hal-00719361, version 1 - 19 Jul 2012

\: Author manuscript, published in "8th International Workshop on MicroFactories, IWMF'12., Tampere : Finland (2012)"

Scheduling Approach for Microfactories with
Setup Times

Mathias Cogblin, Dominique Gendreau, Philippe Lutz, Jean-Marc Nicod, Laurent Philippe and
Veronika Rehn-Sonigo

KEYWORDS: Multicell Microfactory, Scheduling, Setup Time, Buffer

In this paper we consider microfactories for manipulation and assembly. These microfactories are com-
posed of several cells containing microrobotic systems capable of a high level of repeatability. The assem-
bly plan of the production is a pipeline of tasks that are performed by the cells. Our aim is to manage the
production flow in the case where the cells can be reconfigured to perform different task types. Each cell
is in charge of several consecutive tasks. A setup time is necessary to switch from the processing of one
task type to another, and multiple intermediate results may be stored temporarily in storage areas to avoid
switching the task type after the processing of each product. In this context we assess the optimized use of

these storage areas, called buffers, and its impact on the production throughput.

1 Introduction

Microfactories are small production systems designed to man-
ufacture microproducts [11]. In our work, we focus on the mi-
crofactories for manipulation and assembly. The manipulation
or assembly tasks are performed by systems which have to be
adapted to the microworld context. The considered systems
are microrobotic systems whose architecture and control sys-
tem permit to obtain high performance as high level of repeata-
bility, resolution or even speed [7]. To perform complex manip-
ulation and assembly tasks, the microrobots are grouped inside
cells. Microrobotic cells often have a great number of degree
of freedom (more than 10 for example). A microfactory could
be a unique cell (most of the time in case of semi-automatic
microfactories) but has to consist in several associated cells to
allow a good management of a workflow. This flow has to be
optimized to obtain the best global performance characterized
by the throughput, the reliability, and the setup time.

Among the different properties that can be those of mi-
crofactories, we consider that we are able to reconfigure the
cells. Different task types can be performed by the same cell.
Moreover, the number of available cells is generally small com-
pared to the number of tasks. Consequently, we assume that
each cell in charge of several consecutive tasks as defined in
an assembly plan. Switching from a task type to another re-
quires to reconfigure the system, i.e. to change the associ-
ated tools, which induces an unavailability time called setup
time [1]. Hence the whole production time for one piece in-
cludes the process time of each task as well as the setup times

needed for cell reconfiguration. To organize the production
flow, the storage areas described by their size and position are
of great importance to define the cell organization of a micro-
factory. We name “buffers” the storage areas which can be con-
tainers or wafers.

Our work is motivated by the high cost — and the low
availability — of reconfigurable cells in microfactories. The tar-
geted production process is defined as a pipeline composed of
several tasks, or steps. So before being completed a product
has to undergo each of the tasks of the pipeline, as illustrated
on Figure 3.1. Our goal is to maximize the overall through-
put of the production. We consider that, due to their cost, the
number of available stations is much lower than the number of
tasks to be performed in the pipeline, hence the need to assign
multiple tasks to a single production cell. As the number of
machines is limited and the reconfiguration times are signifi-
cant, using buffers is needed to greatly improve the throughput.
If for instance setup times are at least the same as processing
times, we are able to almost half the average period. On stan-
dard factories and assembly lines however, the use of buffers
would not be as easy because the costs of keeping intermediate
results usually exceed the benefits of using buffers.

The problem can be split in two sub-problems: first, find
the correct allocation of tasks to production cells then find the
optimal schedule of tasks within a cell (inner schedule). For the
first problem we use an assignment called Interval Mapping,
which means that a subset of consecutive tasks is assigned to
the same cell [9]. We then concentrate on the second problem.

The scheduling issue is here to find a schedule (i.e. de-

http://hal.archives-ouvertes.fr/hal-00719361
http://hal.archives-ouvertes.fr

hal-00719361, version 1 - 19 Jul 2012

fine an order to perform the tasks) inside a cell in the case where
cells require a setup time to change from one task to another
and where we consider the production of a batch of the same
product. As stated before, we assume that intermediate pro-
ductions can be temporarily stored in a dedicated space called
buffer. Using buffers allow to perform several times the same
task on different products and thus avoid to reconfigure the cell
each time a new product arrives. In this context, as the goal
of our work is to maximize the production throughput, this im-
plies to minimize the cell unavailability and thus making the
maximum use of the buffers is the key to reduce setup times
and maximize the overall throughput. So the issues related to
the global problem depend on the properties of the microfac-
tory, in particular their buffer sizes, and on the properties of the
tasks, their execution times and their setup times.

