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Abstract

Waveguiding in a phononic crystal (PC) can be achieved along either linear line defects or a sequence of cavities, for
frequencies belonging to a complete bandgap. When waves are coupled inside a PC waveguide, modulations in the
frequency transmission are generally observed, leading to the formation of a channeled spectrum. We show that the
channeled spectrum results from the interference of forward and backward guided Bloch waves. We first theoretically
develop a Bloch wave interference model. Then, we consider the case of linear waveguides and of coupled-resonator
waveguides formed in a 2D square PC composed of water cylinders in mercury. The transmission properties of
waveguides with different length and defect distribution are examined. In all cases, the observed channeled spectra
are well explained by the theoretical model. This work is relevant to the design of new acoustic and elastic wave
devices.
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1. Introduction

As a kind of artificially periodic functional compos-
ite, phononic crystals (PCs) have attracted a lot of at-
tention since their proposal in 1993 [1]. One unique
property of PCs is to exhibit bandgaps for certain fre-
quency ranges, where wave propagation is fully prohib-
ited. Thus, they have direct applications to sound insu-
lation [2, 3, 4] and vibration reduction [5, 6, 7], for in-
stance. In addition, PCs can also present peculiar prop-
erties caused by strong dispersion at passing frequencies
[8].

When periodicity is broken, defect states are gen-
erated, where waves are either localized in the cavity
(point defects) or confined along the waveguide (line de-
fects). Linear lines of defects, as the most commonly
used guidance mechanism, have received a wide at-
tention [9, 10]. Many different waveguides have been
formed in 2D [11, 12, 13] and 3D [14] PCs, PC slabs
[15] with holes [14, 16] or pillars [17, 18], and for
surface waves on semi-infinite PCs [19, 20], as well
as in phoxonic crystals [21]. Both numerical simula-
tions and experimental measurements were conducted
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[10, 15, 16, 22, 23] and were found to be in good agree-
ment. One alternative guidance mechanism is using
evanescent couplings along a linear chain of defect cav-
ities or resonators inside the channel [24, 25, 26], as in-
spired by coupled-resonator optical waveguides in pho-
tonic crystals [27]. In this case, the band structure can
be changed by varying the coupling strength of the res-
onators through their separation. Single mode operation
is also allowed.

Another guidance mechanism that has attracted much
attention recently incorporates the additional property
of topological protection and is based on a classical
analog to the quantum Hall effect [28]. Topological
phononic waveguides have for instance been demon-
strated recently in elastic plates [29, 30, 31]. Though
we do not consider explicitly topological waveguides in
the following, we suggest that the theory we develop
applies as well to the description of their spectral trans-
mission.

Whatever the guidance mechanism, it has been rec-
ognized from the beginning that the transmission of PC
waveguides shows oscillations of the transmission as a
function of frequency [9]. However, the nature of these
oscillations has remained mostly unexplained. A simi-
lar phenomenon, the channeled spectrum, has long been
known in guided-wave optics. For integrated optical
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Figure 1: (a) Simplified model of transmission through a single-mode periodic waveguide at a single frequency. (b) Graphical construction of the
channeled spectrum from the dispersion relation of the infinite waveguide for the particular cases θ = −π and θ = 0.

waveguides, for instance, the channeled spectrum is a
classical technique for the characterization of dispersion
properties and group delay dispersion [32, 33]. A sim-
ilar technique is also useful in the characterization of
optical fibers [34].

The channeled spectrum in homogeneous waveg-
uides results from the interference of forward propagat-
ing guided waves with the backward propagating waves
generated by internal reflections, especially at the ends
of the waveguide. In this paper, this description is ex-
tended to periodic waveguides, for which the channeled
spectrum is considered as resulting from the interfer-
ence of forward and backward guided Bloch waves. A
theoretical model is developed that predicts accurately
the distribution of frequencies at which maxima and
minima of transmission occur, together with the pres-
sure distribution at those frequencies. In order to illus-
trate the model, we consider the specific case of single
Bloch wave propagation in either linear waveguides or
coupled-resonator acoustic waveguides (CRAWs). The
dispersive characteristics of the channeled spectrum are
shown to depend mostly on the length of the PC waveg-
uide and on the dispersion relation of the considered
guided Bloch wave. The effect of viscous damping on
the channeled transmission spectrum is finally investi-
gated.

