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Abstract 
Periodic structures are well known for the possibility to exhibit band gap effects. This work aims at 

investigating vibration behaviors of quasi-periodic structures. In this paper, the quasi-periodic structure is 

defined as a type of beam with an impedance mismatch generated by Fibonacci orders with non-

symmetrical translation in geometry, acting as a waveguide. Two types of quasi-periodicity are 

considered, namely finite, and infinite Fibonacci sequences using super unit cell. Considering flexural 

elastic waves in above mentioned quasi-periodic models, the frequency ranges corresponding to band gaps 

are investigated, using either spectral analysis of infinite structures or frequency response functions of 

finite structures. Fibonacci beams exhibit multi stop bands with short widths in different frequency ranges, 

whereas periodic and its super unit cells-based structures have only one stop band frequency with larger 

frequency extension.  

1 Introduction 

The vibroacoustic response in many types of structures is complex. Structures are shaped continuous, 

periodic, aperiodic or random. These types of structures have different vibroacoustic responses with 

respect to their geometrical and materials properties. Some of them can be designed as periodic or quasi-

periodic structures. The desirable periodic structures that have identical repetition can be modelled by 

using materials and geometrical periodicity [1]. 

Many research activities show that vibrations responses of periodic and quasi-periodic structures exhibit 

frequency band gap effects [1,2,3,4,5]. In periodic structures, the impedance mismatch generated by 

periodic discontinuities in the geometry, acting as a waveguide, and/or in the constituent material, causes 

destructive wave interference phenomena over specific frequency bands called “stop band” or “band gaps” 

[6]. For quasi-periodic structures, Fibonacci sequences are considered in several researches [7]. Spectral 

fragmentation of elastic waves represents the replication of primary and secondary gaps in Fibonacci 

sequence [7]. In other research paper, Gei. M. et al [8] claims that in an elementary repeated unit cell, 

generated adopting the Fibonacci sequence, in cases of axial and flexural vibration by higher order 

generation, the number of stop bands changes.  The concern of the present paper is to model a quasi-

periodic beam utilized by two different cross sections of 3D 2 node-beam finite element following the 

Fibonacci series.  

The main issue is that the anti-symmetric condition of quasi-periodic structures cannot be applied by the 

wave-based approach using spectral analysis of Bloch-Floquet theorem, unless using an elementary 

cell/volume representative using Fibonacci lower order replications. In fact, the structural dynamics, 

model analysis and Frequency Response Function (FRF) of the structures are considered for 

understanding the dynamics structural behavior of the system to ensure a safe, efficient and affordable 

design.   
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In this research, an isotropic beam with a finite number of cells and a wave guide section with infinite 

number of cells is considered in the analysis. The quasi-periodicity of the span is translated according to 

the Fibonacci sequences [8]. The identical double cross sections (A) and (B) are translated using Fibonacci 

generating order from 4th to 10th orders (Figure 1).  

The analysis has been carried out in two main sections. The first section presents the finite element 

analysis of Frequency Response Function [9,10], whereas the second section describes a wave guide 

section model, using combination of wave and finite element using transfer matrix method [11,12,13]. 

This wave guide section is modelled following super unit cell. Super unit cell is a cell hosting the first 4th 

generated order of Fibonacci sequence for Wave Finite Element Method (WFEM) analysis. Stiffness and 

mass matrix of the given unit super cell is extracted using MATLAB and APDL-ANSYS platform. Then, 

the extracted matrices are used into WFEM FRF and spectral analysis of Bloch-Floquet boundary 

conditions [14].    

2   Theoretical approach  

2.1 Spatial elastic waves 

In infinite solid medium there are two types of waves that propagate with different velocities [15]. It is 

known from vector analysis that any vector field can be represented as sum of two vectors, one of which 

has a scalar potential and the other a vector one: 

 
(2.1.1) 

Taking into consideration that rot  and substituting equation (2.1.1) into the wave equation 

for elastic medium with the application of operations rot and div, we get 

 
(2.1.2) 

and  

 
(2.1.3) 

 and  vectors correspond to the longitudinal and transversal waves,   and   are Lame constants and 

 is a density. In the other hand  and  are the longitudinal and transversal wave velocities.  