Considering that buffers may be of different sizes and
differently used also involves scheduling and configuration is-
sues. We must carefully choose the sizes of the buffers, which
must be of reasonable size to avoid spending a long time fill-
ing them up or to meet a deadline condition. They also have
to be consistent with each other to avoid unnecessary space al-
location, and ensure the correct execution of any scheduling
algorithm applied on the cells. Using buffers does not guaran-
tee the overall optimization of the schedule: the schedule may
be optimal for on a given machine, but outputting pieces by
batches may delay the work of the next machine, hence reduce
the overall throughput.

In the paper we tackle the problem of mapping tasks
on cells taking setup times into account. The presented con-
tribution is theoretical results on the complexity of mapping
algorithms. For homogeneous production cells — cells with
the same performance and storage capability — we propose a
greedy scheduling algorithm that computes an optimal sched-
ule. Then, for the case where the storage capacity differs from
one cell to another, we show that the problem becomes consid-
erably more difficult, indeed the mapping problem is strongly
NP-Hard. On homogeneous platforms, when setup times are
sequence-dependent [1] — they depend on the current task as
well as on the previous one — the problem is also NP-Hard, but
can be modeled as a Traveling Salesman Problem (TSP) [8].

The organization of the paper is as follows: first, we
present the framework model in Section 3. In Section 4 we
present our solution for single machine scheduling and inter-
val mapping. In Section 5 we show the resulting execution of
our solution on an example application. Then we conclude our
work in Section 6.

2 Related work

Most of the research works involving reconfigurations focus on
the ability of machines to process batches of pieces from a spe-
cific family, then to be reconfigured — or recalibrated — to pro-
cess batches from another family. In other words, a single ma-
chine or a series of machines follow an assembly plan to create
a product, then have to be reconfigured to follow another as-
sembly plan that is totally unrelated, or at least require a recal-
ibration. In this context, the problem of reducing the impact of
setup times has been covered several times, mainly in semicon-
ductor manufacturing. For instance, Zhang and Goldberg [12]
focus on wafer-handling robots and propose a solution of elim-
inate costly manual re-calibration during component replace-

ments. Li et al. [5, 6] study the problem of batch processing of
incompatible lot families by reducing the total weighted tardi-
ness. Jing and Li [4] provide a linear programming solution to
minimize the total completion time in semiconductor factories.

Becker and Scholl [2] covered the problem of mapping
tasks on machines in form of assembly line balancing problems
(ALBP). In these kinds of problems typically one or more types
of models have to be produced, and thus a precedence graph is
mapped onto a linear assembly line. The setup part of the prob-
lems, however, focuses on the decision which type of piece has
to be produced at a time, and when to reconfigure for another
type of piece. The specific Interval Mapping problem has also
been studied [3], and solutions are offered to map sequences of
tasks on a lesser number of machines. These works however do
not involve any reconfiguration in the process.

3 Framework model

Our study includes a theoretical contribution on task mapping
algorithms. So before explaining how these algorithms are de-
signed we first formally set the context of the work that will
define its range. The production model relays on tasks that are
performed by cells. We consider that a batch of the same prod-
uct has to be realized, i.e., the same set of tasks is performed on
each product in the same order. So when a product enters the
production line it has to be processed by the whole set of tasks
before being completed.

As the tasks are performed one after the other, always in
the same order, their set can be modeled as a pipeline (Fig-
ure 3.1). A pipeline is made of a set .7 of n tasks: .7 =
{T,...,T,}. The output of task T; is the input of the next task
T;+1. Each task T; requires an operating time w; to be performed
on the current product. As the aim of this production line is to
output a huge amount of products out of the pipeline we con-
centrate on the steady state behavior of the line.

To perform tasks we use a multi-cell microfactory. We
assume that these cells are interconnected by a transport sys-
tem that can convey the products from one cell to every other
cell. So we just take processing times into account and we do
not take any transporting issue into consideration as the trans-
port time can be neglected compared to the processing times.
So the target platform is modeled as a set .# of p machines:
M = {Mji,...,M,} interconnected as a clique. A processing
speed vy, is associated to each cell M,,.

