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ABSTRACT 

Purpose – The most significant point to be introduced in the subdomain technique (i.e., based on the formal resolution of 

Maxwell’s equations applied in subdomain) is the local saturation effect. In this paper, the author presents a novel contribution 

on improving of this two-dimensional (2-D) technique in polar coordinates by focusing on the local saturation. 

Design/methodology/approach – The rotor and the stator regions are divided into elementary subdomains (E-SDs) which are 

characterized by general solutions to the first harmonic of magnetostatic Maxwell’s equations. These E-SDs are connected in 

the two directions (i.e., r- and θ-edges). Newton-Raphson (NR) iterative algorithm is used for nonlinear magnetic field analysis. 

Findings – The proposed model is relevant for different types of rotating electrical machines, as an example the semi-analytical 

model has been implemented for spoke-type permanent-magnet (PM) machines (STPMMs).The magnetic field calculations 

have been performed for nonlinear B(H) curve and compared to nonlinear finite-element method (FEM) predictions. The semi-

analytic results are in good agreement with those obtained numerically, considering both amplitude and waveform. 

Originality/value – A new model for full prediction of magnetic field in the rotating electrical machines with the local 

saturation effect is presented. 

 

I. INTRODUCTION 

In electrical machines design and optimization tools, the most influential parameters are the accuracy compared to test results and 

the computation time consumed. As it is well known, the numerical methods (i.e., the finite-element, finite-difference or boundary-

elements analysis) [1]-[2] are very effective with the ability to take various geometries and several parameters such as nonlinear and 

nonhomogeneous materials, eddy-current, transient and steady state simulations. In other hand, many different works have been 

oriented towards the proposal and improvement of hybrid numerical methods [3]-[4] and (semi-)analytical models [5]-[17], which 

are fast and adapted to the first design steps. Subdomains technique is one of the most recent semi-analytical methods for magnetic 

field prediction and electromagnetic performance calculation in electrical machines. This method is based principally by the division 

of the machines into SDs and defined the solution of magnetostatic Maxwell’s equations for each SD. 

The general solutions are deduced by considering the interfaces conditions (ICs) between different regions. The most significant 

assumption in this technique is that the iron parts are considered to be infinitely permeable so that the global/local saturation effect is 

neglected. Indeed, this assumption leads to homogeneous boundary condition (BCs) in non-periodic regions (e.g., rotor/stator slot). 

The global solutions are obtained by considering only θ-edges ICs. Until last year, this technique is used in the modeling of several 

types of electrical machines such as [5]-[8] for PM synchronous machines, [9]-[11] for solid or cage rotor induction motors, and [12]-

[13] for reluctance machines. Some comprehensive reviews of magnetic field prediction in electrical machines using SD technique 

can be found in [5], [14], and [18]-[19]. 

Give up nonhomogeneous Neumann BCs and the iron consideration in magnetic field prediction using SD technique in 
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Cartesian coordinate appeared for the first time by Dubas et al. [14], in which the connection is performed in both directions 

(i.e., x- and y-edges). In [15], Roubache et al. proposed SD technique taking into account the iron relative permeability in the 

STPMMs. In this paper, the r-edges ICs are performed using Taylor series expansion. Recently, a novel exact approach for air- 

or iron-cored coil modeling in polar coordinates is proposed by [16]. In [17], this approach is extended to synchronous electric 

machines modeling. Herein, the general solutions of Maxwell’s equations are deduced by applying the principle of 

superposition and the SDs connections are carried out in θ-edges directions using Fourier series expansion, and in r-edges 

directions using new proposed series expansion. 

The aim of this paper is to extend the proposed model in [16]-[17] for full prediction of magnetic field in the rotating electrical 

machines with the local saturation effect, and introducing for the first time NR iterative algorithm in nonlinear magnetic field 

analysis using SD technique.  

The first part of this paper presents the principles of the proposed E-SD technique. Then, a more detailed for magnetic field 

solutions in the various regions and the adaptation of NR iterative algorithm with the proposed technique are done. Finally, the 

obtained results from the developed semi-analytical model are compared to those found by FEM [20]. 

II. METHODOLOGY 

The aim of this paper is to propose a general semi-analytical model for full prediction of magnetic field in the rotating 

electrical machines. This model takes into account the local saturation effect and gives the magnetic field distribution in all 

machine regions (e.g., PMs, slots, teeth, yoke...).  