Hence the vector  in equation (2.1.2) is called a longitudinal wave or a wave of expansion-compression 

which, the vibration direction in it coincides with its propagation direction. The wave  in equation 

(2.1.3) in which the direction of vibrations is perpendicular to the direction of wave propagation and in 

which deformations are shear is called a transversal or shear wave.  

2.2 Methods and tools 

The modern tools for investigating the most significant impacts of quasi-periodic structures on the 

vibrational response of a given structure are codes based on conventional FE analysis, combination of 

wave and finite element, spectral finite element, and transfer matrix methods. 

Theoretical background for modelling quasi periodicity and its significant impacts on wave analysis is 

carried out with mathematical series named Fibonacci sequence, Thue-Morse, Rodin-Shapiro and Penrose 

lattice. Spectral analysis of these types of subsystems are shown in phononic crystals, anisotropic beams, 

rods and Bravais lattices [16]. In this portion of work, a finite element beam with lower 4th and higher with 
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10th generated order of Fibonacci sequence is modelled using MATLAB in parallel with APDL-ANSYS. 

The lower order is used as a super unit cell waveguide section for infinite structures, whereas the higher 

order is used as one span of finite beam in FE analysis [Table 1].  

Fibonacci orders 4th 5th 7th 8th 9th 10th 

Number of cells 5 8 21 34 55 89 

Table 1: Geometrical distribution of cells according to Fibonacci generated orders. 

Figure 1 shows a 2-node beam type 188 following Fibonacci orders. The geometrical characteristics of 

this beam is a combination of two different cross section. The distance between each key point is 100 mm, 

every segment between these two points are one of abovementioned two cross section with three finite 

elements. Section (A) and (B) can be seen in figure 1. Embedded Fibonacci sequence starts from S1 the 

first order and ends to Sn the Nth order of the sequence. The mathematical expressions following the 

Fibonacci sequences in this beam are defined in the following algorithm:  

 

Figure 1: Numerical model of quasi-periodic model following Fibonacci sequence.  

2.3 Finite Element Dynamic Analysis 

Commercial FE software’s APDL-ANSYS is used to perform the frequency response function of the 

quasi-periodic beam model. For damped structure, the dynamic finite element model is usually described 

by the system: 

 (2.3.1) 

where , and  in equation (2.3.1) are the mass, damping and stiffness matrices.  

The associated eigenvalue problem is: 

 =1, 2,… (2.3.2) 

let  be the orthonormalized model basis, and  the spectral 

matrix; the model projection  and the mode superposition method allows to express, in the 

case of proportional damping, the dynamic response in the following form: 

 

(2.3.3) 

The FRF for displacement of the system is given by equation (2.3.4), where  is the response of a 

system and  is its excitation force.  
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(2.3.4) 

The FRF for the kth node degree of freedom with a single excitation force at jth degree of freedom can be 

simulated by equation (2.3.5). 

 

(2.3.5) 

Modal analysis and frequency response function of the quasi-periodic beam are computed. The aim is to 

investigate the frequency band gap like behavior in finite span with generating order of Fibonacci (number 

of cells) of beam type 2-node 188, by considering structural damping.  

The conventional FE analysis is used for the frequency response function of the entire span with 10 th 

generated order of Fibonacci. The number of elements in numerical model are designed according to the 

known criteria which of one sixth of the wave-length. The description of the mechanical properties is 

provided in Table 2. 

Material properties Aluminium Polyethylene 

Modulus of elasticity 2x1011 Pa 7.2x108 Pa 

Poisson’s ratio 0.3 0.3 

Mass density 7800 kg/  935 kg/  

Table 2: Mechanical properties of quasi-periodic bi-material beam. 

