by Rohn in [14] and
by Hladîk in [11] for a class of symmetric and asymmetric
interval matrices, respectively.

Moreover, there is another interesting method to estimate
the outer bound of the interval eigenvalue called the vertex
approach introduced recently in [15] based on the work of [16].
The basic concepts of the vertex approach are the computation
of the eigenvalues of all exposed edges of the interval matrix
and the use of the convex hull function to find a convex
polygon that enclose all possible eigenvalues. However, the
main disadvantage of this approach is that it takes relatively
much more time compared to other approaches.

Remark 1. It is worthy to note that the cheap formulas of Rohn
and Hladîk perform well when the interval matrix elements are
thin (small uncertainties). These formulas may not work in
the case of large uncertainties due to the warping effect (over
estimation) which usually leads to a large outer bound of the
interval eigenvalue. In this case, the vertex approach presents
a very interesting solution to highly reduce the warping effect.

III. INTERVAL LUENBERGER OBSERVER-BASED STATE
FEEDBACK DESIGN

Consider a linear Multi Input Multi Output (MIMO) interval
uncertain system described by the following model:{

ẋ(t) = Ax(t) + Bu(t) ;

y(t) = Cx(t)
(2)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ IRn×n, B ∈ IRn×m,
and C ∈ IRp×n. The matrices A, B, C contain uncertain
elements which are bounded by elements lying in known upper
and lower bound; i.e. A = [A,A], B = [B,B], and C =
[C,C].

Remark 2. Notice that even if the input command u is
known as non-interval signal, the model above normally yields
interval state and output signals x and y respectively due to the

interval parameters. However, in practice the real process is
non-interval but assumed to have a behavior inside the above
model. We therefore maintain the signals x and y (and u) as
non-intervals.

A. Interval Controller design

Let us assume that the interval system (A, B, C) is ob-
servable and controllable in the sense of Y. Smagina theorem
for interval systems [5]. Since the direct measurement of
state variables x is usually impossible for many reasons
(physical, economical . . .), in this paper we propose to control
the interval systems by a Luenberger observer-based state
feedback control design.

The design of the feedback controller always necessitates
a compensator (feedforward gain) to ensure the zero steady-
state error. However, in the case of interval system a static
feedforward gain can not be used because of the uncertainties
of parameters. Therefore, an integral compensation in the loop
will be employed in this paper to ensure the zero steady-state
error. The proposed control law is therefore depicted in Fig.1
and given by:

u(t) = −Kx̂+Nξ(t) (3)

where x̂ is the estimated states by means of Luenberger
observer, K and N are the feedback and feedforward gains
respectively, and ξ(t) is the integral of the tracking error (i.e.
ξ̇ = r(t)− y(t)). Thus, the closed-loop system becomes:

ẋ(t) = Ax(t)−BKx̂(t) + BNξ(t) (4)

It is well known that the integral action makes the closed-
loop system robust against slow system parameters variations.
However, when the parameters are affected by fast and slow
variations, the search for robust gains must be considered to
ensure the stability and the desired performances of the closed-
loop system.

The interval version of the Luenberger observer is described
by the following equations:{

ˆ̇x(t) = Ax̂(t) + Bu(t) + L(y − ŷ)

= (A− LC −BK)x̂(t) + BNξ(t) + LCx
(5)

Therefore, the augmented interval state-space equation can
be introduced as:

ẋ(t)
ˆ̇x(t)
ξ̇(t)

 = [Acl]

x(t)
x̂(t)
ξ(t)

+ [Bcl] r(t) (6)

y(t) = [Ccl]

x(t)
x̂(t)
ξ(t)


where, [Acl] =

(
A −BK BN
0 A− LC −BK BN
−C 0 0

)
;

[Bcl] =

(
0
0
I

)
; and [Ccl] = (C 0 0).
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Fig. 1. The overall observer-based state feedback control schema

If we consider that [Acl] = T [Acl]T
−1, by similarity

transformation it is guaranteed that λ([Acl]) = λ([Acl]).
Consequently, let us define [Acl] as:

[Acl] = T [Acl]T
−1 (7)

where, T =

(
I 0 0
0 0 I
I−I0

)
.