As an example the proposed E-SD technique coupled with NR iterative algorithm for nonlinear magnetic field analysis has been 

implemented for STPMM [see Fig. 1]. However, it can be easily implemented for other types of electrical machines, this E-

SD technique in polar coordinates  ,r   is formulated in magnetic vector potential zA  with the following assumptions: 

 the end-effects are neglected (i.e., that the magnetic variables are independent of z); 

 the stator slots/teeth, the rotor teeth and the PMs have radial sides; 

 the current density has only one component along the z-axis; 

 the electrical conductivities of materials are assumed to be null; 

 the direction of PMs magnetization is supposed purely tangential, i.e.,  0, , 0MM ; 

 the E-SDs are considered as isotropic regions; 

 the iron reluctivity is a function of the mean value of magnetic field B in each E-SD. 

The main idea of the proposed model is to mesh the rotor and the stator regions into E-SDs [see Figs. 2.a-2.b]. Then, the general 

solution of magnetostatic Maxwell’s equations is taking such as in [16]-[17]. However, the E-SDs must be small enough that the 

potential vector variation can be considered as not important. This approximation allows us to consider only the first radial and 

tangential harmonics, which makes the desired accuracy related to the number of E-SDs instead of the harmonics number. 

It should be noted that the non-saturated regions (e.g., stator slots) are meshed for a programming reason. In fact, this rends 

the adjacent E-SDs have the same spatial frequency and the obtained equations from the ICs between the different E-SDs will 

have the same form [see Appendix B]. Moreover, using the description given in this paper, one can program this model by 

associate the E-SDs by more than one harmonic (e.g., two or three harmonics). However, as the aim is to consider the local 
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saturation, the E-SDs should be small and the high harmonics will be useless. A comparison between the case of one harmonic 

and three harmonics is given in Section V. 

The mesh in this model is done with simple algorithm by devising the rotor and the stator region in r- and θ-directions. As 

examples, a comparison between three different meshes is done in Section V: 

 Mesh 1 (M1) : only the stator slots are divided by three in θ-direction which give 72 E-SDs in the stator and 24 E-

SDs in the rotor  

 Mesh 2 (M2) : the rotor teeth are divided by six in θ-direction and the stator slots/teeth and the PMs are divided by 

three in r- and θ-directions which give 180 E-SDs in the stator and 180 E-SDs in the rotor  

 Mesh 3 (M3) : the stator/rotor slots/teeth/PMs are divided by six in r- and θ-direction which give 576 E-SDs in the 

stator and 384 E-SDs in the rotor  
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Fig. 1.  Examples of STPMM 

 

The general solution of magnetostatic Maxwell’s equations considering only the first radial and tangential harmonics in each 

domain (Ω) can be written as [16]-[17] 

 , r p
z z z zA r A A A                                                                                              (1) 
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where   01
jj

rmM B     with j varying from 1 to 2p poles in which rmB  is the remanent flux density of PMs, and i
zJ  is the 

current density in the ith stator slot with i  vary from 1 to sQ  in which sQ  represents the number of stator slots, j

PM is the jth 

PM region, i

Ss
 the ith stator slot, Ri and Si are the iron regions in the rotor and the stator regions respectively, Sv is the 

stator isthmus-opening region,  1 2, , ,R R a  are the main dimension of Ω, and  1 2 3 4 5 6, , , , ,       are its integration 

constants. 

Each E-SD is characterized by absolute reluctivity in function of B , this function is obtained from the nonlinear curve using 

the analytical model given in [21]: 
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                                                                           (5) 

where B  is the mean value of field density in the E-SD [see Appendix C], 0  is the vacuum permeability, and q is an index 

and , ,q q qm n a  are the parameters to be optimized using genetic algorithm. The B(H) and   B  curves used herein and their 

corresponding parameters are given in Appendix A. For the paramagnetic regions (i.e., j

PM , i

Ss
, and Sv ), the reluctivity 

is defined as 

0

1
( ) =B


                                                                                                                                      (6) 

After defined the solutions in different regions (i.e., rotor, stator, and air-gap), the ICs between the various regions should be 

introduced to determine the integration constants. These ICs give nonlinear system equation [see Section III] which can be solved 

using NR iterative algorithm [see Section IV]. 
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Fig. 2. Mesh generation of: (a) the rotor and (b) the stator. 

III. MAGNETIC FIELD SOLUTION  

In the proposed model the machine is divided into three regions. Fig. 1 shows the machines topologies where: i) Region I 

represents the air-gap, ii) Region II the rotor, and iii) Region III the stator. 
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After meshing the stator and the rotor region into E-SDs, each E-SD is associated by inner and outer radii, position, opening 

width, and absolute reluctivity. The following sub-sections present the general solutions in each region. 