2.4 Forced response analysis 

In this section, the forced response function of a quasi-periodic beam is analysed. The analysis is done 

with a free-free Boundary Condition (BC). A white spectrum is applied in one end of the beam in the 

vertical direction and the response is simulated in the other end of the beam. The mesh size in this problem 

is optimized to a maximum frequency range of 5KHz. The choice of the free-free (BC) is interesting to 

visualize the energy transfer through the waveguide span. This type of wave guides is intended to use as a 

junction between two infinite mediums which the mechanics of those materials are not known. The results 

show band gaps in different ranges of frequencies. Multiple stop bands appear by the positioning of cross 

sections according to the Fibonacci sequence. The reason is that in this quasi-periodic structure the 

direction of elastic wave is considered in x direction, therefore an interference of reflected and incident 

waves creates frequency stop bands (i.e. in this frequency ranges the waves “cannot freely propagate”). 

This type of stop bands could be predicted as one type of passive wave filter in a quasi-periodic beam.  

Figure 2 shows a Fibonacci super unit cell that contains 5 cross sections [ABAAB]. This cell shows the 

end of part of span with 50 cm length. The span is considered with (210,340, 550, and 890) cm long on the 

frequency ranges of [0-150] kHz. Using MATLAB and APDL-ANSYS the harmonic analysis is carried 

out. The allocated point response is received at the head of the span. The results of this dynamic analysis 

show that the full energy is transferred through the start and end of the span which can be represented as a 

junction between two infinite media. There is multiple frequency stop bands in different ranges of 

frequencies. Each frequency stop band has some localized wave modes that rapidly attenuates inside the 

band gap [Figure 3].  
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Figure 2: Quasi-periodic structure super unit cell; this cell is the Nth cell of the span with applied unit 

force at the end node. 

 

Figure 3: Frequency response function of a finite quasi-periodic beam with length increment. 

3 Spectral Analysis of infinite structure  

3.1 Substructures dynamics  

A substructure (super unit cell) waveguide is considered as a unit cell of the periodicity pattern. In this 

part of an investigation carried out to obtain an algorithm for quasi-periodic function that permits to the 

repetition of unit cell with disturbance inside the periodicity. 

The substructure in figure 4 is coded as a unit cell in MATLAB and the generated script is then run in 

APDL-ANSYS for extracting the transfer matrices. The extracted stiffness and mass matrices are used to 

generate results based on FRF and spectral analysis of Bloch-Floquet boundary condition.  

50cm 

x, wave propagation  
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Figure 4: Waveguide section for spectral analysis of Floquet-Bloch boundary condition. 

The FRF analysis is achieved in frequency range [0-5000] Hz, for a structural damping of . 

The dynamic response of the unit cell is described by:  

 (3.1.1) 

Where , and  define the dynamic stiffness matrix, displacement vector and force vector. The dynamic 

stiffness matrix, in equation (3.1.2), with complex modulus of elasticity becomes 

 (3.1.2) 

, , and  are respectively the mass matrix, the stiffness matrix and the loss factor. 

Dynamic stiffness matrix for the general case can be written for internal and external degrees of freedom. 

The internal degrees of freedom can be condensed and the left and right boundary displacements and 

forces are used in the analysis.  

 

(3.1.3) 

3.2 Transfer matrix 

A unit cell script file is coded and, then, transformed for post processing using commercial software’s. 

The same procedure could be done directly through sub-structuring analysis (CMS) for extracting transfer 

matrices by utilizing commercial software’s. Using MATLAB code, both mass and stiffness matrices of 

size [48x48] are extracted by 4th generated order of Fibonacci which has 5 unit cells and each cell has 3 

elements. So, there a total of 15 elements in one super unit cell. Then the global matrices are extracted 

through APDL-ANSYS for wave finite element analysis.  