If we consider that the used system matrices to synthesize
the controller and the observer are the same and belong to
the interval system (A, B, C), we get:

[Acl] =

(
A−BKBN −BK
−C 0 0

0 0 A− LC

)
(8)

By employing matrix manipulations in (8), we find:

det([Acl]) =

(
SI −A + BK−BN BK

C SI 0
0 0 SI −A + LC

)

= det
(
SI −A + BK−BN

C SI

)
det(SI −A + LC)

(9)

This is known in the literature as the separation theorem
which is widely applied to non-interval systems to find sepa-
rately the gains for the controller and the observer [17].

B. Problem formulation using Set-Inversion

The robust observer-based state feedback control design can
be outlined by finding the set of gain matrix [K], [L] and
[N ] (defined previously) that assign the system eigenvalues
to a desired region taking into account the uncertainty of the
interval system. Therefore, the problem arises in finding the
robust gains of the closed-loop system when the inclusion of
(10) is satisfied.

eig
[
[Acl]

]
⊆ ΩDesired region (10)

where [Acl] is the augmented closed-loop matrix of the system
(8) and ΩDesired region is the desired subregions for the
interval eigenvalues.

With the help of the separation theorem (9) the inclusion
problem (10) can be divided into two inclusion problems, one
for the feedback controller and the other for the observer as
demonstrated by the following equations:

eig
[(
SI −A + BK−BN

C SI

)]
⊆ ΩDesired region−controller

(11)

eig [(SI −A + LC)] ⊆ ΩDesired region−oberever (12)

The interval eigenvalues of the observer system have to be
placed so that the state estimator x̂ can be made to approach x
faster than the feedback control system by at least four times.
Thus, we propose to set the desired regions of the observer
ΩObserver and the controller Ωcontroller as depicted in Fig.2.

Remark 3. In fact, it is not practical to find a set robust gains
that can assign all eigenvalues of the interval control system
in the desired region Ωcontroller shown in Fig.2. However, the
set of gains should guarantee that the dominant eigenvalues of
the control system are within the region Ωcontroller.

Fig. 2. Desired regions for the controller and the observer in the complex
plane.

This problem of interval eigenvalues assignment can be
transformed into a set-inversion problem that can be solved
using inversion algorithms. The set inversion operation con-
sists in searching the reciprocal image X of a compact set Y
by a function f , i.e. X = f−1(Y ) = {X ∈ Rn | f(x) ∈ Y }
[3], [18]. The SIVIA algorithm, introduced by Jaulin in 1993
[18], is one of the powerful approach existing in the literature.
This algorithm is based on the subpaving technique which uses
a set of non-overlapping boxes to approximate the solution set
of the inversion problems. In this paper, the SIVIA algorithm
is adapted to approximate with subpaving the set solutions
[K], [L] and [N ] that satisfy the inclusions (11) and (12). The
proposed algorithm is outlined in Table.1.

The recursive SIVIA-based algorithm requires as input the
interval system matrices ([A], [B], [C]), initial box for the
gains [Θ0] that may contain the solutions, the desired region of
the eigenvalues, and the desired precision for the subpaving ε.
The interval eigenvalues computation can be performed using
the Hlad́ık formula or the vertex approach depending on the
thickness of the interval parameters as explained in section.II.
The proposed algorithm provides a complete information
about the ranges of feedback gains including: [Θin] inner
(solution), [Θout] outer (undefined), and [ΘInf ] infeasible (no
solution) subpavings.
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TABLE I
THE PROPOSED RECURSIVE SIVIA-BASED ALGORITHM.