A. General solution of Laplace’s equation in region I 

In the air-gap (i.e., Region I), which is an annular domain at ;  r sr R R , the solution of Laplace’s equation can be written 

as [16]-[17] 
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where n is a positive integer, and A10 – A4n are the integration constants in Region I. 

The field vectors  ; ; 0B  rB B  and  ; ; 0H  rH H  in these regions are coupled by 

0=H B I I
                                                                                                                        (8) 

B. General Solution of Laplace’s/Poisson’s Equations in Region II 

The rotor region (i.e., Region II) is divided into E-SDs as it shown in Fig. 2(a). Each element 
,k l

II  is characterized by the 

parameters  , ,
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,p k l
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, k l

II is the absolute reluctivity, and 

 1, , ,l l k ka Rr Rr   are the corresponding main dimension. The general solution of zA  in this region can be written as [16]-[17] 

, , , ,

1 2

, ,

3 4

1

,

5

,

6

= ln( )

cos
2

sin lnsinh
2

sinh
2

rl rl

k l k l k l p k l

z II z II

k l k l l
rl l

k k

k l l
rkrk l

k l l
rk l

A B B r A

ar r
B B

Rr Rr

a r
B

R

a
B

 

  

  

  





 

       
                  

   
    

    
  

   
        

 sinh

k

rk l

r

a

  
  

  

                                                           (9a) 

where 

 1ln






rk

k kRr Rr
  and 


 rl

la
                                                                               (9b) 
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C. General solution of Laplace’s/Poisson’s equations in region III 

The stator region (i.e., Region III) is divided into E-SDs as it shown in Fig. 2(b). Each element 
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parameters  , ,
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 1, , ,l l k kb Rs Rs   are the corresponding main dimension. The general solution of zA  in this region can be written as [16]-[17] 
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The field vectors  ; ; 0B  rB B  and  ; ; 0H  rH H  in these regions are coupled by 
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It should be noted that the r- and -components of B  are deduced from zA  by 

1












z

r

A
B

r
   and   






 



zA
B

r
 with , ,I II III                                                      (13) 

IV. ICS AND NR ITERATIVE ALGORITHM 

The integration constants in (7), (9), and (11) can be determined by solving the following nonlinear system equations 

obtained from the ICs between the various regions [see Appendix B], viz., 

 ( ) ( ) 0f X M X X Y                                                                                              (14) 
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                                         (20) 

It should be noted that the first three lines of sub-matrices in the matrix M correspond to ICs of zA  where the equations are 

independent to the absolute reluctivity of materials. However, the other sub-matrices are corresponding to ICs of / /H  at surface. 

These later are depending to the absolute reluctivity of materials which are also related to the unknowns vector X. 

The Jacobian matrix of ( )f X can be written for the kth iteration as 

 ( ) ( )k k k kJ X M X X                                                                                            (21) 

where 
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                                                                        (22) 

The description of rotorb  and statorc   is given in Appendix C. 

Using the well-known NR iterative formula the solution at each iteration is given as: 

1k k k kX J f X                                                                                                          (23) 

where kJ is the Jacobian matrix, and ( )k k kf M X X Y    . 

In order to improve the convergence, the nonlinear iteration was decelerated by applying an under relaxation factor 𝜀 as 

follows: 

 1 1k k k kX X X X                                                                                                 (24) 

The usual NR iterative algorithm can be obtained for 𝜀=1. Herein, the value of 𝜀 is changed according [22] in such a way to 

reduce the norm of residual vector f , where 𝜀 is divided by two until the following condition is satisfied 

1k kf f                                                                                                                     (25) 

The initial vector 0X  is defined as  
10 0X M Y


     , and then the iterative procedure continues until the desired global 

convergence criteria
310kf Y   which is enough to make the residual vector kf  negligible compared to the second 

member Y . Fig. 3 shows the flowchart for the NR iterative algorithm. 
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Fig. 3.  Flowchart for NR iterative algorithm. 

V. RESULTS AND VALIDATION 

The developed semi-analytical method with the local saturation effect is used to determine the magnetic field in all regions of 

the machines. The main dimensions and parameters of the studied machine are given in Table I. Then, semi-analytic results are 

verified by FEM [20]. To find agreeable results, we have used sufficient maximum segments in arcs drawing and automatic mesh 

generation, which gives 17,708 nodes and 35,231 elements. The simulation consumes around 8 sec. 

