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The system identification technology is essentially an inverse procedure, starting from the 

experimentally measured response, to construct mass, stiffness, and damping matrices of the structure. 

However, the measurement inevitably contains uncertainties, which significantly impact the identified 

system characteristics, especially for damping terms. In the presence of experimental uncertainty, the 

aim of damping identification in this paper is not a single deterministic solution with maximum fidelity 

to a single experiment, but rather a set of optimized solutions with acceptable robustness to multiple 

uncertain experiments. To achieve this objective, an integrated approach combining deterministic 

identification and probabilistic calibration techniques is proposed. This approach starts from the 

properness condition of modes in a deterministic identification. A probabilistic estimation technique 

is performed on the preliminary identified data so that an uncertainty boundary is available for the 

calibration procedure where the genetic algorithm and classical optimization techniques are utilized. 

A comprehensive comparison metric for two continuous quantities is proposed as the objective 

function in the calibration procedure. Finally, a probabilistic validation metric is proposed to assess 

the stability of the calibrated damping matrix. In both simulated and experimental examples, the 

finally obtained matrices exhibit their robustness with regard to the experimental uncertainty. 

Nomenclature 

A  = Integrated matrix of mass and stiffness in state-space representation  

C  = Damping matrix 

En  = 𝑛 × 𝑛 identity matrix 

F(t) = Force vector in state-space representation 

f(t)  = Force vector  

H(ω) = Frequency response function (FRF) at the frequency point ω 

K  = Stiffness matrix 
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M  = Mass matrix 

U  = Integrated matrix of mass and damping in state-space representation 

u  = Column vector containing discrete experimental FRF 

v  = Column vector containing discrete simulated FRF 

𝚪  = Eigenvalue matrix in state-space representation 

𝚯  = Eigenvector matrix in state-space representation 

𝚲  = Eigenvalue matrix 

𝜆  = Single eigenvalue 

𝜇  = Mean of the matrix element 

𝚵  = arbitrary diagonal matrix 

𝜎  = Standard deviation of the matrix element 

𝚼  = Lagrange multiplier matrix 

𝚽  = Eigenvector matrix 

φ  = Single eigenvector 

Subscripts 

i = Index of degree of freedom 

m = Number of experiments 

N = Number of frequency points 

n = Number of degree of freedom 

p = Proper data after deterministic identification 

I. Introduction 

The knowledge of mass, stiffness, and damping matrices of a structural system is of first interest for the engineers to analyze, 

predict, and control the system behavior. Especially, damping identification has long been a popular but challenging issue 

because of its complex mechanisms. A precise representation of damping is critical for active vibration control in fields such 

as aerospace, automobile, and civil engineering. Considering the inevitable uncertainties in engineering, this paper focuses on 

a probabilistic approach of damping identification and calibration.  

Compared with the mass and stiffness, the damping identification is more difficult mainly due to the fact that no explicit 

theoretical model of damping mechanism is generally accepted [1]. Besides the mostly classical viscous damping proposed by 

Rayleigh [2], various damping models are investigated in literature, such as nonlinear viscous damping [3,4], material damping 

[5,6], frictional damping [7,8], and non-proportional damping [9,10]. Regardless of which damping model is proposed, an 

increasingly popular tendency of damping identification is to start from the complex modes [11,12], which are extracted from 

the measured frequency response function (FRF). Furthermore, some techniques are developed to identify the damping matrix 

directly from the measured FRF [13,14].   



However, the above tendency raises another challenging feature, i.e. the fact that the damping term is much more sensitive 

to the environment noise and experimental uncertainty, compared with the mass and stiffness terms. The uncertainties, 

unfortunately, are inherent throughout real-life vibration experiments due to the following factors: 

l Uncertainties associated to sensors. The accelerometers stuck on the structure unavoidably change the mass properties 

of the structure. Low weight sensors or non-contact technique, e.g. laser vibrometry, may be used to minimize the impact 

of adding mass, but even in the case of non-contact measurements, additional uncertainties are involved in various 

aspects of the acquisition process such as sensor sensitivity, measuring range, environment noise, and electronic signal 

processing. 

l Uncertainties on the excitation. Considering a hammer excitation, the hard-to-control random effects, e.g. position, 

direction, and magnitude of the hammer impact, make the measurements only partially reproducible. When a shaker is 

utilized, different excitation waveforms, e.g. white noise and sweep sine, may lead to discrepant responses of the 

structure. 

l Uncertainties on the boundary conditions. For a fixed condition, the interaction between the test object and the fixing 

base cannot be completely avoided because the fixing base is not ideally rigid. Alternatively, free-free conditions are 

difficult to handle, low stiffness supports may change the dynamical behavior of the structure, in particular in the low 

frequency range. 

l System errors and subjective judgements. The computation of the FRFs from time signals are impacted by the electronic 

systems, the choice of windowing techniques and estimators used in the process. The complex modes are influenced by 

the subjective judgement of the engineer during the extracting process from the FRFs to the complex modes. 

Clearly, damping identification is further muddied by experimental uncertainties. It is demonstrated in the following 

examples (Sections III and IV) that even slight difference among repeated measurements leads to significant discrepancy among 

the identified damping matrices. If the identification approach stops at these inconstant results, the engineer can only arbitrarily 

adopt a result from a single experimental case, which may lead to serious consequences in practical applications.  

Despite the vast literature on damping identification, the published research discussing the role of uncertainties has been 

quite limited to the authors’ knowledge. Adhikari [15] proposes approaches to quantify the damping model uncertainty, which 

belongs to the general category of epistemic uncertainty caused by the lack of knowledge regarding damping mechanism. While 

the experimental uncertainty considered herein refers to another general category as aleatoric uncertainty which is due to the 

inherent variability in the real-life engineering system. Koruk and Sanliturk [16] investigate the uncertainty arising from the 

signal processing, i.e. the exponential windowing, when measuring the FRF, and then assess different estimating method with 

the purpose to reduce the damping uncertainty. Both of the above-mentioned works focus on the quantification approach for a 

specific paradigm of uncertainty, while the inherent experimental uncertainty’s influence on the final identified damping matrix 

is currently not addressed.  