To execute a given application pipeline on a given plat-
form, tasks are mapped onto machines considering consecutive
tasks, then a inner schedule has to be planned. Each machine
is indeed able to perform sequentially its allocated tasks. How-
ever, to switch from the processing of one task 7; to another
task P; (i # j), the machine M, has to be reconfigured. This
induces a setup time of st; ; , time units. On the other hand it
is possible to perform several times the same task on multiple
input pieces without setup. This allows eventually to save setup
times. However, the number of task repetitions is limited; each
task 7; mapped onto M,, has an input buffer B;, where the output
parts from the previous task are stocked. Given this context,
different versions of the model may be considered depending
on the framework’s heterogeneity in terms of setup times and
buffers.

hal-00719361, version 1 - 19 Jul 2012

\ '\ J

Figure 3.1: Example of tasks mapping on a microfactory: tasks 1 to 3 are mapped on the first cell, while tasks 4 and 5 are

performed on the second cell

Setup times Considering the setup times, if the appli-
cation is fully homogeneous, the setup times may be the same
on every machine, and for every task. This will be referred
to as st. On the other hand, on most applications, setup times
will depend on the task we want to setup to. These times may
be sequence-independent (st;), or sequence-dependent (stjj).
Sequence-dependent setup times mean that the setup time de-
pends on both the task the machine is already configured for
and the next task to be performed. Sequence-independent setup
times usually occur where changeovers have minor influence,
such as gripper calibration, or when both tasks are from the
same type. Sequence-dependent setup times occur when there
is a diversity amongst the tasks, such as going from handling
and assembling parts to gluing them together.

The schedule problem with sequence-dependent setup
times is NP-Hard and can be modeled as a Traveling Salesman
Problem (TSP). It is not studied in the scope of this paper.

Buffers The problem of allocating available space
into buffers may result in four variants:

e B All space is allocated evenly, so that every single task’s
buffer has the same capacity.

e B, Likewise, if the available space is linked to a machine,
buffers may be allocated to have the same capacity within a
machine, but not the same amongst machines.

o B; (fixed sizes) If the available space is not related to any ma-
chine, buffer sizes may have been fixed before any mapping is
done. This is the most constrained variant we have to deal with.
o (allocable sizes) The most general problem, where the whole
space is available within a machine, and we may freely choose
the capacity of each buffer.

In the rest of this paper, we use the notation B; to denote
the name of the input buffer of task 7;, while b; is the capacity
of buffer B;. When we are under the context of homogeneous
buffer capacities (B and By), it is implied that for all tasks b;
has the same value b (respectively b,,).

In this context, our objective function is to maximize

the throughput of the production line: .7 = %/ where & is the
average period of time between two outputted products.

4 Scheduling with setup times and buffers

Our contributions cover several problems. First, since there are
less cells available than there are tasks to perform, cells will
have to perform several tasks. To find a solution that maxi-
mizes the throughput of the assembly line, we have to perform
load balancing when assigning tasks on machines, so that we
minimize the impact of the bottleneck cell.

Each machine then has a set of consecutive tasks to per-
form, which must be scheduled to avoid any unnecessary setup
time involved. The latter is done by using buffers to stock inter-
mediate productions at each step before treating them, allowing
batch processing of the pieces.

Thus, our study will focus on three main operations:

e For a given machine with a given set of tasks to perform,
finding an optimal schedule on a machine to maximize
its throughput.

e Mapping tasks on machines as interval mapping — each
machine has a set of consecutive tasks to perform. As-
suming that on each machine a schedule is found that
maximizes the throughput, the mapping has to be done
in a way that allows to maximize the throughput of the
machine with the lowest throughput - the bottleneck cell.

e Allocating the available space as input buffers for each
task.

The combination of these three operations will allow to
determine if our solution is optimal. The solution is optimal if:

e The schedule within a machine, as well as buffers al-
location, perform the lowest period possible (or highest
throughput).

hal-00719361, version 1 - 19 Jul 2012

e The bottleneck station on the pipeline — the one with the
highest period — has no idle time while in steady state.

Thus the whole pipeline has the same period as this bot-
tleneck machine.

As a result, assuming we found an optimal solution, we
know that the slowest machine will have a throughput as high
as possible, and is never slowed down within the process. Since
the overall execution of the pipeline is limited by the bottleneck
station, we will be able to assess that the throughput of the ap-
plication is maximum. However, even if the slowest machine
has idle times, the solution may still be optimal if there is no
way to meet this “no idle time” criteria.