2. Model

In this section, a theoretical model is proposed to pro-
vide a physical explanation for the appearance of fre-
quencies at which transmission maxima and minima oc-
cur, similar to the channeled spectrum in optics [35].
For a single-mode PC waveguide in the considered fre-
quency range, the fundamental guided mode is a prop-
agation channel for waves traveling to the right or to

the left, as depicted in Fig. 1(a). The time-harmonic
pressure field inside the waveguide can then be writ-
ten as the superposition of a left-traveling Bloch wave,
pl(x, y), with a right-traveling Bloch wave, pr(x, y),

p(ω; x, y) = αpr(x, y)e−ık(ω)x + βpl(x, y)e+ık(ω)x. (1)

In this equation, x is a curvilinear coordinate along the
waveguide axis and y is a transverse coordinate. The
functions pl(x, y) and pr(x, y) have periodicity Λ along
x and satisfy pl(Λ − x, y) = p∗r (x, y). They depend in
principle on frequency, though we don’t explicit this de-
pendence here. The complex coefficients α and β are to
be determined. k(ω) is the Bloch wavenumber along the
waveguide axis. Since we consider periodic waveguides
with one direction of periodicity, the Bloch wavevector
indeed reduces to a single wavenumber. Note that k(ω)
can be obtained by inverting the dispersion relation ω(k)
of the waveguide, with k considered a continuous vari-
able, as we perform in Section 3. It is also important to
note that the two guided Bloch waves propagate unper-
turbed and that they only convert to one another at the
ends of the waveguide. Hence, the model only consid-
ers a waveguide of finite length L and periodicity is not
directly apparent because it is already embedded in the
guided Bloch waves.

By continuity of pressure, the transmission in ampli-
tude at the exit of the waveguide can be determined as
t(ω) = p(ω; L, 0), or

t(ω) = αpr(L, 0)e−ık(ω)L + βpl(L, 0)e+ık(ω)L, (2)

where L = NΛ is the length of the waveguide and N
is the number of the periodic unit cells. We further as-
sume that the x-periodic functions pl(x, y) and pr(x, y)
are normalized such that |pl(0, 0)| = |pl(Λ, 0)| = 1 and
|pr(0, 0)| = |pr(Λ, 0)| = 1. Any residual phase can then
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be absorbed in the coefficients α and β, and we finally
have without loss of generality

t(ω) = αe−ık(ω)L + βe+ık(ω)L. (3)

The transmission in intensity is then

|t(ω)|2 = |α|2 + |β|2 + 2|αβ| cos(2k(ω)L − θ), (4)

with θ = Arg(αβ∗) a phase angle dependent on the par-
ticular superposition of guided Bloch waves.

Transmission maxima and minima are obtained when

d|t(ω)|2

dω
= 0. (5)

Neglecting the possible dependence of α and β on fre-
quency, maxima are obtained when 2k(ω)L = θ mod-
ulo 2π, or for a discrete sequence of frequencies and
wavenumbers such that

k(ωn)Λ =
θ

2N
+

n
N
π. (6)

As a result, frequencies at which transmission is max-
imum can be directly inferred from the dispersion re-
lation of waveguide, as depicted in Fig. 1(b). It is
noted that there are N maxima given by Eq. (6) between
points Γ and X of the first Brillouin zone when θ , 0.
However, when θ = 0, there are N − 1 maxima since
the Bloch waves at high symmetry points Γ and X can
hardly be excited, as we argue later. Similarly, frequen-
cies at which transmission is minimum are obtained for

k(ωn+1/2)Λ =
θ

2N
+

n + 1/2
N

π. (7)