. (3.2.1) 

 is the transfer matrix and components inside the transfer matrix are the condensed internal degrees of 

freedom inside the unit cell that, defines, all the boundary internal nodes and boundary external nodes in 

equation (3.2.2) 

 (3.2.2) 

Equation (3.2.2) is condensed dynamic stiffness matrix. In equation (3.2.3)  is the transfer matrix which 

is symplectic and J is a 2nx2n matrix with real entries (non-singular matrix) or commonly called skew 

matrix.  
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. (3.2.3) 

4  Numerical Results  

4.1 Frequency response function of finite structures 

FRF of finite structure is analysed in two different parts. The first part corresponds to the conventional FE 

analysis of the quasi-periodic beam with isotropic and homogenous materials. Whereas the second part is 

analysed by considering inhomogeneous material variation including the Fibonacci cross section variation 

as in the first part. The quasi-periodicity in the first case is inscribed by cross section variations, according 

to the Fibonacci sequence.  

4.1.1 FRF Results-geometrical variation 

The first results are shown by finite element analysis of the FRF for the four different orders of the 

Fibonacci sequence beam. The 7th order corresponds to 21 number of cells, whereas the 8th, 9th, and 10th 

order follows the 34, 55, and 89 cells. The cells are in two different cross sections (A) and (B).  

Figure 5 shows an FRF of the Fibonacci beam with increasing length by generated orders of the sequence. 

The results of flexural waves are plotted on the 1500 frequency steps in the range of [0-5000] Hz. The 

results show multiple stop bands alongside the frequency ranges for instance around [600-800] Hz, [2100-

2500] Hz and followed a large frequency stop band around [3100-4200] Hz. There is also a medium band 

from [4500-4800].  

 

Figure 5: Finite element analysis of the FRF for fourth different orders of Fibonacci beam. 

The number of frequency stop bands in the flexural wave analysis of finite quasi-periodic beam depends 

on the correspondence frequency range. It can be seen that four frequency stop bands are appearing in the 

frequency ranges of [0-5] kHz. These band gap like behaviours has narrow widths and if there is an 
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increase in the number unit cells, the depth of the stop band frequency grows deeper according to 

displacement decibels.  

4.1.2 FRF Results of the beam with two materials 

In this part of FRF analysis the same criteria of the Fibonacci beam are analysed with bi-material 

distribution all alongside the beam span. The first material is aluminium and the second is polyethylene. 

Cross section (A) is made of aluminium and cross section (B) is made of polyethylene.  

The length of the structure starts from 2.1m span to 8.9 m explicitly ranging from [7 th,8th,9th, 10th] orders 

of Fibonacci with [21,34,55,89] cells. The FRF analysis has been carried out with free-free boundary 

condition for all types of orders. A unit spectrum white force is applied in the head of the span (First node) 

and the response is simulated from the tip of the span (last node). Figure 6 shows two very wide frequency 

stop bands in the ranges of [0-5000] Hz. The first gap starts from [250-1750] Hz, following the second 

stop band from [1800-4100] Hz. These wider gaps are due to the bi-material distribution all over the span. 

The very promising results are the frequency stop bands and its depths by increasing the length of the 

span/the number of cells. The more increase in the generating orders of Fibonacci will give a result with 

more depth in the band gap of maximum order. In contrary lower orders has shorter frequency stop bands 

with low amplitude in (dB).  

 

Figure 6: FRF of the Fibonacci beam with bi-materials using Finite element analysis. 

4.2 Frequency response function using WFEM  

These results correspond to the spectral analysis of the infinite structure. The mass and stiffness matrices 

are extracted and used as an input for the WFEM using transfer matrix method. The 4th order of the 

abovementioned sequence is taken as a unit super cell and Floquet-Bloch boundary condition is applied to 

balance the left and right-side displacement and force vectors of the unit cell. The internal degrees of 

freedom are eliminated using condensation method and the transfer matrix is modelled with entrees from 

boundary-boundary and internal-boundary nodes. The super unit cell model can be seen in the Figure 7. 