Consequently, the main aim of this work is to identify and calibrate the mass, stiffness, and especially damping matrices 

from the measured FRF, with the emphasis on the robustness with regard to experimental uncertainty. As the first step, the 

preliminary matrices are identified through the experimental modal analysis along with the so-called properness condition of 

the complex modes. In a deterministic sense, Balmès [11] proposes a valuable method to enforce the properness condition, and 



this method has recently been extended to non-symmetrical problems [17] and vibroacoustical applications [18]. This 

deterministic approach has good performances on mass and stiffness identification, however, the precision of damping is 

significantly influenced by the experimental uncertainty. Consequently, Balmès’ method is utilized in this paper as the initial 

step to generate the preliminary matrices, and a further probabilistic calibration procedure is proposed to handle the 

experimental uncertainty. The calibration procedure is essentially an optimization problem which should be appropriately 

configured from two aspects: 1) the uncertainty boundary and 2) the objective function. The uncertainty boundary is defined 

by a probabilistic estimation technique under a Gaussian distribution assumption. Only a small number of experiments is 

sufficient for this technique to objectively determine the uncertainty boundary, which can be utilized as constraints in the 

optimization. The objective function is defined by quantifying the difference between the measured FRF and the simulated 

FRF. Two correlation conceptions, namely the signature assurance criterion (SAC) and cross signature scale factor (CSF), are 

utilized to construct the objective function. In order to solve the optimization problem, an integrated application of the genetic 

algorithm and classical constrained minimization is proposed with the purpose of searching the global solution with a high 

precision. Finally, the mean coefficient of variation (MCV) is proposed as the validation matric to assess the stability of 

damping matrices. This overall approach is investigated in both numerical and experimental examples where the finally 

obtained damping matrix is steady and robust with regard to the experimental uncertainty. 

This paper is organized as follows. Section II.A recalls the deterministic identification together with the properness 

enforcement method. Section II.B elaborates the probabilistic calibration procedure from four aspects, i.e. the uncertain 

boundary, the objective function, the optimization tools, and the validation metric. A detailed flowchart of the overall 

deterministic identification and probabilistic calibration approach is also presented. A numerical example is given in Section 

III to explain each aspect of the overall approach in detail, so that the reader can reproduce the result. Section IV presents a 

specially designed experimental example where multiple experiments are repeated on the same structure, but in different 

manners. The example provides quite interesting results as the finally obtained system matrices are steady even though the 

reference FRFs among the various cases are different. It clearly demonstrates the feasibility of the damping identification 

approach, in the presence of experimental uncertainties. Key conclusions and perspectives of this work are summarized in 

Section V. 

II. Theories and methods 

A. Deterministic identification procedure 

The equation of motion of a structural system with viscous damping is classically expressed as 

 𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐪(𝑡) = 𝐟(𝑡) (1) 

Where 𝐪(𝑡) is the displacement of the structure; 𝐟(𝑡) is the exciting force; M,	C,	K are respectively the mass, damping, and 

stiffness matrices. The state-space representation of Eq. (1) is defined as follows: 

 𝐔�̇�(𝑡) − 𝐀𝐐(𝑡) = 𝐅(𝑡) (2) 

where  



 𝐔 = C𝐂 𝐌
𝐌 𝟎E, 𝐀 = C−𝐊 𝟎

𝟎 𝐌E, 𝐐
(𝑡) = F𝐪(𝑡)�̇�(𝑡)G, 𝐅(𝑡) = H𝐟(𝑡)

0
J. (3) 

Let n denotes the number of Degrees of Freedom (DOF) of the physical system, the second order eigenvalue problem of 

Eq. (1) is expressed as 

 (𝐌𝜆KL + 𝐂𝜆K + 𝐊)𝛗K = 0							𝑖 = 1, 2, … , 𝑛 (4) 

where 𝜆K  and 𝛗K  are respectively the i-th eigenvalue and eigenvector. Let 𝛉K = C
𝛗K
𝛗K𝜆K

E, the corresponding state-space 

representation of the eigenvalue problem is 

 (𝐔𝜆K − 𝐀)𝛉K = 0 and S𝐔𝜆K − 𝐀T𝛉K = 0 (5) 

where ∎ denotes the conjugate of the complex mode. The matrix form containing all of the n eigenvalues and eigenvectors is 

assembled as 

 𝚲 = V
⋱			
𝜆K
			⋱
X; 𝚽 = [𝛗Z	𝛗L	⋯	𝛗\]. (6) 

The state-space representation of 𝚲 and 𝚽 are respectively 𝚪 and 𝚯 with the size as 2𝑛 × 2𝑛: 

 𝚪 = C𝚲 𝟎
𝟎 𝚲

E; 𝚯 = ^ 𝚽 𝚽
𝚽𝚲 𝚽𝚲

_. (7) 

Then Eq. (5) can be rewritten in the matrix form 

 𝐔𝚯𝚪 = 𝐀𝚯. (8) 

Supposing a diagonal matrix assembled by 2n arbitrary real values, 𝚵 = V
⋱			
𝜉K
				⋱

X, 𝑖 = 1,⋯ , 2𝑛, the orthogonality between 

each mode is expressed as 

 𝚯b𝐔𝚯 = 𝚵 and 𝚯b𝐀𝚯 = 𝚵𝚪 (9) 

where ∎b is the transposition symbol. An important step herein is to normalize the eigenvector matrix 𝚽 so that the arbitrary 

diagonal matrix 𝚵 is transformed into a 2𝑛 × 2𝑛  identity matrix. After the normalization, inverting form of Eq. (9) is 

expressed as 

 𝐔c𝟏 = 𝚯𝚯b and 𝐀c𝟏 = 𝚯𝚪c𝟏𝚯b. (10) 

Considering Eqs. (3) and (7), Eq. (10) can be rewritten using the terms of the n-DOF physical system: 

C𝐂 𝐌
𝐌 0 E

cZ
= C 0 𝐌cZ

𝐌cZ −𝐌cZ𝐂𝐌cZE = V 𝚽𝚽𝑻 +𝚽𝚽𝑻 𝚽𝚲𝚽𝑻 +𝚽𝚲𝚽𝑻

𝚽𝚲𝚽𝑻 +𝚽𝚲𝚽𝑻 𝚽𝚲𝟐𝚽𝑻 +𝚽𝚲
𝟐
𝚽
𝑻X  

 C−𝐊 0
0 𝐌E

cZ
= C−𝐊

cZ 0
0 𝐌cZE = V𝚽𝚲

c𝟏𝚽𝑻 +𝚽𝚲
c𝟏
𝚽
𝑻

𝚽𝚽𝑻 + 𝚽𝚽𝑻

𝚽𝚲𝚽𝑻 +𝚽𝚽𝑻 𝚽𝚲𝚽𝑻 + 𝚽𝚲𝚽𝑻
X. (11) 

Clearly, the mass, damping and stiffness matrices can be constructed using the complex modes: 

 

⎩
⎪
⎨

⎪
⎧ 𝐌 = C𝚽𝚲𝚽𝑻 + 𝚽𝚲𝚽𝑻E

cZ

𝐂 = −C𝐌k𝚽𝚲𝟐𝚽𝑻 + 𝚽𝚲
𝟐
𝚽
𝑻
l𝐌E

𝐊 = −C𝚽𝚲c𝟏𝚽𝑻 +𝚽𝚲
c𝟏
𝚽
𝑻
E
cZ
.