As follows from Eqs. (6-7), transmission maxima and
minima are sampled uniformly along the k-axis with the
step δk = π

NΛ
so that their density increases in propor-

tion to the length of the waveguide. The frequencies of
transmission maxima and minima have a variable dis-
tribution, or free spectral range. Indeed, their local sep-
aration is proportional to the group velocity, according
to

δω ≈ vg(k) δk = vg(k)
π

NΛ
(8)

where the group velocity can be directly obtained from
the dispersion relation as

vg(k) =
dω
dk
. (9)

When k is close to the high symmetry points Γ and X,
the group velocity tends to zero and the frequency spac-
ing of transmission maxima and minima reduces. The
present model is valid for any monomodal phononic
crystal waveguide, as we illustrate next.
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Figure 2: Dispersion relation of an infinitely linear waveguide with
cavity radius r/a=0.1. (a) Band structure for a 7 × 1 super-cell of
the square PC of water cylinders in mercury is presented in the ΓX
direction of the first Brillouin zone. The gray areas indicate the pass-
ing frequency ranges. Three guided modes exist inside the complete
bandgap and are labelled A, B and C. (b) Pressure distributions at the
X point of the first Brillouin zone are presented for the three guided
modes. The color scale represents the amplitude from blue for nega-
tive to red for positive values.

3. Channeled transmission spectrum in linear
waveguides

As a direct implementation of the previous model,
we select a 2D square PC composed of water cylinders
embedded in mercury [36]. The dispersion relation of
a linear waveguide with infinite length is first consid-
ered. Material parameters used here are ρ=1025 kg/m3,
c=1531 m/s for water, and ρ=13600 kg/m3, c=1450 m/s
for mercury. The filling fraction is 0.4. In the absence
of frequency-dependent loss, the PC can be scaled ar-
bitrarily and its dispersion relation can be represented
as reduced frequency f a versus reduced wavenumber
ka, with f the frequency, k the wavenumber, and a the
lattice constant. The perfectly periodic PC possesses a
complete bandgap for 398 m/s < f a < 1095 m/s.

A linear waveguide is formed by introducing a line
defect. Within the line defect, the radius of the water
cylinders is changed to r/a=0.1. Fig. 2(a) illustrates
the dispersion relation of the waveguide in the Γ − X
direction of the irreducible Brillouin zone. Finite ele-
ment method [8] is used for all numerical simulations.
Three guided modes are generated within the complete
bandgap, in the frequency range of 429 m/s < f a < 599
m/s for Bloch wave A, 886 m/s < f a < 1005 m/s for
Bloch wave B and 983 m/s < f a < 1086 m/s for Bloch
wave C. Their pressure distributions at the X point are
displayed in Fig. 2(b). Each guided mode has a special
pattern of pressure distribution. The pressure amplitude
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Figure 3: Cross-sections of linear waveguides arranged in three different circuits inside finite square PCs and the related transmission. The length
L of a waveguide is an integer multiple of the lattice constant a. We consider (a) a straight waveguide with L = 11a (LW1), (b) a waveguide with 2
turns and L = 13a (LW2), and (c) a straight waveguide with L = 13a (LW3). The wave sources used for transmission computation are marked by
white lines. The transmitted wave is detected along the black lines on the other side of the waveguide. (d) Transmission through waveguides LW1,
LW2 and LW3 are shown with blue, red, and black solid lines, respectively. The dashed lines represent transmission through the perfect PC, with
source and detector placed as in the case of waveguides LW1 and LW2. (e) For clarity, transmissions around f a = 500m/s and f a = 1000m/s are
zoomed.