We split this contribution section in two parts: the single
machine scheduling section is dedicated to the schedule within
a single given machine, and the multi machine scheduling sec-
tion treats the mapping of tasks on the machines. We will not
cover the buffer allocation part in the scope of this article, as
most of the time the space can be evenly distributed amongst
buffers, and other specific situations (such as a remainder of
space that could be used to raise the size of some buffers only)
are to be studied on a case-by-case basis. Thus, in the follow-
ing sections we assume that the capacities of buffers are already
fixed. That is, in regard to our framework model, only buffer
models B, B, and B; are considered, while allocable sizes are
not.

4.1 Single Machine Scheduling

The approach for inner schedules is not directly linked to model
variants. At machine level, the problem with buffers By is
the same as B, as they are both homogeneous buffer capacities
within a machine; for all task 7;, the value of b; is b. The prob-
lem with heterogeneous buffer capacities (B;) is a little more
complex. Likewise, the heterogeneity of setup times (st or st;)
has absolutely no influence: some setups may take longer than
others, but our algorithms will minimize the amount of setups
the machine has to perform for each task, regardless of the time
each will take.

Homogeneous buffer capacities We developed a
greedy scheduling algorithm — GREEDY-B — that minimizes
the period for homogeneous buffer capacities. The schedule is
as follow: for buffers of size b, perform the first task all avail-
able pieces, that is b pieces. This will empty the first buffer
and fill the next. Then we setup to the next task, where its in-
put buffer is now full. The algorithm will continue to treat as
many pieces as it can on each task before performing a setup to
the next task. Since all buffers are the same, the progression is
linear and after the last task the machine will setup back to the
first task.

Heterogeneous buffer capacities Handling different
buffer capacities is harder. This cannot be done the same way
we did it with homogeneous buffers, except if set the limit of
pieces processed on each task to the lowest buffer. The would
however not be optimal, as better solution exist, that make bet-
ter use of all buffers.

It is not possible to express a specific period for any
random buffer sizes. However, it is possible to have a

control over the behavior of the algorithm if all adjacent
buffers are multiples to each others. More formally: Vi €
[1,..,n],min(b;,b;y)| max(b;,b;y1). In this configuration, we
know that any buffer will be either x times larger or smaller
than its predecessor, or its successor.

Based on that knowledge, we improved our GREEDY-B
algorithm into GREEDY-BI. The idea is that once the cell is re-
configured for a specific task, the maximum amount of pieces
that can be processed before a new setup is needed is limited
by either the input buffer (the amount of pieces available) or
the next buffer (the space available to store them). The min-
imum of both will be a hard limit; to stay active the cell will
have to reconfigure to perform another task.

Keep in mind that by processing as many pieces as pos-
sible on a single task 7;, we minimize the impact of the setup
time st; on that task, as the ratio of st; and the time needed to
process all pieces on T; is the lowest possible. Thus, when se-
lecting the next task the cell will reconfigure to, we restrain
this choice to maximize the use of buffers on the task. On
GREEDY-BI, a reconfiguration for task 7; is done on task when
on of the following conditions holds true:

e b; > b1, bi11 is empty, and we can process enough
pieces to totally fill b; .

e b; < b1, b;is full, and we can process enough pieces to
totally empty b;.

The conditions of the algorithm allow to fill perfectly the
buffers when they are multiple to each others. If this is not the
case, the behavior of the algorithm is undefined and depends
on the actual implementation. We are then unable to work out
an expression for the period, and cannot consider GREEDY-BI
optimal for all configurations other than buffers to each others.

We however developed heuristics that aim to truncate
the size of some buffers in order to have them multiple to each
other. The resulting pipeline is a pipeline on which the exe-
cution of GREEDY-BI is well defined and optimal. However
since we truncated some buffer, we may have lost setup time
reduction potential.

4.2 Multi Machine Scheduling

Subhlok and Vondran [9, 10] addressed the problem of Interval
Mapping on fully homogeneous platforms without setup times.
They developed a dynamic programming algorithm to find an
optimal mapping solution in polynomial time. This algorithm
was later slightly adapted by Benoit and Robert [3] to find the
optimal period.

The aim of the algorithm is to find a mapping that will
eventually maximize the throughput of the application, of min-
imize its period, when running a schedule on each machine.
Remind also that the period is determined by the period of the
bottleneck machine. Through binary search, the algorithm will
try to find a mapping that minimizes the period of the slowest
machine; that is to say, it will try to minimize the value of the
maximum period amongst the period of all machines. Every
time the algorithm has a mapping to test on a machine, it will
calculate its period and determine if it is better than the previ-
ous one.