SIV IA (in: [A], [B], [C], [Θ0], ε,Ωdesired region;
out: [Θin], [Θout], [ΘInfeasibl] )

1
2
3
4
5
6
7

- Compute Aclosedloop([A], [B], [C], [Θ])
- Estimate the interval eigenvalue eig([Aclosedloop])
- If eig([Aclosedloop]) ⊆ Ωdr Then [Θin] = [Θin] ∪ [Θ] return;
- ElseIf eig([Aclosedloop]) ∩ Ωdr = �Then
[ΘInf ] = [ΘInf ] ∪ [Θ]
- ElseIf[Θ] < ε Then [Θout] = [Θout] ∪ [Θ] return;
- Else bisect [Θ] and stack the two resulting boxes [Θn] and [Θn+1].
- If stack 6= �, then unstack into [Θn+1]; Else End.

Remark 4. The recursive algorithm, outlined in Table.1, is
used to find the robust gains matrices for both the observer
system and the controller system. In both cases we adapt the
algorithm such that: in the case of the observer synthesis, the
set [Θ] represents the observer gains matrix [L], Ωdr is the
desired region of the observer ΩObserver, as depicted in Fig.2,
where Aclosedloop is given by (12). Whereas, for the case of
the feedback control synthesis the set [Θ] represents the gains
matrix [[K] [N ]], where Aclosedloop is given by (11) and Ωdr
is the desired region of the controller Ωcontroller.

In the remaining part of this paper, we will use the proposed
robust interval observer-based state feedback synthesis to
design a robust controller for a multi-DOF micropositioning
system. However, the proposed control synthesis can be ap-
plied to any system that can be modeled by interval state-
space model and that satisfies the observability/controllability
conditions.

IV. EXPERIMENTAL SETUP AND SYSTEM IDENTIFICATION

A. Experimental apparatus

In this section we introduce an improved version of the 5-
DOF positioning system which has been presented in [19]. The
proposed positioner is based on a monolithic skeleton passive-
structure equipped with six piezostacks actuators. Thanks to
3D printing technologies, such construction reduces assembly
operation and consequently allows to vanish mechanical plays
that may affect displacement resolution. The structure is able
to perform 5-DOF: three translations along X-Y-Z axes and
two rotations about X-Y axes where single-beam and cross-
beam are used to guide linear and angular displacement, as
depicted by the CAD model given in Fig.3-b.

(a)

dSPACE board

sensors amplifiers

Re ecting 

surface

Displacement

sensor

5-DoF 

positioner

5
.0

m
m

10.5mm

(b)

piezostack actuator 

Computer

Fig. 3. a-Presentation of the experimental set-up. b-3D CAD model of the
proposed positioner based on a monolithic passive structures driven by six
piezostack actuators.

The experimental setup depicted in Fig.3-a is composed of:

• the 5-DOF prototype positioner,
• three displacement inductive sensors (ECL202 from IBS

company) with a resolution of 40 nm and a bandwidth
of 15kHz.

• an acquisition board which includes a computer and a
converter-board (DS1103 from dSPACE company).

• three voltage amplifiers (A400DI from FLC Electronics
company). Each amplifier has two independent channels
able to provide a supply voltage up to ±200V.

Due to the lack of high precision sensors to capture the
orientations of the positioner, in the sequel we consider only
the X , Y and Z displacements (i.e. three degrees of freedom:
3-DOF) of the positioning system to validate the proposed
control strategy.

B. System identification

The nonlinear characteristics of the used piezoelectric ac-
tuators ( i.e. hysteresis, creep,...) and the sensitivity of the
micropositioning system to the environment variations at this
scale may affect its behavior during the micro/nano applica-
tions. Unfortunately, it is extremely difficult to characterize
and to model the change of the environment and its effects
on the system during the experimentation. Therefore, in this
paper we propose to employ the interval state-space models to
model the 3-DOF micropositioning stage by considering these
effects as parametric uncertainties and by just bounding them
with intervals [20], [3], [4]. Thus, to obtain the interval state-
space model, we start by identifying the non-interval model
of the system then we will explain how to obtain the interval
model in the end of this subsection.