Table 1: Frequencies at which transmission is maximum for different waveguides in the lower or upper passing frequencies of Fig. 3(d). The units
of reduced frequency, f a, are m/s.

order 1 2 3 4 5 6 7 8 9 10 11 12 13

LW1 431.2 438.2 449.4 464.6 483.2 504.2 526.8 549.8 571 587.8 597.4
1005.2 1002 996 987 974 958 939.4 920.2 902.8 890.4

LW2 426.4 434.6 442.2 452.8 469.6 484 506.4 524.2 546 563.8 579.2 590.4 596.6
1012.4 1001.8 992.4 987.2 975.2 959.2 958.4 930.4 926.2 907.6 897.8 888.6

LW3 430.6 435.6 444 455.4 469.4 485.6 503.8 523 542.6 561.4 578 590.8 597.8
1005.6 1003.2 999 982.8 984.2 973 959.4 943.8 927.6 911.8 898.4 889.2

at points A and B decays rapidly away from the linear
defect in the transverse direction, owing to the existence
of the complete bandgap, so guided modes are well con-
fined to the linear defect. Bloch wave C is strongly in-
fluenced by the passing bands right above the bandgap
and its confinement is weak.

The appearance of channeled transmission spectra is
intimately linked to the finite length of a waveguide and
to the termination conditions. Here, we consider linear

waveguides with different length and number of turns,
as depicted in Fig. 3. The finite structures have 11 × 11
unit cells in Figs. 3(a) and (b), and 13 × 11 unit cells in
Fig. 3(c). Three different linear waveguides are consid-
ered: (a) a straight waveguide with length L = 11a, (b)
a waveguide with length L = 13a and 2 turns, and (c) a
straight waveguide with length L = 13a. In the follow-
ing, they are referred to as the LW1, the LW2 and the
LW3 waveguides, respectively.
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Figure 4: Imaginary part of the complex band structure of the linear waveguide (red dots). The dark-gray and slate gray regions in panel (a)
correspond to the frequency ranges of the three guided waves in Fig. 2(a). The blue dots represent the results for the bare PC computed by a 7 × 1
super-cell. For clarity, band structures around f a = 400m/s and f a = 1090m/s are zoomed. The pressure distributions in the linear waveguide and
in the bare PC at the marked points in panel (a) are illustrated in panel (b).

One characteristic of waveguides is their transmission
for acoustic waves, which can be evaluated as follows.
The finite PC is placed in a homogeneous mercury re-
gion. A radiation boundary condition is set on the outer
boundary, closing the computation domain and mini-
mizing reflections. A line source for acoustic waves
with unit amplitude p0 = 1 is positioned at the left end
S l of the waveguide. The width of the source segment
is exactly one lattice constant a. By sweeping the re-
duced frequency in the frequency range of interest, the
transmission T ( f a) in decibels units can be estimated as

T ( f a) = 20 log10


∫

S r

|p|ds∫
S l

|p0|ds

 (10)

where p is the pressure along the right end S r of the
waveguide. It is worth noting that the transmission as
defined above can be larger than unity without violating
energy conservation [37].

Fig. 3(c) shows transmissions for the different waveg-
uides as a function of reduced frequency. For compari-
son, transmissions for the perfect PC, i.e. with no de-
fect, are also plotted. Two passing frequency ranges
come up clearly inside the complete bandgap. They co-
incide with the dispersion relations of the waveguides
in Fig. 2(a), except for Bloch wave C in the frequency
range of 1005 m/s < f a < 1086 m/s. Bloch wave C
is actually a deaf mode [38], since the pressure distri-
bution at point C shown in Fig. 2(b) is anti-symmetric
with respect to the direction of the wave vector (the hor-

izontal axis). Such a mode can thus not be excited by an
incident plane wave. However, evanescent Bloch waves
with the right symmetry can still be excited, as we ar-
gue later, and result in a small transmission. The upper
passing range is thus identified with Bloch wave B. The
lower one corresponds to Bloch wave A. In the extent
of passing frequency ranges, only small differences in
transmission exist for the different circuits. This indi-
cates that waveguides with an arbitrary number of turns
can be designed. Transmission is generally very low for
frequencies in-between passing bands and is then dom-
inated by the total length of the waveguide. The smaller
transmission is thus found for the longer waveguide.