 (12) 



The above inverse procedure is valid only if the so-called properness condition is satisfied, which can be easily yielded from 

Eq. (11): 

 𝚽𝚽𝑻 +𝚽𝚽𝑻 = 0. (13) 

In practical applications, the complex modes are extracted from the experimental measurements with inevitable noise and 

uncertainties. Consequently, the properness condition is generally not satisfied, implying that the complex modes cannot be 

directly utilized in Eq. (12). Balmès [11] proposes a method to calibrate the eigenvectors so that the properness condition is 

enforced. This method is employed in the deterministic identification procedure, which is simply recalled as follows. 

The properness enforcement method essentially consists in finding an approximate eigenvector matrix 𝚽m , which is as close 

as possible to the original 𝚽, while to make sure 𝚽m  (and its conjugate) fulfills Eq. (13). Solution of this problem is achieved 

by a Lagrange multiplier matrix 𝚼: 

 𝚽m = n𝐄\ − 𝚼𝚼p
cZ
n𝚽− 𝚼𝚽p (14) 

where En is the 𝑛 × 𝑛 identity matrix. 𝚼 can be obtained by solving the Riccati equation 

 𝚽𝚽𝑻 − 𝚼𝚽𝚽b −𝚽𝚽
b
𝚼+ 𝚼𝚽𝚽

b
𝚼 = 0. (15) 

This method performs well when reconstructing the mass and stiffness matrices [18]. However, the damping matrix is 

always obtained with non-ignorable error, which is demonstrated in the following examples (Sections III and IV). Explanation 

of this phenomenon is that the properness enforced eigenvectors are not those of the original system, but the numerically 

approximation of the physical ones that verify the properness condition. Compared with the mass and stiffness matrices, the 

equation of damping matrix in Eq. (12) is more complex with a higher power of the eigenvectors, implying that the damping 

term is more sensitive to the imprecision of the eigenvectors. Furthermore, the above deterministic identification procedure is 

based on a single set of experimental FRF, implying no uncertainty is considered in this procedure. 

B. Probabilistic calibration procedure 

In order to improve the robustness of the identified damping matrix, i.e. to appropriately cope with the uncertainty from the 

experimental measurements, a further probabilistic calibration procedure is proposed following the above mentioned 

deterministic identification procedure. The overall approach combining the deterministic identification (Part I) and the 

probabilistic calibration (Part II) is illustrated in Fig. 1. 



 
Fig. 1: Flowchart of the overall identification and calibration approach 

1 Uncertainty boundary 

The overall approach starts from multiple measurements where the uncertainty information is naturally involved, due to the 

uncertainty sources introduced in Section I. However, the uncertainty information in the original FRFs cannot be directly 

conducted in the calibration procedure. The first task is to transform the “gross” uncertainty information (from the original 

FRFs) into the explicit and processable information relative to the final objective, i.e. the system matrices. A probabilistic 

estimation technique is proposed to fulfill this task by determining an uncertainty boundary of the damping matrix, based on 

the available set of measured FRFs. 

As shown in Fig. 1, each single measurement is respectively identified by the deterministic identification procedure, after 

which the preliminary system matrices are constructed using Eq. (12). Supposing the total number of measurements is m, the 

identification procedure is repeated m times and the corresponding matrices are obtained as 𝐌Z,𝐊Z, 𝐂Z;	⋯ ;	𝐌r,𝐊r, 𝐂r. Note 



that no uncertainty information is considered in each single execution of the identification procedure. Consequently, the 

matrices in each case are different from those of the other cases, even though these matrices are expected to reflect the same 

structure’s properties. However, a cross investigation of these unsteady matrices can reveal the uncertainty information rooting 

in the original FRFs. It is reasonable to believe that the effective value of the matrices for a given operational experiment 

configuration should be within a likely range relative to these unsteady matrices. This range can be objectively determined in 

a probabilistic sense under a pre-determined confidence degree. 

In the following calibration, each element of the matrices is taken as the parameter to be calibrated. Practically, the 

experimental repeating number m is always limited by time or financial burden, leading the exact distribution of the parameter 

population is difficult to be determined using such a limited observation sample. However, the observation sample can be used 

to estimate statistical features of the population via the moment estimation method [19], where the mean µ and variance 𝜎L 

are estimated as  

𝜇 = Z
r
∑ 𝑥Kr
KuZ ; 

 𝜎L = Z
rcZ

∑ (𝑥K − 𝜇)Lr
KuZ . (16) 

Each uncertain parameter in the damping matrix is assumed to obey the Gaussian distribution with the above estimated 

mean and variance. Note that, the Gaussian assumption in this specific application is supported by the justification of the central 

limit theorem. In this experimental damping identification process, the uncertainty of the damping matrices originates from a 

large number of uncertain factors in both experiment and identification steps, such as factors relative to the sensor sensitivity, 

boundary condition, environment noise, excitation property (i.e. position, direction, and magnitude), observational system 

error, and electronic signal noise, etc. According to central limit theorem, such a large number of random factors are summed 

up toward a Gaussian distribution. This explains why the Gaussian distribution is widely utilized in various techniques of 

uncertainty analysis, such as sensitivity analysis [20] and Bayesian updating [21], verification and validation [22]. However, it 

should be note that the Gaussian distribution is not a universal assumption for any application; in other words, an appropriate 

investigation on the prior data and system is required before the assumption is made. 

In the Gaussian distribution, confidence bounds define the probability that a new sample will fall inside the defined 

uncertainty boundary. Clearly the larger boundary provides the higher probability, while also leads to more difficulty when 

searching the global solution in a large parameter space. In the following context, it is recommended to use the boundary with 

two standard deviations distance from the mean, i.e. to define the uncertainty boundary as [𝜇 − 2𝜎, 𝜇 + 2𝜎] such that the 

probability in Gaussian distribution is 95.4%. 