To characterize the 3-DOF actuator, we apply first a step
voltage Ux of an amplitude 75V and we set Uy and Uz to zero
and capture the displacement along X , Y , and Z axes which
are signed by σx, σy , and σz respectively. Then we repeat
the same procedures with Uy and Uz . Basically, the transfer
function G(s) to be identified for the 3-DOF micropositioning
stage is composed of nine transfer functions as given in (13).

G(s) =

Gxx(s)Gyx(s)Gzx(s)
Gxy(s)Gyy(s)Gzy(s)
Gxz(s)Gyz(s)Gzz(s)

 (13)

In order to identify the different transfer functions that
describe the dynamics of the system along the different axes
(13), we use the Box-Jenkins method, which is already avail-
able in the System Identification MatlabToolbox. Particularly,
a second order model for all transfer functions have been
chosen in our case because they are sufficient to represent the
dynamics of the positioning stage. Therefore, the identified
transfer functions are found as:
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Gxx(s) =
25.84s+ 3.93e05

s2 + 2669s+ 3.471e06

Gyy(s) =
21.43s+ 1.806e05

s2 + 1666s+ 1.568e06

Gzz(s) =
−9.862s+ 1.548e04

s2 + 578.9s+ 1.29e05

Gzx(s) =
1.293s+ 969.7

s2 + 399.6s+ 4.153e05

Gzy(s) =
12.26s− 5547

s2 + 5.587e− 08s+ 8.696e05

Gxy(s) =
−9.116s− 124.859

s2 + 1.062e03s+ 1.499e05

Gyx(s) =
13.800s− 0.3789

s2 + 1274.79s+ 2891.46

Gxz(s) =
1.357s− 100.38

s2 + 401.347s+ 4.291e05

Gyz(s) =
1.2058s− 561.11

s2 + 5.789e− 08s+ 8.959e05

(14)

The structure of the proposed micropositioner reduces the
cross-coupling effects because the different axes are struc-
turally independent. This can be seen clearly from the static
gains of the cross-coupling transfer functions in (14) (i.e. s=0).
Therefore, we can neglect the cross-coupling effects between
the different axes especially at low frequencies. However,
during the experimentation test, we found that when we apply
an input voltage on Z axis (i.e. on the four parallel piezostacks)
the micropositioning system has a considerable cross-coupling
on the X and Y axes which has to be considered. This
cross-coupling effect is caused by the unlike reactions of the
four parallel piezostacks actuators when the input voltage is
applied and it can be seen clearly from the static gains of the
Gzy(s) and Gzx(s) in (14). Therefore, in the final model only
the cross-coupling transfer functions Gxy(s), Gxz(s), Gyx(s),
Gyz(s) are set to zero, as presented in (15).

G(s) =

Gxx(s) 0 Gzx(s)
0 Gyy(s)Gzy(s)
0 0 Gzz(s)

 (15)

To obtain the interval model, we propose to consider each
parameter of (15) as center and we add a radius of 10%. Thus:

Gxx(s) =
[b11]s+ [b12]

s2 + [a11]s+ [a12]

Gyy(s) =
[b21]s+ [b22]

s2 + [a21]s+ [a22]

Gzz(s) =
[b31]s+ [b32]

s2 + [a31]s+ [a32]

Gzx(s) =
[b41]s+ [b42]

s2 + [a41]s+ [a42]

Gzy(s) =
[b51]s+ [b52]

s2 + [a51]s+ [a52]

(16)

where

[b11] = [23.2560, 28.4241] ;[a11] = [2.4020, 2.9360]× 10
3

;
[b12] = [3.5369, 4.3231]× 10

5
;[a12] = [3.1238, 3.8182]× 10

6
;

[b21] = [19.2870, 23.5731] ;[a21] = [1.4993, 1.8327]× 10
3

;
[b22] = [1.6253, 1.9867]× 10

5
;[a22] = [1.4111, 1.7249]× 10

6
;

