
Tutorial: Photonic Neural Networks in Delay Systems
D. Brunner,1, a) B. Penkovsky,1 B. A. Marquez,1 M. Jaquot,1 I. Fischer,2 and L. Larger1
1)FEMTO-ST Institute/Optics Department,CNRS & Univ. Bourgogne Franche-Comté CNRS,
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Photonic delay systems have revolutionized the hardware implementation of Recurrent Neural Networks and
Reservoir Computing in particular. The fundamental principles of Reservoir Computing strongly benefit a
realization in such complex analog systems. Especially delay systems, potentially providing large numbers of
degrees of freedom even in simple architectures, can efficiently be exploited for information processing. The
numerous demonstrations of their performance led to a revival of photonic Artificial Neural Network. Today,
an astonishing variety of physical substrates, implementation techniques as well as network architectures
based on this approach have been successfully employed. Important fundamental aspects of analog hardware
Artificial Neural Networks have been investigated, and multiple high-performance applications have been
demonstrated. Here, we introduce and explain the most relevant aspects of Artificial Neural Networks and
delay systems, the seminal experimental demonstrations of Reservoir Computing in photonic delay systems,
plus the most recent and advanced realizations.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are based on com-
putational concepts fundamentally different from the cur-
rent computational workhorse, the Turing-von Neumann
concept. Inspired by a strongly simplified interpretation
of the human brain’s structure, large numbers of sim-
ple nonlinear elements (neurons) are connected (synap-
tic links) into large networks. Information processing in
ANNs usually relies on numerous simple nonlinear trans-
formations and large scale linear matrix multiplications.
The implementation of these operations in von Neumann
architectures is highly inefficient, as it requires massive
parallelism. Originally, ANN concepts were already in-
troduced more than five decades ago1,2. Yet, the ineffi-
ciency of their emulation strongly limited their exploita-
tion; not for lack of powerful concepts, interest, potential
or applications, but for lack of adequate computing power
and computing architectures. During the past decade,
this has changed significantly, and currently ANNs are
widely considered key to future technological advance.
Nowadays, tasks reaching astonishing levels of complex-
ity and abstraction can be solved with high accuracy:
ANNs can describe images3, identify human faces4 as
well as spoken digits5.

The recent breakthroughs have largely profited from
two strategic advances: the availability of large amounts
of data, and of economic high-performance computing de-
vices. Optimizing ANNs to solve specific tasks requires
the adjustment of their connectivity structure, in most
cases a slow and painstaking process. As current ANN
algorithms chiefly rely on large sets of example data for
this training or learning process, the surge of data cre-
ated by modern communication technology, i.e. the In-
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ternet, plays a significant role in recent breakthroughs in
training complex ANNs. A second major driving force is
the off-the-shelf availability of high-performance comput-
ing devices like field programmable gate array (FPGAs)
and graphics processing units (GPUs). These are bet-
ter suited to implement ANNs’ massive parallelism than
standard central processing units.

By now, the potential and importance of ANNs is
widely recognized. Yet, even the recent astonishing de-
velopments cannot mask the fact that currently no ideal
ANN-specific hardware, which fully implements physi-
cal hardware neurons and physical synaptic links, exists.
With such a novel platform, many orders of magnitude
could be gained in speed and energy efficiency. At this
place the human brain with its learning and informa-
tion processing capabilities, while only consuming about
25W of power, serves as a humbling benchmark, remind-
ing us of what is achievable. The quest for new hardware
substrates and hardware enabling ANN concepts is gain-
ing considerable momentum, but it remains a field where
much still awaits its discovery.

The Reservoir Computing (RC) concept is of spe-
cial relevance to the implementation of ANNs in un-
conventional physical substrates. The concept was de-
veloped in parallel by multiple groups6–9. Reservoir
Computers offer a compromise between performance and
an implementation-friendly ANN topology. Starting in
2011, electronic nonlinear delay systems10, in 201211,12

opto-electronic, soon followed by all-optical nonlinear de-
lay systems13,14 demonstrated fully implemented analog
reservoirs. These hardware reservoirs with a ring-like de-
lay topology allowed for the first time to physically imple-
ment analog ANNs consisting of 100s or 1000s of neurons
based on practical experimental setups. Meanwhile, nu-
merous demonstrators and even fully autonomous and
fully operational RCs15 have been implemented based
on this principle. Finally, further conceptional simpli-
fications of such systems allowing for high-speed chan-
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nel equalization in optical communication systems16, ex-
tended multi-delay architectures17, as well as modifica-
tions of the training process of the ANN including the
input connectivity18 have been introduced and demon-
strated.

A recent review19 provides an overview of photonic RC
in general. In this tutorial we will focus on concepts, tech-
niques, possibilities and limitations of RC based on pho-
tonic nonlinear delay systems. However, general aspects
of the implementation and different concepts are mostly
transferable to other, non-photonic substrates. First,
we will introduce fundamental aspects and properties of
ANNs. From there we will move on to discuss their im-
plementation in nonlinear delay systems. Then, we will
present multiple seminal experiments which implemented
these concepts in different nonlinear delay systems, pro-
vided key insight into aspects of particular relevance to
hardware realizations, or further advanced the concept.