In Fig. 4, a comparison between the numerical results and the semi-analytical predictions for on load condition are shown in terms 

of magnitude of B in the middle of the air-gap (i.e., Region I) for three different meshes and tow case: i) one r- and θ-harmonic are 

associated for each E-SD and ii) three r- and θ-harmonics are associated for each E-SD. It can be seen that the semi-analytic model 

converge to the solution given by FEM however the time simulation become important for fin mesh (i.e., mesh (M3)). In the case of 

three harmonics per E-SD, the computation time augments nevertheless the accuracy don’t affect so match, this refer to the local 

saturation of the iron which need the augmentation of the number of E-SDs more than the number of the harmonics. It should be 

noted that the RMS error is calculated as 

 
2

, ,

1

pcN

Numeric Analytic

Ir m Ir m pc

m

Error B B N


                                                                                         (27) 

where 500pcN   is the number of points along the tangential. 

Figs. 5-7 present the r- and -components of B in the circles placed at the middle of the: i) air-gap ii) outer rotor bridge, and iii) 

stator yoke for on load condition. The results are good with agreeable error. The oscillation seen in Figs. 6a is explained by the nature 

of the solution proposed in the E-SDs which is sinus in terms of radial components. 

 



 

9 

 

TABLE I. Parameters of studied machine. 

Symbol Parameters Value 

Brm Remanent flux density of PMs 1.2 T 

μrm Relative permeability of PMs 1 

Nc Number of conductors per stator slot 200 

Im Peak phase current 5-20 A 

Qs Number of stator slots 6 

c Stator slot-opening 30 deg. 

cr Stator isthmus-opening 10 deg 

d PM-opening 18 deg. 

p Number of pole pairs 2 

Rext Radius of the external stator surface 67 mm 

r4 External radius of stator slot 60.3 mm 

r3 Internal radius of stator slot 48 mm 

Rs Radius of the internal stator surface 45.3 mm 

Rr Radius of the external rotor surface 44.8 mm 

r2 External radius of the PMs 43.8 mm 

r1 Internal radius of the PMs 23 mm 

Rint Radius of the rotor inner surface 22 mm 

Lu Axial length 63 mm 

Ω Mechanical pulse of synchronism 1,500 rpm 

 

The obtained relative permeability from the developed semi-analytical model is compared to that found by FEM in Fig. 8 good 

agreements are obtained. One can see the high saturation of the machine especially in the stator yoke and the rotor bridge where the 

relative permeability is less than 50. 

Another presentation of obtaining results is shown in Fig. 9, where the magnitude of B  in all machines regions is plotted, the 

comparison between analytical and numerical results improve the model accuracy regarding the local saturation which can be 

observed in inner/outer rotor bridge, stator yoke, and partial part of stator/rotor teeth.  

Different performances versus rotor position are presented in Figs. 10-12. The simulation is done with two different initial rotor 

position values, viz., 0 0rs  at no-load and 0 / 2rs p   at full-load, and different value of supply current (0, 10, and 20 A). Fig. 10 

shows the cogging torque for no-load condition, and the electromagnetic torque for on load condition. For the no-/full-load condition, 

the induced magnetic flux linkage per phase and the back-EMF or voltage are given in Figs. 11-12.The obtained results confirm the 

accuracy of the proposed semi-analytical model considering both amplitude and waveform. 
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(a)                                                                                                             (b) 

Fig. 4.  Magnitude of B in the middle of the air-gap (i.e., Region I) for on load condition I=20 A: (a) one harmonic per E-SD and (b) three 

harmonics per E-SD (i.e., Analytic mesh ~ computational time (s) ~ RMS error (T)). 

  

(a)                                                                                         (b) 

Fig. 5.  Waveform of B in the middle of the air-gap for on load condition I=20 A: (a) r- and (b) θ-component. 

 

  

(a)                                                                                         (b) 

Fig. 6.  Waveform of B in the middle of the outer rotor bridge for on load condition I=20 A: (a) r- and (b) θ-component. 
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(a)                                                                                        (b) 

Fig. 7.  Waveform of B in the middle of the stator yoke for on load condition I=20 A: (a) r- and (b) θ-component. 

 

  

(a)                                                                                                      (b)  

Fig. 8.  Waveform of relative permeability in the middle of (a) the rotor bridge and (b) stator yoke for on load condition I=20 A. 