[b31] = [−10.8483,−8.8757] ;[a31] = [521.0099, 636.7901] ;
[b32] = [1.3931, 1.7029]× 10

4
;[a32] = [1.1609, 1.4191]× 10

5
;

[b41] = [1.1636, 1.4224] ;[a41] = [359.6399, 439.5601] ;
[b42] = [0.8727, 1.0667]× 10

3
;[a42] = [3.7376, 4.5684]× 10

5
;

[b51] = [11.0340, 13.4861] ;[a51] = [0.5028, 0.6146]× 10
−7

;
[b52] = [−6.1018,−4.9922]× 10

3
;[a52] = [7.8263, 9.5657]× 10

5
;

In fact, in [3], it is shown that the 10% of radius is
sufficient enough to describe the uncertainties of numerous
cases of piezoelectric actuators. This margin presents a good
compromise between the widths of parameter uncertainties
and the chance to find the robust gains for the closed-loop.
Furthermore, according to the performances inclusion system
[21], the obtained robust gains will guarantee the performances
for any uncertainties within the interval, which was created to
have 10% radius from the center.

The above-mentioned interval MIMO transfer function
model of the micropositioning system can be expressed by the
following interval state-space model using canonical transfor-
mation [22], [23]:{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(17)

where

A =

[
Axx 0 Azx

0 AyyAzx

0 0 Azz

]

B =

Bxx 0 0
0 Byy 0

BzxBzyBzz

t ; C =

[
Cxx 0 Czx

0 CyyCzy

0 0 Czz

]

V. CALCULATION OF THE ROBUST
OBSERVER/CONTROLLER GAINS

The goal of the robust observer-based state feedback control
synthesis is to find the robust gains that ensure the stability
and the desired performances of the observer and the feedback
controller under system uncertainties.

Indeed, by using the separation principle introduced previ-
ously (9), we get:

det([Acl]) = det
(
SI −A + BK−BN

C SI

)
det(SI −A+LC)

Based on the structure of the state-space model of the
interval system (17), we consider the structures of the gains
matrices K, N , and L as follows:

K =

(
Kxx 0 Kzx

0 KyyKzy

0 0 Kzz

)
; N =

(
Nx 0 0
0 Ny 0
0 0 Nz

)
;

L =

(
Lxx 0 Lzx

0 LyyLzy
0 0 Lzz

)
In order to obtain the robust gains for the feedback con-

troller and the observer, the interval state-space model of the
multi-DOF positioning system (17) is used with the help of
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the proposed recursive SIVIA-based algorithm (Table.1). Fore-
most, we set the desired performances for both the feedback
controller and the observer in the time-domain such that the
state estimation is made at least four times faster than the
feedback controller. Furthermore, in micro/nano manipulation
and assembly applications, the rapidity is highly required and
the overshoot is extremely undesirable because it may cause
micro/nano objects damage. Therefore we set the desired
performances of the step response behavior as follows: a
negligible overshoot and settling times Ts1 ≤ 8ms for the
observer system and Ts2 ≤ 40ms for the controller system.
Consequently, let us define the desired regions Ωcontroller
and Ωobserver as follows: for the the controller we set ξ1 =
η1.ωn1 = 115 and θ = 55, 7o, and for the observer we set
ξ2 = η2.ωn2 = 575.6, where η and ωn are the damping ratio
and the natural frequency respectively [24].

1) Search for feedback controller gains: As explained
previously, the search for the robust gains for the observer and
the control systems can be performed separately by means of
the separation principle. Indeed the controller gains are related
directly to the following determinant matrix:

det
(
SI −A + BK−BN

C SI

)
(18)

By replacing the interval system matrices in (18) and by
using matrix algebraic properties, the search process for the
robust gains for the controller is simplified to the search of
the robust gains for three subsystems in a separated way as
described by the following equation:

det
(
SI −A+BK−BN

C SI

)
=

det
(
SI −Axx −BxxKxxBxxNx

−Cxx SI

)
det

(
SI −Ayy −ByyKyyByyNy

−Cyy SI

)
det

(
SI −Azz −BzzKzzBzzNz

−Czz SI

)
(19)

