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Abstract 

At room conditions and standard strain rate (𝜀̇~10−4 s−1), unidirectional (UD) plant-

based reinforced organic polymers often exhibit nonlinear mechanical behaviour in 

tension. A viscoelastoplastic model (VEP model) for the simulation of UD plant fibre 

composite mechanical behaviour in tension, previously validated from twisted flax yarn 

epoxy composite under room conditions and standard strain rate, is calibrated with new 

data obtained from flax fibre epoxy composite under repeated progressive loading and a 

wide range of strain rates (𝜀̇~10−3 to 10−7 s−1). The VEP model does not reproduce well 

the experimental observations. There seems to be a lack of stiffening in this 

phenomenological model. 

We propose an improved VEP model, developed within the frameworks of 

thermodynamics and limited to uniaxial tension and infinitesimal strains. An internal 

variable 𝑠 representing the stiffening is added to create a VEP-stiffening model. This 

internal variable represents the coupled effects of reorienting cellulose microfibrils in 

kink band areas, spiral spring-like extension of cellulose microfibrils, and shear-stress-

induced crystallization of the amorphous cellulose of flax fibres. The stiffening 

phenomenon was considered viscous, without a threshold, and was related to the tension 

energy in the direction of the fibres. Three viscosity coefficients drive the three 

phenomena: 𝜂 (elastic), 𝐾 (plastic), and 𝐾𝑠 (stiffening). In the chosen formalism, this leads 

to two thermodynamic potentials 𝜑𝑉𝐸𝑃𝑠 and Ω𝑉𝐸𝑃𝑠 in which the stiffening phenomenon is 

strongly coupled with all the others. 

This VEP-stiffening model of the UD flax fibre epoxy composite correlates well with 

experimental observations. The paper also explores the evolution of the three viscous 



 

3 
 

phenomena (elastic, plastic, and stiffening) by simulation of different loading conditions: 

monotonic, cyclic, and creep. 

This VEP-stiffening model can easily enrich existing multiaxial models of UD behaviour in 

the fibre direction. Implemented in a finite element model, it could be used at different 

length scales to numerically explore the origin of the mechanical behaviour of plant-based 

reinforced polymers. 

  



 

4 
 

1. Introduction 

Plant-based reinforced polymer often presents nonlinear mechanical behaviour. This 

becomes particularly evident for tensile loading in the fibre direction, with the presence 

of an apparent yield point that separates the tensile curve into two regions. This 

phenomenon has been observed for flax fibre composites [1–5], unidirectional 

reinforcement [1,6], random mat reinforcement [1,7,6], and fibre composites other than 

those based on the flax plant [6,8]. The apparent yield point occurs at a very low level of 

strain, between 0.1% and 0.3%, according to experimental conditions and measurement 

methods [2,9]. Sometimes—under a low loading rate, high temperature, or high specimen 

moisture (see Figure 3 in [3])—an inflection point is observed in the tensile curve, even 

under infinitesimals strains. The region of the stress–strain curve after this inflection 

point is often called the ‘3rd region’ in the field of green composites (Figure 1). A stiffening 

phenomenon, associated with reorientation of cellulose microfibrils in kink band areas, 

spiral spring-like extension of cellulose microfibrils, and shear-stress-induced 

crystallization of the amorphous cellulose of the flax fibres, could explain this third region 

[10]. 



 

5 
 

 

Figure 1 : Typical stress–strain curves obtained in tensile test at room temperature for seven loading rates (from [4]). 
An inflection point is observed at low loading rates. 

Some authors have developed models to simulate the nonlinear mechanical behaviour of 

natural fibre-based composites [11,12,8,13–16]. For instance, Marklund et al. proposed 

using the Schapery framework theory to develop a viscoelastic–viscoplastic model 

including stiffness degradation for hemp/lignin composites [15]. The Schapery theory 

coupled with the Boltzman superposition principle was used by Kontou et al. [16] to 

model nonlinear viscoelasticity–viscoplasticity of bio-based polymer composites. In a 

previous work [4], we proposed a phenomenological viscoelastoplastic model (VEP 

model) to study the nonlinear effects of viscoelastic and viscoplastic phenomena in plant 

fibre composites. This VEP model simulates the uniaxial monotonic and cyclic behaviour 

of quasi-unidirectional twisted flax-yarn-reinforced epoxy composites at strain rate 

𝜀̇~10−4 s−1 and normal conditions (room temperature, normal humidity). This VEP 

model integrates viscoelastic and viscoplastic contributions, but no stiffening. This model 

is therefore unable to simulate low-speed tests when a third region is observed. Although 

all the above-mentioned works succeeded in describing some aspects of nonlinearity, 
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none were used to describe the apparent increase of rigidity observed in bio-based 

composites. 