2 Objective function 

In addition to the uncertainty boundary, another critical aspect of the calibration procedure is the objective function, which 

can significantly influence the calibration outcomes. The final objective of this work is the system matrices of an equivalent 

system which can represent the same behavior as the experimental measured one. It is natural to take the system behavior, i.e. 

the FRF, as the reference and the difference between the experimental and simulated FRFs is used to define the objective 

function. Using the system matrices, the simulated FRF is calculated as 



 𝐇(𝜔) = [−𝐌𝜔L + 𝑗𝐂𝜔 +𝐊]cZ𝐅 (17) 

where H(ω) is the FRF at the frequency point ω; j is the imaginary unit; F is the identity harmonic excitation. 

Supposing the number of discrete frequency points within the frequency range of interest is N, then the FRF of a n-DOF 

system is presented as a 𝑛 × 𝑁 complex matrix. Classical techniques to evaluate the difference between two complex and 

continuous variables are the signature assurance criterion (SAC) and cross signature scale factor (CSF) [23]. Based on the 

widely used modal assurance criterion (MAC) [24], SAC of the i-th DOF is defined as 

 SACK = (𝒖∗∙𝒗)�

(𝒖∗∙𝒖)(𝒗∗∙𝒗)
 (18) 

where 𝒖b = [log𝐇�
K (𝜔Z) , log𝐇�

K (𝜔L) , … , log𝐇�
K (𝜔�)]; 𝒗b = [log𝐇�

K (𝜔Z) , log𝐇�
K (𝜔L) ,… , log𝐇�

K (𝜔�)]; ∎∗ denotes the 

conjugate transpose; and the superscript i is the index of DOF; the subscript e and s respectively denotes the experimental and 

simulated FRFs. Note that the frequency points [𝜔Z, 𝜔L,… ,𝜔�] are selected not only from the resonant frequency range but 

also from the anti-resonant frequency range, leading huge differences among the discrete FRF amplitudes. Thus it is necessary 

to utilize the logarithmic values of the FRF amplitudes when constructing u and v, such that the weightings among FRF 

amplitudes under the frequency points [𝜔Z, 𝜔L, … , 𝜔�] can be averaged. 

Consequently, the is critical such that the importance to the errors in the complete frequency range is averaged. 

The SAC has a single value ranging from zero to 1, where one implies a complete correlation between the two investigated 

vectors. However, a drawback of SAC is revealed when the two vectors are completely proportional but with different 

amplitudes, i.e. 𝒖 = 𝛼 ∙ 𝒗 where α is a non-zero real value and not equal to one. In this case, the SAC value is exactly 1 but 

the objective in this application is not really achieved. Consequently, CSF of the i-th DOF is also employed herein with 

expression as  

 CSFK = L|𝒖∗∙𝒗|
|𝒖∗∙𝒖|�|𝒗∗∙𝒗| (19) 

An integrated application of SAC and CSF allows that the comparison between two FRFs is not only the degree of correlation 

but essentially the error between them. Note that the above definition of SAC and CSF are based on a single DOF of FRF, i.e. 

each row of the 𝑛 × 𝑁 matrix. A complete comparison between two sets of FRFs with n DOFs is defined as  

 𝑓(𝐌, 𝐊, 𝐂) = Z
\
∑ (���

������

L
)\

K  (20) 

where the superscript i is the index of DOF. A comprehensive comparison between two sets of n-DOF FRFs with both resonant 

and auto-resonant frequencies is provided by the above objective function, whose feasibility is conformed in the following 

example sections. 

3 Optimization tools 

After the uncertainty boundary and objective function are defined, the calibration procedure can be essentially described as 

an optimization problem: 

Starting from (𝐌�,𝐊�, 𝐂�), 

find (𝐌m , 𝐊m, 𝐂�), minimizing 𝑓S𝐌m ,𝐊m, 𝐂�T, 

 while (𝐌m ,𝐊m, 𝐂�) fall within the uncertainty boundary, (21) 



where the subscript p denotes the preliminary matrices obtained after the deterministic identification procedure (refer to the 

unsteady matrices in Fig. 1). This optimization problem contains the following difficulties, which make an explicit solution 

almost impossible. 

1) A large number of variables to be optimized. A n-DOF structure, whose system matrices are symmetric, has 3𝑛(𝑛 +

1)/2 parameters. For example, a simple 4-DOF system leads to 30 optimizing parameters. 

2) A complex objective function. The relationship between the objective function and the parameters is implicit, 

nonlinear, and complex. The gradient information is difficult to be determined. 

To solve these difficulties, the Genetic Algorithm (GA) and various constraint minimization methods are proposed as the 

optimization tool, as shown in Fig. 1. The GA is a population-based searching algorithm inspired by natural evolution functions 

such as selection, crossover, and mutation [25]. The GA is popular in academic and industrial fields because of its simple 

principle, extensive application range, and feasibility of solving large-scale, highly nonlinear and complex problems. It is 

capable of finding the global solution in the overall search space, however, the result of GA can be unsteady and the calculation 

cost is expensive for complex applications. As a supplement, the classical constrained minimization methods, e.g. simplex 

algorithm and interior point method [26], are proposed following the GA to obtain a consistent solution with improved 

precision. 

Note that the objective of this section is not to develop a new optimization algorithm but to appropriately configure the 

optimization problem, such as the boundary and objective function, and then to propose suitable optimization tools to solve the 

problem. Depending on the complexity of each specific application, the selection of the optimization tools can be changed. For 

example, in a simple case with small DOF and reduced uncertainty, only the classical constrained minimization method is 

probably enough to obtain a solution with equivalent precision. Consequently, it is the reader’s choice to select other 

computational intelligence techniques such as particle swarm [27] or simulated annealing [28], based on the consideration of 

precision and calculation cost. Not actually being the main focus of this work, the comparison of different optimization tools’ 

performance is omitted for clarity. 

4 Validation metric 

As shown in Fig. 1, m sets of optimized matrices, 𝐌m K,𝐊m K, 𝐂�K	(𝑖 = 1,… ,𝑚), are obtained after the calibration procedure. 