The first result shows an FRF analysis of the unit cell by 20 replications of the same cell either in the right 

or left of the core cell. 
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Figure 7: waveguide section of 4th order Fibonacci sequence 

Flexural waves are investigated in this analysis. These types of waves can be visualized in the results of 

FRF using WFEM. Beside that, the findings in the spectral analysis also provide the longitudinal waves as 

well as flexural ones and for validating such kind of waves, WFEM analysis is used to plot the FRF of 

longitudinal wave and then compared with spectral analysis of Bloch-Floquet waves. Figure 8 shows a 

wave based finite element FRF of the Fibonacci 4th order. The repeated unit cell shows a promising 

filtering conditions in the different frequency ranges in the limit of [0-5000] Hz. Figure 9 shows a spectral 

analysis of the Floquet-Bloch boundary condition into a Fibonacci 4th order cell. The first branch of the 

plot in red describes the bending, and compressional waves. In contrary the second branch in blue shows 

the evanescent waves with curve shapes that corresponds to the stop bands of the real part of the wave 

numbers in the red branch of the plot. The red branch of the plot at Figure 9 starts with bending waves that 
propagates from [0-162] Hz and then a frequency stop band appears in [162-187] Hz frequency range. The 

waves are propagating until the next frequency stop band between the two portions of the bending waves. 
Another stop band appears between [653-1014] Hz, following the middle one around [1809-2298] Hz. The 

last frequency stop band is a combination of longitudinal/ compressional and flexural waves. The first 

mode starts form [3263-4557] Hz that belongs to the last flexural wave, whereas the following second 

blue curve with higher imaginary numbers in the negative zone of wave numbers corresponds to the 

longitudinal band gap [3523-4522] Hz. 

 

Figure 8: FRF of Fibonacci beam 4TH order analysis by (WFEM) using transfer matrix 
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Figure 9: Spectral analysis of Floquet-Bloch boundary condition on the Fibonacci 4th order. 

Table 3 shows CPU elapsed time of numerical simulation for three types of analysis; model FRF by FE 

analysis, model FRF by WFEM analysis and a spectral analysis of Floquet-Bloch waves. The three types 
of analysis are carried out using MATLAB®, APDL-ANSYS® and Intel® Core™ i7-6700 CPU 

@3.40GHz (8 CPUs). The elapsed time for maximum frequency 5kHz in spectral analysis of Bloch waves 

is expected to be very costly among the list. It seems that there is a huge difference almost around 52.7% 

between the spectral and FE analysis and 97.9% between spectral and WFEM analysis. All three types of 

analysis follow different frequency steps; thus, they are solved by two different solution methods, inverse 

and full VT (Variational Technology) harmonic analysis methods.  

If we consider the spectral analysis as a reference in Table 3, the FE and WFEM are 47.3% and 2.1% of 

the CPU timing used in spectral analysis of Bloch waves. It is obvious that WFEM is one of the most 

useful technique for saving computation time, but still there are open topics in model order reduction to 

save more computational time. 

Model FRF/Spectral analysis of 

Bloch waves 
Methods 

Steps 

number 

Elapsed 

time (sec) 
CPU ratio (%) 

Spectral analysis of Bloch waves over 

the wave guide section 
Inverse 1 266.1 100% 

FE FRF analysis of wave guide section VT Full 1500 126.22  47.3% 

WFEM FRF analysis of a wave guide 

section 
Inverse 1 5.61  2.1% 

Table 3: CPU time of numerical simulations. 

5  Conclusion 

In a perfect periodic beam the effects of vibration are very different from the quasi-periodic one. In quasi-

periodic beam, the impedance mismatch generated by four types of Fibonacci orders, causes destructive 

wave interference and thus generates the band gaps. The geometrical cross section variation, following 

Fibonacci sequence in the analysis, creates, multi frequency stop bands with narrow band gaps in which, 

Real part 
Imaginary part 
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waves cannot freely propagate. These narrow band gaps not only appear in the medium frequency ranges 

as Bragg type frequency stop bands in periodic beams, but it also covers the lower and higher ranges of 

frequencies in between [0-5000] Hz. 

By increasing the number of Fibonacci generated orders; the frequency stop bands ranges do not change, 

while in contrary the depth of the frequency stop bands grows deeper. 

Using material variation in the quasi-periodic beam can significantly provide, frequency stop bands with 

larger widths. The effects of wider stop bands can help the structure to be a useful filter in real engineering 

problems. The very simple models herein presented allow continuing to study the configurations even 

considering the variation of the materials. 
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