The main purpose of this paper is to improve the VEP model by adding this stiffening 

phenomenon. In this study, the used material is a unidirectional flax-reinforced epoxy 

composite, and the loading strain rate range is wide enough (𝜀̇~10−3 to 10−7 s−1) to 

explore the phenomenon of stiffening in repeated progressive loading (RPL). This VEP-

stiffening model can be a valuable aid to the understanding of plant-fibre-reinforced 

composite behaviour at different scales—for example, to understand what happens to the 

composites in the third region of the tensile curve at low loading rate [4], high 

temperature, or high specimen moisture [3]. 
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2. Materials and Methods  

2.1.  UD specimens and mechanical test ing procedure 

Flax fibre reinforcement originates from the flax stem. After harvesting, the fibres are 

treated according to the usual steps: retting, scutching, hackling, and combined 

folding/drawing. With 𝑛 iterations of folding/drawing, the flax fibres are subjected to 

refining, which involves stretching the technical fibres to form ribbons. The flax ribbons 

are then manufactured by one more step just after folding/drawing: a 

widening/flattening process. In that step, several strands are connected in parallel with 

the help of pulverised water to soften the natural pectins and use them as glue between 

the fibres [17]. The output is a purely UD ply of flax (FlaxTape, Lineo—Flax Fiber 

Impregnation) [18]. We considered this product of UD flax fibres as non-pretreated 

reinforcement, for which flax did not undergo any particular selection process by the 

manufacturer. We also applied no treatment. The flax reinforcement used in this work 

weighed 110 g. m−2 (values from the manufacturer). The properties of plant fibres are 

affected by many factors including variety, climate, harvest, maturity, retting degree, 

decortication, mechanical disintegration, fibre modification, and textile and technical 

processes [12]. The matter was supplied without any information concerning variety and 

growing conditions. However, because the technical flax fibres were obtained from the 

same manufacturer, it may be assumed that the fibres were grown under similar 

environmental conditions. In this way, the impact of environmental factors could be 

considered reduced while retaining the same technical processes. Generally, the number 

of plies is selected according to the desired architecture and composite component 

fraction. In this study, ten plies of UD at 0° were always used to manufacture the required 
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composite laminates. This choice was selected to obtain a relatively high volume fraction 

of UD flax reinforcement (𝑉𝑓 = 47%), which reduced the variability of the local fibre 

orientations. The mechanical properties of elementary flax fibres were as follows: Young’s 

modulus between 27 GPa and 80 GPa, ultimate stress between 345 MPa and 1830 MPa, 

and ultimate elongation between 1.2% and 3.2% [19,20]. The resin used in this study was 

a standard Huntsman industrial resin for laminating, with low viscosity and high 

flexibility. This warm-curing epoxy system was based on Araldite LY1564SP associated 

with a polyamine accelerator hardener XB3486. The mechanical properties given by the 

producer were as follows: Young’s modulus between 28.6 GPa and 30 GPa, tensile 

strength between 70 MPa and 74 MPa, and elongation at tensile strength between 4.6% 

and 5.0%. The composite plates were developed using a liquid composite moulding with 

the hot platen press method described in [4]. The curing process was carried out in 

conformity with one of the manufacturer’s instructions (8 h at 80 °C). We chose 80 °C as 

the curing temperature to reduce both the thermal impact on the mechanical properties 

of the fibres [21] and the effect of the expansion coefficient of the aluminium mould on the 

surface conditions of the composite. Two flax composite laminates with dimensions of 

(330 × 250 × 1.67) mm3 were used for the present work. The reinforcement inside the 

final composite plates was constituted by a mixture of elementary fibres and bundles of 

fibre (bundles as existing in a flax stem). Consequently, this reinforcement was mainly 

oriented in the longitudinal direction of the composite, which was the optimal 

organisation to analyse the mechanical behaviour. Particularly, we believe this type of 

plant fibre composite (high performance, unidirectional, limited reinforcement 

variability, linear behaviour matrix) offers the best conditions to analyse the third region 

of tensile curves introduced previously. 
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UD specimens (width 15 mm, length 250 mm) were tested under RPL in tension at 20 °C 

using an Instron hydraulic machine equipped with a 100-kN load cell. A strain gauge was 

glued to each tested specimen (Vishay 125LT Tee Rosette) to accurately measure the 

strain. Specimens were subjected to successively larger loading–unloading cycles (cf. 