For comparison, transmissions for bare PCs are also
calculated and plotted in Fig. 3. It is observed that the
transmission through waveguides can be smaller than
through the perfect PC. This is owing to the reconstruc-
tion of the complex band structure, especially the imag-
inary part of the Bloch wavenumber shown in Fig. 4.
The detailed calculation process can be found in Refs
[8, 39]. It is known that the minimum imaginary part
of the Bloch wavenumber dominates the transmission
[40]. For the bare PC, the minimum imaginary part is
always non-zero in the bandgap. When linear defects
are introduced, its value changes a lot. There are even
some frequency ranges where it is larger than for the
bare PC (see the zoomed panels). The pressure distribu-
tions of evanescent Bloch waves at the marked points in
Fig. 4(a) are shown in Fig. 4(b). For the linear waveg-
uide, the modes at points M1 and M2 of the imaginary
bands are asymmetric with respect to the x-axis. So they
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Figure 5: Pressure distribution of the straight waveguide (LW1, L =

10a) at the resonant peaks of the (a) lower or (b) upper passing fre-
quencies listed in Table 1. The number of pressure oscillations are
shown below the field maps.

2

Figure 6: Numerical (solid line) and predicted (dashed line) pressure
distribution along the central line of the straight linear waveguide LW1
in Fig. 5(a) for (a) n=5 (α = −1.40 + 1.37ı, β = 2.38 + 1.76ı) and (b)
n=6 (α = −1.08 + 1.60ı, β = 2.18 + 1.94ı).

can not be excited in the simulation, similarly to Bloch

Figure 7: Numerical (solid line) and predicted (dashed line) pressure
distribution along the central line of the straight linear waveguide LW1
in Fig. 5(b) for (a) n=5 (α = 1.37 − 0.91ı, β = −0.43 − 0.50ı) and (b)
n=6 (α = 1.20 − 1.08ı, β = −0.35 − 0.51ı).

wave C. Mode M3 for the bare PC, and modes M4 and
M5 for the linear waveguide can be excited. Clearly, the
latter two modes have larger imaginary parts and so they
decay faster than mode M3. A smaller transmission for
the waveguides is then expected, in coincidence with the
results in Fig. 3(c).

The lower and the upper passing frequency ranges
support single mode propagation and large maximum
transmission. Fig. 3(d) shows a close-up view at
transmission within the lower and upper passing fre-
quency ranges. A pattern of successive maxima and
minima appears in the transmission spectra. Table 1 re-
ports the frequencies with maximum transmissions for
the three considered waveguides. Waveguides with the
same length but different number of turns, such as LW2
and LW3, have the same number and positions of ex-
tremal frequencies, though slight differences in ampli-
tude. Bloch wave A has a doubly symmetric shape but
is slightly ’compressed’ by periodicity towards the left
and the right. Then the coupling between adjacent de-
fect is slightly asymmetric along the x-axis (left/right)
compared to the y-axis (up/down). The number of max-
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ima is inferred to be N for the lower passing frequency
and N − 1 for the upper frequency range, though in
both case the length of the waveguide is L = Na. We
have checked that this apparent discrepancy is not ow-
ing to the frequency resolution in the computation, but
can rather be attributed to the value of the phase angle θ
in Eq. (6). There are indeed generally N positive values
of k(ωn)Λ for θ , 0 and N + 1 possible values if θ = 0.
However, when a particular value falls close to 0 or π,
the group velocity tends to zero: the Bloch wave will
not be efficiently excited and hence will not appear in
the transmission. As a result, there can be either N or
N − 1 transmission peaks.

Pressure fields at the observed maxima of the straight
waveguide LW1 with L = 11a are shown in Fig. 5(a) for
the lower passing frequency and Fig. 5(b) for the upper
passing frequency. As n increases, the number of spa-
tial oscillations along the waveguide is seen to increase,
in accordance with Eq. (6). In general, the envelopes
of the guided wave fields indeed show sinusoidal varia-
tions, as described by Eq. (1).