 

          

(a)                                                          (b)                                                             (c) 

Fig. 9.  Flux density inside the machine for on load condition Im=20 A: (a) analytic with mesh M2, (b) analytic with mesh M3, and (b) FEM 
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(a)                                                                                                      (b) 

Fig. 10.  Waveform of (a) cogging torque (b) electromagnetic torque for on load condition I=20~10 A. 

 

  

(a)                                                                                                      (b)  

Fig. 11.  Waveform of the: (a) magnetic flux linkage and (b) back-EMF at no-load for 0rs  . 

 

  

(a)                                                                                                      (b)  

Fig. 12.  Waveform of the: (a) magnetic flux linkage and (b) voltage at full-load for 2rs p  . 

. 
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VI. CONCLUSION 

In this paper, we have proposed an improved semi-analytical model based on the 2-D subdomain technique in polar 

coordinates (r,θ) for the rotating electrical machine. The model has been applied to the STPMM. In this approach, the rotor 

and the stator regions are divided into E-SDs which are characterized by general solutions to the first harmonic of magnetostatic 

Maxwell’s equations. The ICs are performed in both directions (i.e., r- and θ-edges). The local saturation effect has been taken 

into account in the electromagnetic modeling. NR iterative algorithm has been used for nonlinear magnetic field analysis. 

In addition to considering local saturation, one of the largest advantages of the discussed approach is its compatibility with 

various geometries, viz., with(out) bridge, with(out) semi-closed, one(double) layer…, the only change to make is the particular 

solution association for each E-SD. 

In comparison with numerical method, the 2-D semi-analytical results are in good agreement with the ones obtained by 2-D 

FEM. However, the obtained of accuracy results need computation time more than FEM. Therefore, future research should 

focus on the optimization of the proposed model.   

APPENDIX A 

The B(H) and  B curves for the ferromagnetic material (i.e., type of steel M27_24G) used in this proposed model are shown 

in Fig. A-1. The specific parameters used herein are shown in Table A-I. 

 

(a)                                                                             (b) 

Fig. A-1. (a) B(H) and (b)  B curve. 

 

TABLE A-I. PARAMETERS FOR RELUCTIVITY CURVE FIT EQUATION 

q mq nq aq 

1 1.8874 15.0467 1.001 

2 2.1440 65.8347 1.0006 

3 1.9433 99.9533 1.0005 
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APPENDIX B 

 Magnetic vector potential ICs: 

The sub-matrices  11 12 13 1; ; ;     are defined from the ICs between Region I, II and III at  rr R and  sr R  as: 

   ,
, = , rK l

z I r rz IIA R A R                                                                                     (B-1) 

   1,, = , l
z I s z III sA R A R                                                                                      (B-2) 

Fourier series expansion of (B-1) gives 
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Fourier series expansion of (B-2) gives 
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The sub-matrices  22 2;   are defined from the ICs between the E-SDs in Region II in addition to Dirichlet’s BC at  intr R  

as: 

   , 1,
1 1, , 
 k l k l

z II k z II kA Rr A Rr                                                                           (B-7) 
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 1, , 0 l
z II intA R                                                                                                     (B-9) 

Fourier series expansion of (B-7) gives 
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The developed of (B-8) gives 
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The developed of (B-9) gives 
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The sub-matrices  33 3;   are defined from the ICs between the E-SDs in Region III in addition to Dirichlet’s BC at 

 extr R  as: 
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Fourier series expansion of (B-15) gives 
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The developed of (B-16) gives 
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The developed of (B-17) gives 
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 Field intensity ICs: 

The sub-matrices  41 42 43 4; ; ;     are defined from the ICs between Region I, II and III at  rr R and  sr R  as: 
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Fourier series expansion of (B-23) gives 
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Fourier series expansion of (B-24) gives 
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The sub-matrices  52 5;   are defined from the ICs between the E-SDs in Region II as: 
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Fourier series expansion of (B-31) gives 
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The developed of (B-32) gives 
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                                                      (B-36) 

The sub-matrices  63 6;   are defined from the ICs between E-SDs in Region III as: 
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Fourier series expansion of (B-37) gives 
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The developed of (B-38) gives 
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APPENDIX C 

It can be seen from field intensity ICs in rotor region that the sub-matrix  42 rotorb  can be written as: 
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with  ,
2 2

1 2k l
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l k kS a Rr Rr
  is the surface of the E-SD
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According to solution given in (8), the expansion of (C-4) and (C-5) gives 
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                                           (C-11) 

with the same method the sub-matrices 52 43 63; ;     rotor stator statorb c c  can be calculated. 
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