Figure 2) at a constant load/unload stress rate. Four load/unload stress rates were used: 

0.01, 0.1 , 1 and 10 MPa. s−1  (test duration: 1650, 167, 24 and 4 min, respectively). This 

important range made it possible to explore the potential viscous phenomena of stiffening 

and couplings in the strain rate range corresponding to 10−3 to 10−7 s−1. 

2.2.  Thermodynamic framework for modelling  

In a previous work [4], a VEP model was proposed to study the nonlinear effects of 

unidirectional flax-reinforced epoxy composite. This VEP model provides an accurate 

prediction of the uniaxial mechanical response (RPL, creep, and relaxation) of UD twisted 

flax yarn reinforced epoxy composite at strain rate 𝜀̇~10−4 s−1 and normal conditions: 

room temperature and usual humidity. This VEP model is based on a behaviour model 

developed for unidirectional glass-fibre-reinforced epoxy composite [22] by considering 

a linear viscoelastic part, modified nonlinear hardening, and no damage. The total strain 

𝜀 is partitioned into an elastic part 𝜀𝑒 (instantaneous reversible) and an inelastic part 𝜀𝑖𝑛 

(non-instantaneous reversible), which is the sum of anelastic contribution 𝜀𝑎𝑛 (time-

dependent reversible, due to delayed elasticity) and viscoplastic contribution 𝜀𝑣𝑝 (time-

dependent irreversible, sometimes qualified as creep strain). The sum of the elastic and 

anelastic parts is also called the viscoelastic part (𝜀𝑣𝑒 = 𝜀𝑒+𝜀𝑎𝑛): 

𝜀 = 𝜀𝑒 + 𝜀𝑖𝑛 = 𝜀𝑒 + 𝜀𝑎𝑛 + 𝜀𝑣𝑝 = 𝜀𝑣𝑒 + 𝜀𝑣𝑝 (1) 

In the context of thermodynamics with internal variables [23], physical phenomena can 

be described with a precision that depends on the choice of state variables. According to 

this approach, it is assumed that in a homogeneous continuous medium equivalent to the 
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real material, the microscopic physical phenomena are represented by means of 

macroscopic internal variables. The state variables are the observable variables (total 

strain 𝜀) and the internal variables (𝜀𝑒 , 𝛼𝑖, … ). The standardized framework [24] assumes 

that mechanical behaviour is obtained when two potentials are defined: a free energy 

density 𝜓(𝜀𝑒 , 𝛼𝑖 , … ) to define state laws and a dissipation potential Ω, which depends on 

the associated variables (Cauchy’s stress 𝜎, 𝑋𝑖, … ), to determine the evolution of internal 

variables. Based on the experimental results, the free energy and dissipation potential are 

proposed, and the state laws can then be written as 

𝜎 = 𝜌
𝜕𝜓

𝜕𝜀𝑒
 (2) 

𝑋𝑖 = 𝜌
𝜕𝜓

𝜕𝛼𝑖
 (3) 

where 𝜌 is the mass density. The evolution of internal variables is expressed as 

𝜀̇𝑖𝑛 =
𝜕Ω

𝜕𝜎
 (4) 

�̇�𝑖 = −
𝜕Ω

𝜕𝑋𝑖
 (5) 

For the automatic satisfaction of the second principle of thermodynamics, these two 

potentials must possess certain properties: nonnegativity, convexity, and zero at the 

origin [23]. The system of ordinary differential equations was solved using MIC2M 

software [25] via an explicit Runge–Kutta formula [26]. 

2.3.  Model calibration method 

An inverse method approach was used to extract the constitutive parameters from the 

experimental strain measurements during the RPL tests. This approach consists of an 

optimisation problem, the objective of which is to minimise function 𝑉: 

�̂� = argmin
𝛉∈𝚯

𝑉(𝛉) (6) 
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where vector 𝛉 = (𝜃1, … , 𝜃𝑛) is the vector of the unknown parameters, and 𝑉 is the cost 

function—i.e., the gap between the experimental strain 𝜀𝑚 (𝑚 ‘‘measured’’) and the 

numerical results 𝜀𝑐 (𝑐 ‘‘calculated’’), which can be defined as 

𝑉(𝛉) =
1

4
∑ [

1

𝑁(𝑜)𝜀𝑚𝑎𝑥
(𝑜)

∑[𝜀𝑐
(𝑜)

(𝛉, 𝑡𝑖
(𝑜)

) − 𝜀𝑚
(𝑜)

(𝑡𝑖
(𝑜)

)]
2

𝑁(𝑜)

𝑖=1

]

4

𝑜=1

 (7) 

In Eq. (7), subscript (𝑜) indicates the number of the RPL test considered. The acquisition 

time 𝑡𝑖
(𝑜)

 corresponds to the 𝑖𝑡ℎ data point of the 𝑜𝑡ℎ  test. 𝑁(𝑜) is the number of acquisition 

times, and 𝜀𝑚𝑎𝑥
(𝑜)

 is a weighting coefficient defined as the maximal strain value in the 𝑜𝑡ℎ  

experimental RPL test. The minimization problem was solved using an algorithm based 

on the Levenberg–Marquardt method coupled with the genetic approach implemented in 

MIC2M [27,25]. 