The model of Eq. (1) can only be approximate since
evanescent Bloch waves are not taken into account [41].
Evanescent Bloch waves are expected to be excited at
the two ends of the waveguide and to decay rapidly
with distance. Figs. 6 and 7 show the real and imag-
inary parts of the pressure distribution for the lower
or upper frequency range, along the central line of the
straight waveguide for maxima n = 5 and n = 6. In the
lower passing frequency, 5 or 6 oscillations are clearly
observed in the envelopes of the pressure distribution.
While for the upper frequency range, the oscillations
are too faint to be distinguished. The pressure distri-
butions obtained by using Eq. (1) after fitting α and β
are also given in Figs. 6 and 7. There is a good overall
agreement between computed and fitted pressure distri-
butions.

4. Channeled transmission spectrum in coupled-
resonator acoustic waveguides

In this section, we consider coupled-resonator acous-
tic waveguides (CRAWs) formed by sequences of defect
cavities. The separation between adjacent cavities is Λ,
which is an integral number of lattice constants. We se-
lect Λ = 2a in this section, and the supercell is shown in
Fig. 8(a). A cavity is introduced by replacing one cylin-
der of water with mercury. By sweeping the wavevector
in the Γ− X direction of the first Brillouin zone, the dis-
persion relation of the CRAW is obtained and illustrated
in Fig. 8(b). The reduced wavenumber, kΛ/(2π), is used
in the band structure. Three guided modes are formed

within the complete bandgap. Their pressure distribu-
tions at the Γ point are displayed in Fig. 8(c). The pres-
sure distributions of the guided Bloch waves have the
same symmetries as those in Fig. 2(b). Bloch wave F is
a deaf mode, although it has a better confinement than
Bloch wave C.

Next, we consider CRAWs with different lengths and
number of turns defined in finite PCs, as shown in
Figs. 9(a)-(d). Four different variations on the theme of
CRAWs are considered: (a) a straight chain of 10 cavi-
ties, (b) a chain of 13 cavities and 2 turns, (c) a chain of
17 cavities and 8 turns, and (d) the same as (b) but for
a straight chain. For simplicity, they are named CW1,
CW2, CW3, and CW4, respectively.

Fig. 9(e) shows transmissions for the different cir-
cuits. For comparison, transmissions for the perfect PC
are also presented. Two passing frequency ranges ap-
pear clearly inside the complete bandgap, coinciding
with the CRAW dispersion bands in Fig. 8(b). Trans-
missions for different circuits have slight differences in
the extent of passing frequency ranges. This indicates
that the CRAW principle can be applied to design rather
arbitrary waveguides, i.e. waveguides with arbitrary
number of turns. In the upper passing frequency range,
the transmissions for different circuits have large vari-
ations that strongly depend on the considered waveg-
uide. Indeed, the more turns along the waveguide, the
larger the variations. We do not attribute these compli-
cations to the presence of two guided modes in this fre-
quency range, since Bloch wave F is deaf, but rather to
the modal shape of Bloch wave E (shown in Fig. 8(c))
that is not as compatible with turns as the modal shape
of Bloch wave D. Bloch waves D and A have a simi-
lar doubly symmetric shape, so they can almost couple
equally to 4 different directions. The only difference is
that Bloch wave A is slightly more ’compressed’ by pe-
riodicity, as we noted before, so its coupling is slightly
asymmetric along the horizontal and vertical directions.
This is further proved by the comparison of the trans-
mission for waveguides with same length but different
turns in Figs. 3(e) and 9(f). In the following, we will
correspondingly focus our attention on the lower pass-
ing frequency range that supports single mode propa-
gation and large maximum transmission. Low trans-
missions are observed for frequencies in-between pass-
ing bands, similar to those in Fig. 3. They are gen-
erally determined by the total length of the waveguide.
Longer CRAWs generally have smaller transmission. It
is also noted that there is a spurious resonance appear-
ing above the lower passing frequency range. Its gener-
ation is directly related to the excitation of a localized
resonance close to the line source, as the pressure distri-
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Figure 8: Band structure of a coupled-resonator acoustic waveguide with cavity separation Λ=2a. (a) A 7 × 2 super-cell of the square PC of water
cylinders in mercury (b) The dispersion relation is presented in the ΓX direction of the first Brillouin zone. The gray areas indicate the passing
frequencies. Scatterers and lines represent the numerical and fitted results, respectively. (c) Pressure distributions for the three guided modes are
presented at dispersion points D, E and F. The color scale extends symmetrically from blue for negative to red for positive values.