To find the set solution [K] and [N ] of each subsys-
tem, we use the proposed recursive SIVIA-based algorithm
described in Table.1. Foremost, we choose an initial box
[Ki1]×[Ki2]×[Ni] = [−5×101, 5×101]×[−5, 5]×[−1×103, 1×103],
where i belongs to {xx, yy, zz}, which corresponds to the
three subsystems given in (19). Also we set the accuracy of
subpaving to ε= 0.01 and we define Ωcontroller as the desired
region for the interval eigenvalues. The obtained subpaving re-
sults of each subsystem are depicted in Fig.4 (a, b and c). The
red boxes correspond to the inner subpavings [Kin], i.e. the
set solutions [[Ki1] [Ki2] [Ni]] that satisfy the inclusion (11).
The white boxes correspond to the subpavings [KUnfeasible]
where the inclusion condition (11) is not satisfied. The yellow
boxes refer to [Kout] where no decision on the inclusion is
taken.

2) Search for observer gains: In order to find the robust
gains for the observer system, we follow the same procedures
detailed previously for the controller. In this time we use
the following determinant matrix (20) that corresponds to the
observer system, obtained from the separation principle.

det(SI −A + LC) (20)

Moreover, the determinant matrix (20) can be divided by
itself to three subsystems using matrix simplification as we
did for the controller. The obtained subpaving results of each
subsystem are depicted in Fig.4 (d, e and f).

A. Simulation results with Monte-Carlo technique

Before validating experimentally the proposed controller
design, we start by testing the robustness of the obtained
gains of the observer and the feedback controller in simulation
by means of Monte-Carlo technique. During the simulation
validation, we select randomly the robust gains for the observer
and the controller from the solution boxes depicted in Fig.4.
Consequently, we set the gains for the observer and the
controller as Lxx = [50, 5] , Lyy = [50, 5], Lzz = [0.2, 100],
[Kxx, Nxx] = [1, 0.05, 1200], [Kyy, Nyy] = [1, 0.05, 1200],
[Kzz, Nzz] = [0.2, −10, 800], where the gains Lzx, Lzy ,
Kzx, and Kzy are set to zeros. Afterwards we start simulation
using Monte-Carlo in which we select randomly a value for
the system matrices inside the interval system ([A], [B], [C])
and each time we draw the obtained eigenvalues, as depicted
in Fig.5. The results clearly show that the observer and the
controller system are always stable and satisfy the desired
performances related to the damping ratio and the natural
frequency (ξ1,ξ2, and θ defined previously) as well as the
system matrices are inside the interval system ([A], [B], [C]),
which means that the observer and the controller are robust
against parameters uncertainties.

The step responses for the closed-loop system using Monte-
Carlo simulation are depicted in Fig.6. We notice that all the
step responses of the closed-loop system satisfy the desired
performances with a negligible overshoot (1%) and with a
settling time Ts ≤ 40ms. Moreover, it can be seen that the
closed-loop system rapidly rejects the cross-coupling effect
with a time less than 40ms.

VI. EXPERIMENTAL VALIDATION

The previous sections were devoted to design the robust
observer-based state feedback controller in which the robust
gains for the observer and the controller are calculated and
tested in simulation. In this subsection, the designed observer
and controller are implemented and tested experimentally.

Figure 7 represents the experimental bode diagrams of the
identified transfer functions of the closed-loop system (Txx,
Tyy, Tzz , Tzx, and Tzy) also the open-loop transfer functions
(Gxx, Gyy, Gzz , Gzx, and Gzy). This figure demonstrates
that the closed-loop system achieves a convenient bandwidth
relative to the bandwidth of the open-loop system for Hxx,
Hyy , and Hzz . Moreover, from the bode diagram of the cross-
couplings transfer functions Hzx and Hzy , we can see that the
closed-loop system ensures the rejection of the cross-coupling
effect in low and relatively high frequencies, whereas, for
the low frequencies the rejection has a very small amplitude
compared with high frequencies. Furthermore, it is worthy to
note that the cross-coupling Hzx and Hzy are larger than
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Inner (Solution) Infeasible (no solution)Outer (Undefined)

Fig. 4. Resulting solution gains for the controller and the observer.