To determine whether the richness of the data is suitable for reliable parameter 

estimation, an identifiability analysis was also performed [28,4]. This analysis was based 

on the local sensitivity functions of the numerical strain to the parameters. 

  



 

12 
 

 

3. Results and Discussion 

3.1.  Shortcomings of the VEP model  

In a previous work [4], a VEP model was proposed to study the nonlinear effects of 

unidirectional flax-reinforced epoxy composite. Based on experimental results, the free 

energy 𝜓𝑉𝐸𝑃 and dissipation potential Ω𝑉𝐸𝑃 were proposed in the following equations [4]: 

𝜌𝜓𝑉𝐸𝑃 =
1

2
𝐸 [(𝜀𝑒)2 + ∑ 𝛽𝑖𝛼𝑖

2

3

𝑖=1

] (8) 

Ω𝑉𝐸𝑃 =
(𝜎 − 𝑋1)2

2𝜂
+

〈𝑓〉2

2𝐾
 (9) 

with 

𝑓 = |𝜎 − 𝑋2 − 𝑋3| − 𝜎𝑌 +
𝛾3

2𝐸𝛽3
𝑋3

2 (10) 

The internal variables 𝛼𝑖 (strain) and driving force 𝑋𝑖  (stress) represent inelastic 

phenomena: anelastic (𝑖 = 1) and viscoplastic (𝑖 = 2,3). 𝐸 and 𝜎𝑌 are Young’s modulus 

(instantaneous elastic modulus) and the initial yield stress, respectively. 𝜂 and 𝐾 are 

viscosity coefficients corresponding to delayed elasticity (anelasticity) and delayed 

plasticity (viscoplasticity), respectively. Parameter 𝛽1 is the anelastic rigidity ratio; 𝛽2, 𝛽3, 

and 𝛾3 are hardening parameters. The symbol 〈 〉 denotes Macauley’s brackets such that 

〈𝑥〉 = 0 if 𝑥 < 0 and 〈𝑥〉 = 𝑥 if 𝑥 ≥ 0.  

From a rheological point of view, the model proposed here is, for elastic contribution, a 

linear spring 𝐸 and, for anelastic contribution, a classical Kelvin–Voigt model which 

comprising a linear viscous damper 𝜂 and a linear spring (𝐸𝛽1)—with internal stress 𝑋1—
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connected in parallel. For viscoplastic contribution, a more complex model is required. It 

comprises a linear viscous damper 𝐾, a skidding block 𝜎𝑌 connected in parallel, and two 

additional kinematic hardenings with internal stresses 𝑋2 and 𝑋3 [29,30]: a linear (𝐸𝛽2) 

[31] and a nonlinear (𝐸𝛽3,𝛾3) from Armstrong–Frederick [32]. In addition, a coupling 

between translation (kinematic hardening) and contraction (negative isotropic 

hardening) of the elastic domain is added through the last term of equation (10) [33]. 

The state laws can then be written as 

𝜎 = 𝜌
𝜕𝜓𝑉𝐸𝑃

𝜕𝜀𝑒
= 𝐸𝜀𝑒 (11) 

𝑋𝑖 = 𝜌
𝜕𝜓𝑉𝐸𝑃

𝜕𝛼𝑖
= 𝐸𝛽𝑖𝛼𝑖 (12) 

The evolution of internal variables is expressed as 

𝜀̇𝑖𝑛 =
𝜕Ω𝑉𝐸𝑃

𝜕𝜎
= ∑ �̇�𝑖

2

𝑖=1

= 𝜀̇𝑎𝑛 + 𝜀̇𝑣𝑝 (13) 

�̇�𝑖 = −
𝜕Ω𝑉𝐸𝑃

𝜕𝑋𝑖
 (14) 

This VEP model is an eight-parameter model: (𝜃1, … , 𝜃8) = (𝐸, 𝜂, 𝛽1, 𝜎𝑌, 𝐾, 𝛽2,, 𝛽3, 𝛾3). 

The result of this VEP model calibration using the four RPL tests (0.01, 0.1, 1 and 

10 MPa. s−1) in equation (7) is presented in Table 1. Figure 2 shows simulated responses 

with parameters estimated by minimisation of the cost function 𝑉 defined by equation 

(7). 
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Table 1 : Eight material parameters for UD flax/epoxy composite. VEP model [4].  