Different from the unsteady matrices after the properness enforcement procedure, the final optimized matrices are expected to 

represent the property of the same structure. The discrepancy among different sets should be limited (demonstrated in the 

following Sections III and IV), and hence they are termed as steady matrices. The so-called mean coefficient of variation 

(MCV) is proposed as the validation metric to quantitatively measure the degree of steadiness of these optimized matrices. 

 , (22) 

where n is the number of DOFs (i.e. the dimension of the matrix); 𝛿K����is the coefficient of variation of each element in the 

matrix, which is defined by the ratio of the standard deviation σ to the absolute value of mean |µ|, i.e. 𝛿��� = 𝜎/|𝜇|.  

As the final result of this approach, the statistical features (e.g. the mean and standard deviation) of the matrices are 

estimated from the steady matrix sample. The statistical features can be served as the guideline of the matrices’ further 

application with desirable robustness corresponding to the experimental uncertainty. 
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III. Numerical example 

A. Description of the basic procedure 

In this section, the overall identification and calibration approach is demonstrated by a simulated test-case, which starts 

from the pre-defined 5-DOF system matrices: 

  (23) 

Although it is a numerical example, the pre-defined system matrices are representative of a physical system, since they are 

identified from the experimental setup presented in Section IV. As shown in Fig. 2, the example follows the key steps:  

1. Calculation of the original data: The original FRFs and modes are theoretically calculated based on the pre-defined 

matrices. The original data (FRFs, natural frequencies, and matrices) will be served as the reference in the following 

comparison. 

2. Simulation of the experimental uncertainty: Ten percent uniform random noise is added to the original eigenvectors 

and eigenvalues. In practical experiments, the identified eigenvalues are generally more precise than the identified eigenvectors 

[17]. However, in this simulated example, the noise level of the eigenvalues is proposed as high as that of the eigenvectors. 

This special treatment is intended to demonstrate the approach’s performance on not only damping but also mass and stiffness 

terms. This step is repeated five times, generating five sets of noised modes (designated as Case #i, i=1, 2, …, 5). As shown in 

Fig. 2, the deterministic identification procedure is separately performed in each case.  

 
Fig. 2: Key procedures of the numerical example in the ith case (i=1, 2, …, 5) 



3. Identification of each noised case: As shown in Fig. 2, there are three categories of output data, depending on which 

techniques are performed on the data. 

l “Direct” data: no calibration technique is performed on the modes before they are utilized to construct the matrices 

and calculated the FRF. This is why the data is designated after “Direct”. 

l “Deterministic” data: the properness enforcement method is performed on the modes, and afterwards the proper 

matrices and FRF are calculated. There is no uncertainty information processed till now, hence the data is designated 

after “Deterministic”. 

l “Optimized” data: the integrated optimization procedure is additionally performed on the proper matrices, with the 

purpose of minimizing the discrepancy between the optimized FRF and the benchmark FRF.  

The direct, proper, and optimized data is compared to assess whether the finally obtained matrices can represent the original 

system behavior.  

4. Cross comparison among different cases: this step focuses on the uncertainty of different experiments. The five sets 

of optimized matrices will be compared to assess whether they can converge to the original data. This step is specially designed 

to demonstrate the overall approach’s ability for robust damping identification with regard to the uncertainties in experiments. 

B. Assessment of the single noised Case #1 

Considering the direct data in Fig. 2, the complex modes are directly utilized in the inverse procedure to construct the direct 

matrices, which are undoubtedly different from the original pre-defined matrices because of the random noise. Alternatively, 

the direct modes are calibrated by the properness enforcement method, after which the deterministic data (matrices and FRF) 

is calculated as a comparison with the direct data. In addition to the deterministic procedure, the proper matrices are furthermore 

optimized using the probabilistic calibration procedure. 

Based on these three sets (direct, deterministic, and optimized) of matrices, the natural frequencies are calculated and 

compared with the original data as listed in Table 1. As there is 10% random noise in the eigenvalues, the direct natural 

frequencies exhibit considerable error compared with the original ones. It is interesting to observe that the errors of the 

deterministic frequencies are not clearly reduced by the properness enforcement method. This can be easily explained from 

Eqs. (14-15) where the properness enforcement method can only calibrate the eigenvectors, but not the eigenvalues. 

Nevertheless, the following calibration procedure is capable of calibrating the mass and stiffness matrices, making the error of 

the optimized frequencies extremely low. 

Table 1: Natural frequencies (% percent errors in parentheses compared with the original data) 

 Original Direct Deterministic Optimized 

f1 (Hz) 20.90 21.68 (3.62) 21.65 (3.48) 20.90 (0.12) 

f2 (Hz) 42.25 40.57 (-4.13) 40.57 (-4.15) 42.25 (0.004) 

f3 (Hz) 70.44 68.24 (-3.23) 68.29 (-3.16) 70.37 (-0.10) 

f4 (Hz) 105.41 112.62 (6.41) 110.48 (4.59) 105.45 (0.04) 

f5 (Hz) 146.95 159.82 (8.05) 150.73 (2.51) 146.97 (0.01) 

Absolute mean error 5.09% 3.58% 0.04% 



The natural frequencies are calculated using the stiffness and mass matrices, implying that the errors in Table 1 cannot 

demonstrate the precision of the damping matrix. Consequently, the FRFs are utilized to compare with the original FRF with 

the purpose of damping assessment. The direct, deterministic, and optimized FRFs are calculated using the corresponding 

matrices and a unit force F=[1, 0, 0, 0, 0]T. The original, direct, deterministic and optimized FRFs are compared in Fig. 3. 

 
(a) the 1st DOF          (b) the 2nd DOF 

 
(c) the 3rd DOF          (d) the 4th DOF 

Fig. 3: The original, direct, deterministic and optimized FRFs of Case #1  

The first four DOFs of the system are presented in Fig. 3, where a similar tendency is observed among the subfigures. The 

direct FRFs clearly fail to represent the original FRFs at both resonant and anti-resonant frequencies. This is naturally caused 

by the random noise in the direct modes, which is not suitably managed by any calibration technique. After the properness 

enforcement in the deterministic identification, the deterministic FRFs are improved, however, only at the maximum points of 

the amplitudes. Other key quantities such as minimum points of the amplitudes, the resonant and anti-resonant frequencies, 



which are sensitive to the damping features, are not improved. As a comparison, the finally optimized FRFs perfectly coincide 

with the original FRFs, showing that the calibration procedure is capable of obtaining the system matrices, which can represent 

the similar system behaviors as the original ones.   