bution shown in the inset of Fig. 9(e) shows. Given the
very low transmission at this local resonance, it can be
safely ignored.

Fig. 9(f) shows a close-up view at transmission
within the lower passing frequency range. A pattern
of successive maxima and minima appears in the trans-
mission spectra. Table 2 reports the frequencies with
maximum transmissions for the four considered waveg-
uides, presented in decreasing order in accordance with
the dispersion relation of Bloch wave D in Fig. 8(b).
It is observed that waveguides with the same length
(CW2 and CW4) have the same number and positions of
maxima of transmission, similar to the results for linear
waveguides. Moreover, the effect of the turns is lower
compared to that for the linear waveguides, owing to
the higher confinement of the CRAWs. The number of
maxima is inferred to be N − 1 (as shown in Fig. 1(b))
if the length of the waveguide is L = NΛ, in accordance
with Eq. (6) when θ = 0. Indeed, for n = 0 (Γ point)
and n = N (X point), the guided Bloch waves have zero
group velocity and are not excited by a source placed
outside the waveguide.

Pressure fields in the straight CRAW CW1 with L =

10Λ are shown in Fig. 10 for the 9 observed maxima.
Similar to the linear waveguides, the number of spatial
oscillations along the waveguide is seen to increase with
an increase in n. Fig. 11 shows the real and imaginary
parts of the pressure distribution along the central line of
the straight waveguide for maxima n = 5 and n = 6, as
well as the results predicted by using Eq. (1) after fitting

α and β. A good overall agreement between computed
and fitted pressure distributions is again observed. In
general, it can be concluded that the channeled trans-
mission spectrum is well explained by the simple model
presented in Section 2.

In practice, acoustic wave damping has distinct ef-
fects on the transmission through a waveguide. The
frequency-dependent viscosity of water and mercury
[42] can be taken into account by using a viscous fluid
model [43]. Viscous losses effectively increase with
the square of frequency with this model. The effects
of damping on the transmission spectrum for different
lattice constants a is shown in Fig. 12, in the case of
the straight waveguide. Changing the lattice constant
amounts to tuning the operating frequency range. It is
observed that the influence of viscosity remains limited
if the lattice constant is larger than 2 µm, i.e. for oper-
ating frequencies lower than about 300 MHz. The ef-
fect of viscosity however increases rapidly for smaller
lattice constants. Viscous effect in passing frequency
ranges is more apparent as compared to their outside,
because guided waves have small group velocities, and
the spatial decay on propagation is known to vary in-
versely with the group velocity [44]. In the limit of
large viscous damping, the spectral oscillations in the
channeled spectrum tend to be washed out, indicating a
quenching of the interference of forward and backward
guided Bloch waves.
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Figure 9: Cross-sections of coupled-resonator acoustic waveguides arranged in different circuits inside finite PCs and the related transmission. The
length L of a waveguide is an integer multiple of the cavity separation Λ = 2a. We consider (a) a straight waveguide with L = 10Λ (CW1), (b) a
waveguide with 2 turns and L = 13Λ (CW2), (c) a waveguide with 8 turns and L = 17Λ (CW3), and (d) a straight waveguide with L = 13Λ (CW4).
The wave sources used for transmission computation are marked by white lines. Transmitted waves are detected at the black lines. (e) Transmissions
for CW1, CW2, CW3 and CW4 are shown by the blue, red, green and black lines, respectively. The dashed lines represent transmission through
the perfect PC, with source and detector placed as in the case of waveguides. The inset shows the pressure distribution at f a = 786m/s for the
straight waveguide. (f) For clarity, transmission around f a = 725m/s is zoomed.