Cost function value: 𝑉(�̂�) = 3.0 × 10−4 

i Parameter 𝜃𝑖  Definition Estimation 𝜃𝑖   

1 𝐸 (MPa) Young’s modulus 3.22 × 104 

2 𝜂 (MPa.s) elastic delayed (anelastic) viscosity  1.71 × 106 

3 𝛽1  anelastic rigidity ratio 2.55 

4 𝜎𝑌 (MPa) initial yield stress 1.62 × 101 

5 𝐾 (MPa.s) plastic viscosity  1.62 × 107 

6 𝛽2  linear kinematic hardening ratio 1.12 

7 𝛽3  linear hardening ratio 1.64 

8 𝛾3 nonlinear hardening (recall) 1.15 × 103 
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Figure 2 : Simulation response versus experimental data for progressive repeated loading  
at different load/unload rates using the VEP model. 

(a) 10 MPa. s−1 (b) 1 MPa. s−1 (c) 0.1 MPa. s−1 (d) 0.01 MPa. s−1 

It is clear that the viscoelastoplastic model does not correlate very well with the 

experimental data. The simulations are systematically lacking in stiffness. The increase in 

the apparent tangent modulus—visible from the fourth load in Figures 2d and 2c, from 

the fifth load in Figure 2b, and from the seventh load in Figure 2a—was impossible to 

simulate. No stiffening effect has been considered with our model for a strain above 0.5 −

1% (depending on the load/unload rate). Consequent to this underestimation of stiffness, 

0 0.5 1 1.5
0

100

200

300

400

  (%)


  (

M
P

a)

 

 

experience
VEP model

(a)

0 0.5 1 1.5
0

100

200

300

400

  (%)

 

 


  (

M
P

a)

experience
VEP model

(b)

0 0.5 1 1.5
0

100

200

300

400

  (%)


  (

M
P

a)

 

 

experience
VEP model

(c)

0 0.5 1 1.5
0

100

200

300

400

  (%)


  (

M
P

a)

 

 

experience
VEP model

(d)



 

16 
 

the apparent ‘permanent’ strains (at zero stress) predicted are lower than the 

experimental ones, loop after loop. 

The VEP model can simulate the second region of the tensile stress–strain curve, but not 

the third observed in certain stress–strain curves for low strain rates. This third region 

corresponds to the portion in the stress–strain tensile curve after the inflection point 

observed in some favourable conditions (Figure 1). 

3.2.  VEP-stiffening model  

In this section, the VEP model is improved to consider a stiffening phenomenon during 

loading. The idea of a stiffening phenomenon emerged because of the stronger 

assumptions researchers make in the case of bast-fibre-reinforced polymer: the 

possibility for microfibrils to reorient themselves during longitudinal loading (microfibril 

being the main component of bast fibres), even when fibres are trapped inside the matrix. 

The reorientation of microfibrils has been demonstrated experimentally on elementary 

fibre and bundles of fibres under tensile testing [34] and has been correlated to numerical 

results using a 3D finite element model [35]. The question of this reorientation when bast 

fibres are used as a reinforcement in the composite is thus highly logical. For long-plant-

fibre composites, in the case of reorientation during longitudinal loading—

notwithstanding the scale of the reinforcement (untwist at the microfibril scale, untwist 

at the yarn scale, in-plane reorientation at the ply scale)—the tangent modulus must be 

increased. 

Consequently, a stiffening phenomenon strongly coupled with the viscoelastic and 

viscoplastic phenomena must be added to the VEP model. There is almost nothing that 

macroscopically distinguishes a stiffened representative volume element (RVE) and a 

‘virgin’ one. It therefore becomes necessary to imagine an internal variable representative 

of the modified state of matter and capable of representing the stiffening effect (coupled 
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effects of reorienting cellulose microfibrils in kink band areas, spiral spring-like extension 

of cellulose microfibrils, and shear-stress-induced crystallization of the amorphous 

cellulose of flax fibres). There are several possibilities for this choice, depending on the 

school of thought and the type of stiffness measurement envisaged (microstructural, 

physical, mechanical). We have chosen a global mechanical measurement. The internal 

variable representing this measure and its associated thermodynamic force are denoted 

𝑠 (𝑠 ‘‘stiffening’’) and 𝑌, respectively. This internal variable 0 ≤ 𝑠 ≤ 𝑠𝑚 characterizes the 

stiffened state. 𝑠 = 0 corresponds to the ‘virgin’ state, and 𝑠 = 𝑠𝑚 is a value that must be 

identified using experimental data and must correspond to the state of maximal stiffening 

(reorientation of microfibrils completed for example). 