A more obvious assessment of the matrix, in this simulated case, is performed by comparing the identified matrices with 

the pre-defined matrices. The comparison of the matrices is performed as 

 𝑒𝑟𝑟𝑜𝑟 = �𝐀��c𝐀�� �

�𝐀�� �
× 100% (24) 

where Aid is the identified matrix (mass, stiffness, or damping); Apre is the pre-defined matrix; ‖∎‖ denotes the Euclidian 

norm of a matrix.  

The relative errors of the direct, deterministic, and optimized matrices, compared with the pre-defined matrices, are listed 

in Table 2. Considering the row of stiffness, the deterministic errors are clearly reduced from the direct errors, while the error 

of the optimized stiffness is not obviously changed compared with the deterministic error. As for the row of mass, the direct 

error is already quite small in this specific case, thus the calibration effect in the deterministic and optimized data is not obvious. 

It makes more sense to check the last row of Table 2 where the damping errors are quite high for both direct and deterministic 

data, while for the optimized data the damping error is significantly reduced by the calibration procedure. This clearly 

demonstrates that the overall approach is capable of identifying and calibrating not only the mass and stiffness, but also the 

damping.  

Table 2: The matrice error compared with the pre-defined matrices in Case #1 

 Direct Deterministic Optimized 

Stiffness: K 23.4% 6.99% 5.79% 

Mass: M 6.81% 7.56% 9.53% 

Damping: C 67.2% 87.8% 12.0% 

C. Cross validation of different cases 

This subsection focuses on the uncertainty in multiple experiments, which are simulated by the random noise added to the 

eigenvalues and eigenvectors in Cases #1-#5. The idea is, if the finally obtained matrices in different cases simultaneously 

converge to the pre-defined one, the ability of the overall identification to handle the experimental uncertainty would be 

confirmed.  

The stability of the results in different cases is firstly checked by the FRFs as illustrated in Fig. 4, where the five 

deterministic FRFs from different cases are clearly discrepant. As a comparison, the five optimized FRFs (blue) are completely 

coincident with the original FRF (black).  



 

Fig. 4: The original, proper, and optimized FRFs of Cases #1-#5 on the 1st DOF 

As the final objective is the system matrices, it makes more sense to check if the optimized matrices among different cases 

are steady. The validation metrics are illustrated in Fig. 5, where the MCV of mass, damping, and stiffness matrices are 

compared. In the direct data, it is clearly shown that the MCV of damping is significantly higher than those of mass and 

stiffness, demonstrating the damping term is more sensitive to the noise than the mass and stiffness terms. In the deterministic 

data, the MCV of damping does not exhibit clear reduction compared with the one in the direct data, implying the deterministic 

procedure is insufficient to cope uncertainty in different cases. As a comparison, in the optimized data, the MCV of damping 

is significantly reduced by the calibration procedure, after which more steady damping matrices are available. As the final 

result, the mean and standard deviation of the optimized mass, stiffness, and damping matrices are given in Appendix. 

In this cross validation, however, it is not surprising to find the optimized results of Cases #1-5 are steady, because all 

optimization procedures are using the same original FRF as benchmark. Nevertheless, the above results demonstrate that the 

probabilistic definition of uncertainty boundary and the integrated application of SAC and CSF to define the objective function 

in the calibration procedure are feasible. More interesting result is presented in the following experimental example, where 

different experimental FRFs are employed as benchmarks in different calibration procedures. 



 
Fig. 5: Mean coefficient of variation of the matrices in the direct, deterministic, and optimized data 

IV. Experimental example 

A. Experiment setup 

An aluminum beam with periodic thickness is proposed in this example, as shown in Fig. 6. Five accelerometers are used 

to measure the response of the beam. The 1st and 5th measure points are shown in Fig. 6(b) while the other 3 measure points, 

which also distribute along the central axis of the beam, are omitted in the figure. The distances from the right endpoint of the 

beam to these five measure points are respectively 10 mm, 134 mm, 433 mm, 885 mm, and 1038.5 mm. 

 

Fig. 6: The geometry detail of the periodic beam (dimensions in mm) 
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The experimental setup is illustrated in Fig. 7 where free-free conditions are used, and six resin badges (40×50 mm2) are 

stuck on the beam to improve the damping effect. Five experiments are executed on the same beam but with different 

excitations. Corresponding to the excitation position, the experiments are designated as Case #1-#5. In Case #1, a magnetic 

exciter (Fig. 7b) is utilized to excite the beam at the 1st measure point. In the following four cases, the beam is excited by an 

impact hammer (Fig. 7c) respectively at the 2nd-5th measure points. Compared with fixed conditions, the free-free conditions 

proposed herein are more sensitive to the environment noise. Moreover, among different cases, it is impossible to perfectly 

control the force amplitude, direction, and position of the hammer impact. This multiple experiments setup is specially designed 

to involve most hard-to-control random effects and uncertainties in practical vibration experiments.  

 

  (a) View of the suspended beam 

 
  (b) View of the magnetic exciter     (c) View of the impact hammer  

Fig. 7: Setup of the experiment 

Note that, in practical operation, it is more common to use the hammer to excite all measurement points. Then multiple 

groups of FRFs with different reference points are combined as a complete set of FRFs, which is further utilized for 

identification. However, in this example, the special treatment to separate each group of FRFs as a single experiment is intended 

for a full investigation of uncertainty relative to the force amplitude, direction, and position of the hammer impact. Another 

expectation of this special treatment is to check whether the finally obtained matrices can converge to a steady result even if 

the benchmark FRFs are different. 

 

 



B. Assessment of the single experimental case 

This example focuses on the frequency range 15-160Hz where the first five modes of the beam are identified. The 

assessment process is similar as what is shown in Fig. 2, however, without the pre-defined matrices and directly stating from 

the experimental FRFs. The overall approach’s ability on damping identification and calibration is firstly demonstrated in two 

single cases. Case #1 (with magnetic exciter) and Case #5 (with hammer) are respectively assessed as follows, while the 

assessment of the remaining three cases is omitted for clarity. The cross comparison and validation among all the five cases is 

presented in the Section IV.C. 