We proceeded to adapt this algorithm to take setup times
into account. The solution is the same algorithm as before, but

hal-00719361, version 1 - 19 Jul 2012

the period calculation on a machine has been. This period is
calculated according to the execution of the scheduling algo-
rithm we would use.

Assuming an optimal inner schedule is found for each
machine, this mapping solution has been proved optimal for
any setup times (st, st;), and for B and B,. However, experi-
mentations has shown that idle times may appear on the slow-
est machine when fully heterogeneous buffers capacities (B;)
are used. This is due to the behavior of the schedule: before
any new batch of n pieces is outputted, the machine must go
through the process of all its tasks for n pieces. When buffers
are heterogeneous, the size of those batches do not reflect the
period of the machine — a faster machine may take too much
time to output by small batches, while the slowest machine is
waiting for its first big buffer to be filled before proceeding.

5 Results

In order to test the behavior of all our algorithms and heuristics,
we have simulated them using the distributed system simulation
tool SimGrid. With the simulator, we are able to test on plat-
forms that reflect several real case scenarios, and compare the
results with other (worse) solutions we come up with. We can
also assess the execution behavior and the performance of the
algorithms on different configurations.

In the following we give an example of execution for a
system consisting of eight tasks and four cells, as shown on Fig-
ure 4.1. A total of 100 pieces are processed in the simulation.
The configuration of the application is as follows:

e Tasks are mapped according to Figure 4.1, namely they
are distributed evenly: two tasks per machine.

e Homogeneous setup times, fixed at st = 2 time units.

e Homogeneous buffers within machines (B,). As show on
the figure, the buffer capacities are by = b, = 4 on M,
b3 =b4=501’1M2,b5 =b6=30nM3,andb7=b8=5
on Mjy.

o All tasks take the same time to process a piece: 2 time
units.

On this configuration, the slowest machine is M3: as all
machines have to perform the same amount of tasks and the
process times are homogeneous, having buffer capacities lower
than the other machines implies that the total time spent on re-
configuration is higher.

Figures 5.1 and 5.2 show two extracts from the Gantt
chart obtained executing this configuration. The times are given
in time units (compatible with any unit and coefficient that may
suit a problem). The first sample — on Figure 5.1 — goes from
t =219 to t = 309, and the second sample — on Figure 5.2 —
goes from ¢t = 441 to + = 531. Each of the four lines corre-
sponds to the activity of a machine (going from M| to My).
Each black rectangle represents a setup while colored rectan-
gles are the processing of a piece. The colors on the chart
identify a single piece to track its location (colors are looped
every 40 pieces to keep them distinguishable), and the values
inside rectangles are the name of the task being processed. For
instance, as illustrated on Figure 5.1, on M; (line 1) a yellow
piece being processed on 77 (a yellow rectangle marked as 77)

will later be found, after a setup, as a yellow rectangle marked
as T» on the same line. It will then be found on the second line
still as a yellow rectangle, marked as 73 then 74, and so on.

The output of the execution shows that, once the system
has reached a steady state, the slowest machine M3 has no idle
time. On the Gantt chart the line corresponding to M3 always
shows a full activity, while other lines have time slots with no
activity.

Both samples from the chart show that My regularly has
idle times. The machine is periodically in a state of starva-
tion, as M3 cannot deliver new pieces fast enough (for instance,
on Figure 5.1 it is waiting for purple then red pieces to arrive
from M3). On Figure 5.2, we can observe that both M| and M>
have inactivity. As the machines are located before M3 on the
pipeline, this is a case of saturation: M3 cannot process pieces
from its buffers fast enough, therefore M, has to wait for some
space available on M3 before proceeding. Then, by propaga-
tion, as M, is slowed down by M3, M is also slowed down by
waiting for M, to empty its buffers.

As we can see, the throughput of the application is lim-
ited and thus determined by the throughput of M3, the slowest
machine. Assuming the mapping on which this execution is
tested is optimal, M3 has the highest throughput possible and
we maximize the throughput of the application.

6 Conclusion

In this paper we have presented theoretical results on the prob-
lem of mapping tasks on the cells of a microfactory. These tasks
are organized as a pipeline in the production process and in the
case where several tasks can be mapped on the same cell our
work relays on interval mapping which assumes that two con-
secutive tasks are mapped on the same cell. In this context we
tackle the optimization of the production throughput depending
on setup times, i.e. the time needed to switch from a task to an-
other. We define a global model for the problem and propose
some polynomial time heuristic to solve the problem.