We use the concept of effective stress introduced by Rabotnov [36]. The internal variable 

is not 𝑑 (which leads to a decrease in stiffness) as in damage mechanics [36–38], but 𝑠 

(which leads to an increase in stiffness). If 𝐹 is the applied tensile force on section 𝐴 of the 

‘virgin’ RVE, 𝜎 = 𝐹/𝐴 is the usual stress satisfying the equilibrium equation. In the 

presence of stiffening, the effective stress is �̃� = 𝐹/ �̃�  =  𝜎/(1 + 𝑠). We also assume that 

the deformation behaviour is affected only by stiffening in the form of effective stress: any 

deformation behaviour of a stiffened RVE is represented by the constitutive laws of the 

‘virgin’ RVE in which the usual stress 𝜎 is replaced by the effective stress �̃�. For example, 

the tensile linear elastic law of a stiffened RVE is written as 𝜀𝑒 = �̃�/𝐸 = 𝜎/[𝐸(1 + 𝑠)], 

where 𝐸 is Young's modulus (instantaneous elastic modulus). It is also assumed that 

inelasticity is affected in the same way (Figure 3). 
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Figure 3 : Schematic representation of the effect of stiffening on elastic (𝜀𝑒)  
and inelastic strains (anelastic 𝜀𝑎𝑛 and viscoplastic 𝜀𝑣𝑝) during a tensile test at 𝜀̇ = 𝑐𝑠𝑡𝑒 . 

In the proposed model, stiffening is activated from the beginning of loading (i.e., without 

a threshold) with a kinetic that depends on parameter 𝐾𝑠, which is the viscosity coefficient 

of the stiffening phenomenon. In the chosen formalism, this leads to two thermodynamic 

potentials 𝜑𝑉𝐸𝑃𝑠 and Ω𝑉𝐸𝑃𝑠 in which the stiffening phenomenon is strongly coupled with 

all the others: 

𝜌𝜓𝑉𝐸𝑃𝑠 =
1

2
𝐸(1 + 𝑠) [(𝜀𝑒)2 + ∑ 𝛽𝑖𝛼𝑖

2

3

𝑖=1

] (15) 

Ω𝑉𝐸𝑃𝑠 =
1

2(1 + 𝑠)2
[
(𝜎 − 𝑋1)2

𝜂
+

〈𝑓〉2

𝐾
+

𝑌2

𝐾𝑠

〈𝑠𝑚 − 𝑠〉

𝑠𝑚 − 𝑠
] (16) 

where 𝑓 is the same as in the VEP model and thus is given by 

𝑓 = |𝜎 − 𝑋2 − 𝑋3| − 𝜎𝑌 +
𝛾3

2𝐸𝛽3
𝑋3

2 (17) 

The state laws can then be written as 

𝜎 = 𝜌
𝜕𝜓𝑉𝐸𝑃𝑠

𝜕𝜀𝑒
= 𝐸(1 + 𝑠)𝜀𝑒 (18) 

𝑋𝑖 = 𝜌
𝜕𝜓𝑉𝐸𝑃𝑠

𝜕𝛼𝑖
= 𝐸(1 + 𝑠)𝛽𝑖𝛼𝑖 (19) 

0 0.1 0.2 0.3
0

10

20

30

40

50

  (%)


  (

M
P

a)


vp

+ +
an

  

with stiffening effet

without stiffening effet (s =0)


e

=  ........ 



 

19 
 

𝑌 = 𝜌
𝜕𝜓𝑉𝐸𝑃𝑠

𝜕𝑠
=

1

2
𝐸 [(𝜀𝑒)2 + ∑ 𝛽𝑖𝛼𝑖

2

3

𝑖=1

] (20) 

The evolution of internal variables is expressed as 

𝜀̇𝑖𝑛 =
𝜕Ω𝑉𝐸𝑃𝑠

𝜕𝜎
= ∑ �̇�𝑖

2

𝑖=1

= 𝜀̇𝑎𝑛 + 𝜀̇𝑣𝑝 (21) 

�̇�1 = −
𝜕Ω𝑉𝐸𝑃𝑠

𝜕𝑋1
=

(𝜎 − 𝑋1)

𝜂(1 + 𝑠)2
 (22) 

�̇�2 = −
𝜕Ω𝑉𝐸𝑃𝑠

𝜕𝑋2
=

〈𝑓〉

𝐾(1 + 𝑠)2
sign(𝜎 − 𝑋2 − 𝑋3) (23) 