1 Case #1: Vibration excitation (magnetic exciter) 

The natural frequencies are firstly compared in Table 3. The high error of the direct frequencies clearly shows that the direct 

identified matrices are far from the physical values. The absolute mean error of the deterministic frequencies is significantly 

reduced to an extremely low level, which confirms the properness enforcement method’s feasibility on mass and stiffness 

identification. Note that the result herein is different from that in the simulated example (Table 1) where the error of 

deterministic data was not perfectly reduced. Explanation for this phenomenon is, in this example, the identified eigenvalues 

contain little error while most error is involved in the eigenvectors, which can be appropriately calibrated by the deterministic 

identification procedure. Nevertheless, comparison of natural frequencies can only reflect the precision of mass and stiffness. 

Consequently, the FRFs are compared to assess the identified damping term. 

The experimental, direct, deterministic, and optimized FRFs in Case #1 are presented in Fig. 8. The direct FRFs clearly fail 

to represent the experimental FRFs at neither the resonant frequencies nor the anti-resonant frequencies. More attention should 

be paid on the difference between the deterministic and optimized FRFs, especially for the amplitudes at the resonant and anti-

resonant frequencies. The amplitudes of deterministic FRFs at both resonant and anti-resonant frequencies are different from 

those of the experimental FRFs. As a comparison, the optimized FRFs (in blue) perfectly coincide with the experimental 

benchmark (in black).  

Table 3: Comparison of the natural frequencies of Case #1 (% percent error in parentheses) 

Modes No. Experimental Direct Deterministic Optimized 

f1 (Hz) 21.01 20.91 (-0.48) 20.87 (-0.67) 20.79 (-1.03) 

f2 (Hz) 42.36 42.64 (0.66) 42.28 (-0.19) 42.18 (-0.41) 

f3 (Hz) 70.07 70.85 (1.11) 70.08 (0.01) 70.15 (0.12) 

f4 (Hz) 105.2 107.8 (2.47) 105.3 (0.10) 105.7 (0.48) 

f5 (Hz) 146.9 852.1 (480) 148.0 (0.75) 148.3 (0.98) 

Absolute mean error 97.0% 0.34% 0.60% 

 



 

(a) The 1st DOF         (b) The 4th DOF 
Fig. 8: The comparison among the FRFs of Case #1 

2 Case #5: Impact excitation (hammer) 

Another experimental case with the hammer impacted on the 5th measure point is presented in this subsection. Comparison 

of the natural frequencies and the FRFs are respectively given in Because the position of the excitation is changed between 

Case #1 and Case #5, the FRFs in Fig. 9 are completely different from those shown in Fig. 8. However, the comparison of the 

FRFs has similar conclusions as the optimized FRFs fit with the experimental FRFs better than the deterministic FRFs at the 

anti-resonant frequencies, for example, nearby 100Hz in Fig. 9(b). 

Table 4 and Fig. 9, where the similar effect as Case #1 is exhibited. 

The experimental frequencies in Because the position of the excitation is changed between Case #1 and Case #5, the FRFs 

in Fig. 9 are completely different from those shown in Fig. 8. However, the comparison of the FRFs has similar conclusions as 

the optimized FRFs fit with the experimental FRFs better than the deterministic FRFs at the anti-resonant frequencies, for 

example, nearby 100Hz in Fig. 9(b). 

Table 4 are slightly different from those shown in Table 3. This is caused by the uncertainty in different experiments which 

will be further investigated in the following section. The direct natural frequencies are unphysical due to incorrect mass and 

stiffness matrices. The deterministic and optimized frequencies have similar performances as those obtained from Case #1, 

where the errors of the deterministic and optimized frequencies are both small. 



 

(a) The 1st DOF         (b) The 4th DOF 
Fig. 9: The comparison among the FRFs for Case #5 

Because the position of the excitation is changed between Case #1 and Case #5, the FRFs in Fig. 9 are completely different 

from those shown in Fig. 8. However, the comparison of the FRFs has similar conclusions as the optimized FRFs fit with the 

experimental FRFs better than the deterministic FRFs at the anti-resonant frequencies, for example, nearby 100Hz in Fig. 9(b). 

Table 4: Comparison of the natural frequencies of Case #5 (% percent error in parentheses) 

Modes No. Experimental Direct Deterministic Optimized 

f1 (Hz) 20.64 0 (-100) 20.53 (-0.57) 20.51 (-0.63) 

f2 (Hz) 41.82 20.42 (-56.2) 41.81 (-0.02) 41.85 (0.07) 

f3 (Hz) 69.20 42.17 (-39.1) 69.29 (0.14) 69.25 (0.08) 

f4 (Hz) 104.8 72.40 (-30.9) 104.8 (0.09) 104.8 (0.06) 

f5 (Hz) 146.8 114.0 (-22.3) 147.3 (0.36) 147.4 (0.43) 

Absolute mean error 48.7% 0.24% 0.25% 

C. Cross validation of the five experimental cases 

In this cross comparison among Cases #1-#5, more attention is paid on the influence of the experimental uncertainty on the 

damping terms. As mentioned in the previous section, the FRFs in different cases are different from each other. Hence the cross 

comparison of the FRFs as performed in the simulated example (Fig. 4) is no longer meaningful in this experimental example. 

However, the final objective of this work is not the FRFs but the system matrices. Even the type and position of the excitation 

is different in each case, the finally obtained mass, stiffness, and damping matrices of the beam are expected to be steady among 

Cases #1-#5.  

Similar as the simulated example, the MCV is proposed as validation metric to quantify the dispersion of different matrices. 

The comparison of the MCVs is respectively performed in different types of data (i.e. direct, deterministic, and optimized data) 

as illustrated in Fig. 10. In the direct data, the matrix MCVs, especially for the damping matrix, are quite large, implying the 



damping matrices are quite sensitive to the experimental uncertainty. The MCV of the stiffness matrices is also big, which 

explains the incorrect natural frequencies in the previous subsection (recall Table 3 and Because the position of the excitation 

is changed between Case #1 and Case #5, the FRFs in Fig. 9 are completely different from those shown in Fig. 8. However, 

the comparison of the FRFs has similar conclusions as the optimized FRFs fit with the experimental FRFs better than the 

deterministic FRFs at the anti-resonant frequencies, for example, nearby 100Hz in Fig. 9(b). 

Table 4). 

A more interesting phenomenon is revealed by the MCVs of the deterministic matrices. First, the MCV of the stiffness 

matrix is clearly reduced, implying the feasibility of the properness enforcement method on stiffness identification. However, 

the MCV of the damping matrix is not reduced but significantly amplified. This means the damping matrices after the 

deterministic identification are quite different in each case. In practical application, if the identification process stops at the 

deterministic data, the engineer would only arbitrarily adopt a result from a single experimental case, which could lead to a 

significant error in the following application. 