Table 2: Frequencies at which transmission is maximum for different waveguides in the lower passing frequency of Fig. 9. The units of reduced
frequency, f a, are m/s.

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CW1 741.8 738.8 734.6 729.4 723.8 718.6 714 710.4 708.2
CW2 742 740.4 737.8 734.2 730.4 726.2 722 718 714.4 711.4 709.2 707.8
CW3 742 741.2 739.6 737.4 735.2 732.2 729.2 726 722.8 719.6 716.6 714 711.4 709.6 708.2 707.4
CW4 742 740.4 737.8 734.2 730.2 726 721.8 717.8 714.4 711.4 709.2 707.8

5. Conclusions

In this paper, we have discussed the appearance
of channeled transmission spectra in phononic crystal
waveguides. We have proposed a model that predicts
the pressure distribution in the waveguide and the shape
of the channeled spectrum. The model is based on
the interference of forward and backward guided Bloch
waves. For illustration, we have considered acoustic
wave propagation in single-mode acoustic waveguides.
The waveguides were formed by introducing either line

defects or linear chains of cavities in a sonic crystal of
water rods in mercury. It was observed that channeled
spectra are dependent on the length of the waveguide
but are almost independent of the circuit details, includ-
ing the number of turns. Theoretical results agree well
with numerical transmissions and pressure distributions.
Finally, the effect of fluid viscosity on the transmis-
sion were evaluated as a function of the lattice constant.
Quenching of the channeled spectrum with increasing
damping is predicted.
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Figure 10: Pressure distribution of the straight CRAW (CW1, L =

10Λ) at the resonant peaks listed in Table 2. The number of pressure
oscillations are shown below the field maps.

( )b

( )a

Figure 11: Numerical (solid line) and predicted (dashed line) pressure
distribution along the central line of the straight CRAW CW1 in Fig.
10 for (a) n=5 (α = −0.81 − 0.72ı, β = 1.20 + 0.42ı) and (b) n=6
(α = −1.24− 0.35ı, β = 1.50− 0.02ı). Real and imaginary parts of the
pressure are both illustrated in the upper or lower part, respectively.

It could be extended to multimode PC waveguides,
though the shape of the channeled spectrum would obvi-
ously be less simple. If one wants to remove the occur-
rence of maxima and minima in the transmission spec-
trum, care should be taken to engineer the terminations
of the waveguide to minimize reflections, for instance
by using tapering techniques similar to electromagnetic
and optical waveguides [45].
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L. M. Garcia-Raffi, Evidences of evanescent Bloch waves in
phononic crystals, Applied Physics Letters 96 (12) (2010)
124102.

[41] V. Laude, Y. Achaoui, S. Benchabane, A. Khelif, Evanescent
Bloch waves and the complex band structure of phononic crys-
tals, Physical Review B 80 (9) (2009) 092301.

[42] R. E. Graves, B. M. Argrow, Bulk viscosity: past to present,
Journal of Thermophysics and Heat Transfer 13 (3) (1999) 337–
342.

[43] S. Temkin, Elements of Acoustics, Acoustical Society of Amer-
ica, West Barnstable, MA, 2001.

[44] V. Laude, J. M. Escalante, A. Martı́nez, Effect of loss on the
dispersion relation of photonic and phononic crystals, Physical
Review B 88 (22) (2013) 224302.

[45] D. Deslandes, K. Wu, Integrated microstrip and rectangular
waveguide in planar form, IEEE Microwave and Wireless Com-
ponents Letters 11 (2) (2001) 68–70.

11