�̇�3 = −
𝜕Ω𝑉𝐸𝑃𝑠

𝜕𝑋3
= �̇�2 −

〈𝑓〉

𝐾(1 + 𝑠)2

𝛾3

𝛽3𝐸
𝑋3 (24) 

�̇� = −
𝜕Ω𝑉𝐸𝑃𝑠

𝜕𝑌
=

𝑌

𝐾𝑠(1 + 𝑠)2

〈𝑠𝑚 − 𝑠〉

𝑠𝑚 − 𝑠
 (25) 

This VEP-stiffening model (VEPs) is a ten-parameter model: (𝜃1, … , 𝜃10) =

(𝐸, 𝜂, 𝛽1, 𝜎𝑌, 𝐾, 𝛽2,, 𝛽3, 𝛾3, 𝐾𝑠, 𝑠𝑚). Three viscosity coefficients drive the three phenomena: 

𝜂 (elastic), 𝐾 (plastic), and 𝐾𝑠 (stiffening). 

The strong coupling between the phenomena requires a numerical calibration based on 

the inverse method (cf. §2.3). For the first approach, it can be assumed that 𝛽1 = 𝛽2 =

𝛽3 = 1 (rigidity equal to 𝐸 for anelastic and plastic phenomena) and 𝛾3 = 0 (nonlinear 

and isotropic hardening removed). This provides the first idea regarding the amplitude of 

all phenomena while keeping a simple 6-parameter model (𝐸, 𝜂, 𝜎𝑌, 𝐾, 𝐾𝑠, 𝑠𝑚) and a 

relevant starting point for the model calibration method explained in §2.3. Figure 4 shows 

the best fits obtained for the ten-parameter model, and the estimated parameter values 

are listed in Table 2. The properties that these two potentials 𝜑𝑉𝐸𝑃𝑠 and Ω𝑉𝐸𝑃𝑠 must 

possess for the automatic satisfaction of the second principle of thermodynamics have 

been checked: nonnegativity, convexity, and zero at the origin [23]. 
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Table 2 : Material parameters of the VEP-stiffening model. 

Cost function value: 𝑉(�̂�) = 1.5 × 10−4 

i Parameter 𝜃𝑖  Definition Estimated value 𝜃𝑖   

1 𝐸 (MPa) Young’s modulus 3.07 × 104 

2 𝜂 (MPa.s) elastic delayed (anelastic) viscosity  1.37 × 108 

3 𝛽1  anelastic rigidity ratio 1.37 

4 𝜎𝑌 (MPa) initial yield stress 6.00 × 100 

5 𝐾 (MPa.s) plastic viscosity 2.18 × 106 

6 𝛽2  linear kinematic hardening ratio 1.28 

7 𝛽3  linear hardening ratio 0.85 

8 𝛾3 nonlinear hardening (recall) 3.48 × 102 

9 𝐾𝑠 (MPa.s) stiffening viscosity  4.57 × 103 

10 𝑠𝑚 (%) maximal stiffening 22.3 
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Figure 4 : Simulation response versus experimental data for progressive repeated loading  
at different load/unload rates using the VEP-stiffening model. 

(a) 10 MPa. s−1 (b) 1 MPa. s−1 (c) 0.1 MPa. s−1 (d) 0.01 MPa. s−1 

Note that the value of the cost function representing the model–experience gap is half that 

of the VEP model. The increase in the apparent tangent modulus—visible on the fourth 

and fifth loads—is clearly better predicted than previously. The apparent permanent 

strains at zero stress are also predicted. Figure 5 shows the difference between the two 

models for the RPL test at 0.1 MPa. s−1. In this test, the maximal stiffness 𝑠𝑚 is reached 

during the last load (Figure 7b). 
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Figure 5 : Simulations of the RPL test at 0.1 MPa. s−1. VEP model versus VEP-stiffening model. 

Figure 6 shows the evolution of the different strains (total, elastic, anelastic, and 

viscoplastic) during the highest and lowest loading rates. In the test at the highest speed, 

the anelastic strain is negligible, and the viscoplastic strain has only a short time to 

increase. In the tests with the lowest loading rate, elastic, anelastic, and viscoplastic 

strains are of the same order of magnitude. It can be noted that the ‘elastic modulus’ 

increases with each cycle and that this increase is more important for the lowest loading 

rate. 

  

Figure 6 : Strain evolution during RPL tests for highest (a) 10 MPa. s−1 and lowest (b) 0.01 MPa. s−1 loading rates. 
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The VEP-stiffening model allows access to the evolution of stiffness during the tests, 

quantified by the internal variable 𝑠. Figure 7 shows the evolution of this internal variable 

𝑠 during the four RPL tests. 