The probabilistic calibration procedure is consequently critical to solve the above problem. As shown in Fig. 10, the MCVs 

of the optimized mass, damping and stiffness matrices are all minimized. The damping MCV is slightly larger than the mass 

and stiffness MCVs, however, this is an acceptable result as the damping term is naturally more sensitive than the mass and 

stiffness terms. Note that, during the optimization process, different FRFs are taken as benchmarks in different cases. Even 

though the benchmarks are different, the finally obtained matrices can still converge to a similar value, which clearly conforms 

the overall approach’s ability on robust damping identification with regard to the experimental uncertainty.  

 

Fig. 10: Mean coefficient of variation of the matrices among the five experimental cases 



V. Conclusions and perspectives 

An overall identification and calibration approach for mass, stiffness, and especially damping matrices is proposed in this 

paper. Emphases are put on the probabilistic calibration procedure, where the uncertainty information from experiments is 

appropriately disposed.  

As the first part of this approach, the deterministic identification procedure utilizes the properness enforcement technique 

to construct the system matrices. Two open questions of this widely used technique are revealed: 1) This technique can only 

calibrate the eigenvectors, but not the eigenvalues. In the presence of noise/error in eigenvalues, precisions of the identified 

natural frequencies, mass and stiffness matrices cannot be guaranteed. 2) Even if the mass and stiffness matrices are correctly 

identified, the experimental uncertainty can significantly influence the damping matrix. 

Considering the above problems, a probabilistic calibration procedure is proposed. The uncertainty boundary is defined 

with a confidence degree based on Gaussian distribution. This treatment is objective and practical as a limited number of 

experiments is sufficient in real operation. The integrated application of SAC and CSF in the objective function provides a 

comprehensive comparison between two sets of FRFs. Feasibility of the probabilistic calibration is demonstrated in the 

examples where a validations metrics of matrix steadiness is also examined. The experimental example presents a challenging 

mission by utilizing both magnetic exciter and hammer excited on different positions of the beam, which naturally involves 

much more experimental uncertainties in practical operations. Nevertheless, the finally identified damping matrices exhibit 

satisfied robustness. 

A limitation of this approach is that the applicative problem scale is not large. A large number of modes (i.e. system DOFs) 

requires a significant increase of the optimal parameters, which probably leads to failure of the optimization procedure. A more 

refined optimization procedure is consequently a meaningful extension of this work. It should be note that the objective of this 

overall approach is to reconstruct matrices for an equivalent system of the physical structure, which can represent the same 

behaviors as the experimentally measured ones, within a certain frequency range defined by the measured natural frequencies. 

Hence the feasibility of the obtained matrices is limited within the active frequency range. Nevertheless, the current approach 

is feasible in practical application, because the realistic requirement always focuses on a specific frequency range with a finite 

number of modes rather than all modes in an infinite range at the same time. With small calculation cost, the finally obtained 

system matrices can be served as a necessary supplement of the popular finite element method, especially in fields such as 

system health monitoring and vibration active controlling. Another perspective is proposed based on the fact that the current 

work is limited on viscous damping. Further assessment and development of this approach on various damping models will be 

the next step work. 

In real-life engineering, the exact and unique answer of damping identification is always hidden behind the mist of 

uncertainty. By providing a set of steady solutions with the estimated mean and standard deviation, the proposed approach 

demonstrates its ability to pursuit the numerical value which is robust to the physical truth, in the presence of inherent 

experimental uncertainties. 
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Appendix  

In the numerical example (Section III), the statistical features of the mass, stiffness, and damping matrices are respectively 

listed as follows:  

1. The mean of each element in damping matrix: 

 

⎣
⎢
⎢
⎢
⎡
28.6 −43.4
−43.4 58.5 	

−1.82 −19.0
−1.00 7.42 	

−36.4
26.8

−1.82 −1.00
−19.0 7.42 	

0.80 −7.26
−7.26 85.0 	

−3.79
100

−36.4 26.8		−3.79	 100 	107 ⎦
⎥
⎥
⎥
⎤
. (A.1) 

The standard deviation of each element in the damping matrix: 

 

⎣
⎢
⎢
⎢
⎡
4.94 2.46
2.46 4.00		

2.37 6.89 8.64
2.74 3.66 5.14

2.37 2.74
6.89 3.66
8.64 5.14

		
1.23 11.9 15.0
11.9 31.1 41.6
15.0 41.6 55.9⎦

⎥
⎥
⎥
⎤
. (A.2) 

2. The mean of each element in the mass matrix: 

 

⎣
⎢
⎢
⎢
⎡
2.16 −1.77
−1.77 1.77 		

0.67 −2.10 −2.80
−0.43 1.55 2.07

0.67 −0.43
−2.10 1.55
−2.80 2.07

		
0.69 −1.26 −1.60
−1.26 4.37 5.37
−1.60 5.37 6.97 ⎦

⎥
⎥
⎥
⎤
. (A.3) 

The standard deviation of each element in the mass matrix: 

 

⎣
⎢
⎢
⎢
⎡
0.41 0.28
0.28 0.25		

0.10 0.32 0.55
0.07 0.30 0.39

0.10 0.07
0.32 0.30
0.55 0.39

		
0.10 0.18 0.26
0.18 0.46 0.62
0.26 0.62 0.98⎦

⎥
⎥
⎥
⎤
. (A.4) 

3. The mean of each element in stiffness matrix: 

 

⎣
⎢
⎢
⎢
⎡
0.53 −0.41
−0.41 0.50 		

0.35 −0.93 −1.07
−0.12 0.58 0.67

0.35 −0.12
−0.93 0.58
−1.07 0.67

		
0.48 −0.86 −0.99
−0.86 2.00 2.25
−0.99 2.25 2.58 ⎦

⎥
⎥
⎥
⎤
× 10¯. (A.5) 

The standard deviation of each element in the stiffness matrix: 



 

⎣
⎢
⎢
⎢
⎡
1.92 1.18
1.18 0.82		

0.94 2.08 2.91
0.68 1.60 1.95

0.94 0.68
2.08 1.60
2.91 1.95

		
0.76 1.33 1.86
1.33 2.70 3.69
1.86 3.69 5.25⎦

⎥
⎥
⎥
⎤
× 10°. (A.6) 
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