As shown in Section 4 several problems are identified
depending on the buffers and setup times properties. Most of
them seems to be NP-Hard. So in our future works will con-
centrate on giving proofs for their complexities and defining
efficient heuristics.

Acknowledgments

This work is part of the MUSINE2 project, supported by the
Région de Franche-Comté.

Bibliography

[1] A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov. A
survey of scheduling problems with setup times or costs.
European Journal of Operational Research, 187(3):985—
1032, 2008.

[2] C. Becker and A. Scholl. A survey on prob-
lems and methods in generalized assembly line
balancing. European Journal of Operational Re-
search, 168(3):694 — 715, 2006. ISSN 0377-2217.
doi: 10.1016/j.€jor.2004.07.023. URL http:
//www.sciencedirect.com/science/article/

hal-00719361, version 1 - 19 Jul 2012

Figure 4.1: Example of execution configuration

Same piece

(on different tasks)
T1|(T1|(T1|T1 T2|T2(T2|T2 T1|T1|T1|T1 TZ|T2|T2|T2mTI|T1 T2|T2|T2|T2m

o FmmEE BEEERL _T4|T4In|*n|n|n|n MTM|T4Mlm|m|m|m|m|

M3 5 | 15 T6 | T6 T5 | T5 | T8 T& | T6 | T&
=213 =303

Figure 5.1: Example of execution (sample 1)

M1 -Tl|T1|T1|T1-T2|T2|T2|T2-T1|T1|T1|T1| .T2|T2|T2|T2-T1|T1|T1|T1| T2(TZ2(T2|T2 T1 T2
vz [Eill 0. BBREBER BT [m e e e [m e]
M Tﬁ T5|T5|T5'TE|TE|T6-T5|T5|T5-TE|TG|

=441 t=531

Figure 5.2: Example of execution (sample 2)

hal-00719361, version 1 - 19 Jul 2012

[4]

(5]

[6]

[7]

pii/S0377221704004801. <ce:title>Balancing Assem-
bly and Transfer lines</ce:title>.

A. Benoit and Y. Robert. Mapping pipeline skeletons
onto heterogeneous platforms. J. Parallel and Distributed
Computing, 68(6):790-808, 2008.

X.Jing and Z. Li. A milp-based batch scheduling for two-
stage hybrid flowshop with sequence-dependent setups in
semiconductor assembly and test manufacturing. In Au-
tomation Science and Engineering (CASE), 2010 IEEE
Conference on, pages 87-92. IEEE, 2010.

L. Liand F. Qiao. Aco-based scheduling for a single batch
processing machine in semiconductor manufacturing. In
Automation Science and Engineering, 2008. CASE 2008.
IEEE International Conference on, pages 85-90. IEEE,
2008.

L. Li, F. Qiao, and Q. Wu. Aco-based scheduling of
parallel batch processing machines to minimize the to-
tal weighted tardiness. In Automation Science and En-
gineering, 2009. CASE 2009. IEEE International Confer-
ence on, pages 280-285. IEEE, 2009.

M. Rakotondrabe, Y. Haddab, and P. Lutz. Development,
modelling and control of micro/nano positioning 2 dof

(8]

(9]

[12]

stick-slip device. IEEE/ASME Transactions on Mecha-
tronics, IEEE/ASME TMech/ *14% (6), pages 733-745,
20009.

B. Srikar and S. Ghosh. A milp model for the n-job, m-
stage flowshop with sequence dependent set-up times. In-
ternational Journal of Production Research, 24(6):1459—
1474, 1986.

J. Subhlok and G. Vondran. Optimal mapping of se-
quences of data parallel tasks. In ACM SIGPLAN Notices,
volume 30, pages 134—-143. ACM, 1995.

J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. In Proceedings of
the eighth annual ACM symposium on Parallel algorithms
and architectures, page 71. ACM, 1996.

M. Tanaka. Development of desktop machining micro-
factory. Journal RIKEN Rev, 34:46-49, April 2001.
ISSN:0919-3405.

M. Zhang and K. Goldberg. Calibration of wafer handling
robots: A fixturing approach. In Automation Science and
Engineering, 2007. CASE 2007. IEEE International Con-
ference on, pages 255-260. IEEE, 2007.