Fig. 5. Draw of the eigenvalues of the observer and the controller (closed-loop
system) in the complex plan using Monte-Carlo techniques.

Fig. 6. Step responses of the closed-loop system using Monte-Carlo technique.

that of open-loop after about 500 rad/s which is acceptable
bandwidth for low speed applications. In the other side, the
cross-coupling Hyx, Hxy , Hxz, Hyz are remain negligible in
closed-loop for high and low frequencies as shown in fig.7.

In order to test the tracking performances of the closed-
loop system, we carry out an experimental test with various
trajectories including helix and sine wave trajectories with
different frequencies. However to evaluate the accuracy of the
tracking, in the sequel we will use the rms (root-mean-square)
error criteria which is calculated from the following equation:

rms =
√

(xref − x)2 + (yref − y)2 + (zref − z)2 (21)

The tracking result of a sinusoidal trajectory applied on the
three axes with same frequencies is depicted in Fig.8-a which
represents a line in the cartesian space. In fact, two experiment
tests were performed. The first one used a low frequency of 1
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Fig. 7. The open-loop and closed-loop frequency responses of the positioning
system (experimentation).

rad/sec in which the positioning system tracks successfully
the desired trajectory with rms error (21) of 0.06µm that
represents approximately 0.6% of the full range as shown in
Fig.8-c. The second one the frequencies of the input signals
are increased to 12 rad/sec, the rms error relatively increases
to 0.27µm (3% of the full range) as depicted in Fig.8-d. This
error refers to the phase-lag phenomena and hysteresis behav-
ior that characterize the dynamics of the piezoelectric systems
at high frequencies. However, the errors are convenient for
multi-DOF micro/nano positioning applications especially in
low-speed conditions. For a high-speed tracking conditions,
we propose as future work to combine the proposed approach
in this paper with resonant control techniques to obtain a high
tracking performances [25]. Furthermore, we need to make
some improvements on the micro-positioning stage itself and
also a more sophisticated sensors need to be used.

Figure 8-b presents a helix trajectory test where the posi-
tioning system is forced to track a helix shaped trajectory by
applying simultaneously a sine waves of amplitude 5µm on
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Fig. 8. Sinusoidal and Helix trajectory tests: a- Sinusoidal trajectory in the cartesian space,b- Helix trajectory, c- the obtained error for the sinusoidal trajectory
at frequency of 1 rad/sec for X,Y, and Z axes, d- the obtained error for frequencies of 12 rad/sec. e- the obtained error for the Helix trajectory.

X and Y axes with frequencies of 2 rad/sec and 4 rad/sec,
respectively, and series of steps on Z axes. Indeed, it is shown
that the helix trajectory tracking is successfully achieved, with
a tracking rms error less than 0.2µm for X, Y and Z axis (less
than 2% of the full range).

VII. CONCLUSIONS

In this paper, a robust observer-based state feedback control
design is introduced to control a multi-DOF micropositioning
system. The proposed robust control synthesis is based on
interval analysis combined with regional pole assignment
technique using interval eigenvalue computation. Indeed, we
propose a recursive algorithm, called recursive SIVIA-based
algorithm, to find the robust gains for the controller and
the observer under system uncertainties. Simulation validation
using Monte-Carlo technique is performed to validate the
proposed approach under system uncertainties. Furthermore,
an experimental validation was carried out to control a new
multi-DOF positioning system. These experimental results
validated the proposed observer-based state feedback design
and demonstrated the effectiveness of the proposed control
synthesis to handle the problem of system uncertainties.
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