  

Figure 7 : (a) Stress–strain and (b) stiffening during RPL tests. 

It can be seen in Figure 7 that only two low loading rates (0.1 MPa. s−1 and 0.01 MPa. s−1) 

allow the maximal value of the stiffening to be reached: 𝑠𝑚 = 22.3%. The higher the rate 

of loading, the lower the stiffening phenomenon. For the highest loading rate, despite the 

higher stresses, the stiffening obtained is only 2.7%. 

3.3.  Some stiffening effects 

The VEP-stiffening model can be a valuable aid to the understanding the plant-fibre-

reinforced composite behaviour at different scales. To improve the understanding of the 

model and the couplings involved in mechanical testing, we explore the evolution of the 

three viscous phenomena (elastic, plastic, and stiffening) by simulation using VEP-

stiffening for different loading conditions: monotonic and creep-recovery. 

As shown in Figure 8, simulation of the monotonic tensile loading test at �̇� = 10
−5

 s−1 with 

the VEP and VEP-stiffening models offers the possibility to observe the third apparent 
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region. Note that the transition point from the second to the third approximately coincides 

with a stiffening value of 1%. 

 

  

Figure 8 : Simulation of tensile test at 𝜀̇ = 10−5 s−1 and evolution of the stiffening variable. 
Three regions of the stress–strain curve obtained with the VEP-stiffening model. 

As shown in Figure 9, simulation of the creep–recovery tensile loading test at 𝜎0 =

200 MPa with the two models offers the possibility to observe the decrease of the elastic 

strain during creep, here equal to 17%. Owing to the viscosity of the phenomenon, the 

stiffening continues to increase slightly during the recovery phase (+2%). It should be 

noted that the VEP-stiffening model is less sensitive to creep (at 200 MPa) and that 

stiffening here has a locking effect on the anelastic strain. 
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Figure 9 : Simulation of creep–recovery test at 𝜎0 = 200 MPa using the (a) VEP model and (b) VEP-stiffening model. 

We have already observed this locking effect experimentally in our previous work [4]. Our 

experimental observations (see Figure 11a,[4]) show that at this stress level, the 

stationary creep stage is obtained very quickly (approximately 2 min) as provided by the 

VEP-stiffening model. The VEP model identified from RPL tests does not predict this 

stationarity and greatly overestimates the creep flow. 
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4. Conclusions 

We showed that apparent cyclic stiffening in tensile loading is impossible to simulate with 

our previous VEP model [4]. A low strain rate in tensile loading activated a stiffening 

phenomenon. 

We proposed an improved VEP model, developed within the frameworks of 

thermodynamics, limited to uniaxial tension and infinitesimal strains (strain never 

exceeds 1.5% during tests). An internal variable 𝑠 (stiffening) was added to create a VEP-

stiffening model. This internal variable represented the coupled effects of cellulose 

microfibril reorientation in kink band areas, spiral spring-like extension of cellulose 

microfibrils, and shear-stress-induced crystallization of the amorphous cellulose in the 

flax fibres.  

The stiffening phenomenon was considered viscous, without a threshold, and was related 

to the tension energy in the direction of the fibres (𝑌 variable). In the VEP-stiffening 

model, three viscosity coefficients drove the three phenomena: elastic (𝜂), plastic (𝐾), and 

stiffening (𝐾𝑠). In the chosen formalism, this led to two thermodynamic potentials 𝜑𝑉𝐸𝑃𝑠 

and Ω𝑉𝐸𝑃𝑠 in which the stiffening phenomenon was strongly coupled with all the others. 

This VEP-stiffening model of the UD flax fibre epoxy composite correlated well with 

experimental observations under repeated progressive loading in the strain rate range 

corresponding to 10−3 to 10−7 s−1. It also allowed us to simulate the third region, 

sometimes observed during monotonic tensile loading, and the decrease in the elastic 

strain during creep loading. 

This model can easily enrich existing multiaxial models of UD behaviour in the fibre 

direction. Implemented in a finite element model, this VEP-stiffening behaviour could be 
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used at different length scales to numerically explore the origin of the mechanical 

behaviour of plant-based reinforced polymers. A set of specific tests at different length 

scales under a wide range of temperatures and strain rates should help better understand 

the origins of stiffening. Particularly, it seems possible to measure the microfibril 

reorientation microfibrils with deformation using X-ray diffraction. 

In addition to their features of density and environmental promise, UD flax fibre epoxy 

composite stiffens and plasticizes with different characteristic times. In addition, it can 

adapt its stiffness to the tensile energy provided in the direction of the fibres. This offers 

highly promising prospects regarding this category of composite materials.  
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