A. Artificial Neural Networks

A neuron typically consists of a body (soma), den-
drites receiving electrical inputs, and a long axon send-
ing electrical spikes towards other neurons. Nevertheless,
the dynamics of a neuron can be very intricate, which
makes their implementation computationally expensive.
Emulating or physically implementing an ANN with bi-
ologically plausible details can therefore be a daunting
task, and here we are chiefly interested in their computa-
tional capacity. Instead of trying to veritably reproduce
detailed electrodynamic properties of the neuron, many
aspects, including its excitable properties giving rise to
time-dependent spiking dynamics, are abstracted away
for the sake of implementation efficiency. It is usually
sufficient to describe only the connectivity properties of
a nonlinear network-node as a computational unit. Such
an artificial neuron is called a perceptron and is expressed
via the following equation:

y = f

(
M∑
i=0

wiui

)
, (1)

where the dot product
∑M
i=0 wiui represents information

inputs, i.e. the analogy to dendrites; f(·) is the activation
function, typically a monotonic nonlinear function repre-
senting the neural-cell’s nonlinear transformation; and y
is the perceptron’s output, similar to the axon’s outward
connection. Sometimes Eq. (1) is written including a
bias w0, which is equivalent to having an additional con-
stant input u0 = 1 in our notation.

To perform computation, such perceptrons are con-
nected with each other, thereby forming networks. In
Fig. 1 we schematically illustrated a typical ANN. Due
to the unidirectional network coupling, i.e. from left to
right, the network is called a Feedforward Neural Network
(FNN). Hence, the network is expressed by the following

u1

u2

y

Hidden
layer

Input
layer

Output
layer

Perceptrons

W in

W out

FIG. 1. A feedforward neural network (FNN) consisting of
three layers: an input layer u = (u1, u2), the hidden layer
consisting of perceptrons (blue circles), each described by Eq.
(1). From there information is passed to output layer y, which
is yet another perceptron with inputs x. Hidden and output
layer connection weights are given by matrices W in and W out,
respectively.

u y
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FIG. 2. Schematic of information processing flow in a Re-
current Neural Network (RNN). Other than for FFNs, con-
nections of the hidden (recurrent) layer link to elements of
the same layer and even themselves, introducing recurrence.
The recurrent layer therefore can exhibit dynamics including
echoes from previous inputs, and RNNs are therefore capable
to process information within a temporal context.

system of equations:

x = f1
(
W inu

)
,

y = f2 (W outx) ,
(2)

where vector u is the input information, matrices W in

and W out are connection weights, f1 and f2 are acti-
vation functions, vector x is the internal (hidden layer)
network state and vector y is the computed result. Note
that the network is not unique, i.e. there exist many pos-
sible configurations of W in and W out solving the same
problem. A common problem is therefore finding the
best architecture suitable to solve a particular problem.
Nowadays, networks with more than one hidden layer
are used in so-called deep learning architectures20. Such
networks are typically trained using the backpropagation
algorithm21,22, in which the weights are updated in in-
verse order to the processing direction, i.e. starting from
the last and moving to the first layer.

A second important class of ANNs are Recurrent Neu-
ral Networks (RNNs), as schematically illustrated in Fig.
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2. The essential difference between FNNs and RNNs
is the connectivity structure of their hidden layer. In
RNNs, the hidden layer includes connections between in-
dividual neurons. Flow of information is therefore not
unidirectional, i.e. information can circle within the hid-
den layer due to these recurrent connections. The hid-
den layer is therefore typically referred to as the re-
current layer. Due to these non-exclusively forward-
directed connections in Fig. 2, the recurrent layer in-
cludes internal connections which propagate information
along temporal loops. While FNNs are memoryless and
can be understood as universal function approximators,
RNNs can be regarded as algorithms. The main differ-
ence is that functions (or maps) do not have memory
(they are stateless), while algorithms do. It has been
shown that RNNs are universal approximators of dynam-
ical systems23 and, moreover, that theoretically they are
Turing equivalent24,25. Finally, because of the presence
of recurrent loops, RNNs exhibit some analogies with as-
pects of the biological brain26.

Mathematically, a RNN’s recurrent layer can be ex-
pressed as:

x(n+ 1) = f
(
W inu(n+ 1) +Wx(n)

)
, n = 1, 2, . . . , T,

(3)
where matrix W in ∈ RN×M is the input map, W ∈
RN×N is the map of the previous state of the recurrent
layer, and x(n) is the network’s internal state. The re-
current layer consist of N neurons, and the input infor-
mation contains M elements at each instance of integer
time n. The result of computation is then to be realized
utilizing the transformations provided by x(n,u).

B. Training a Reservoir readout layer

Using the unfolding in time procedure, it can be shown
that RNNs are equivalent to deep FNNs with, at least
theoretically, an infinite number of hidden layers. Al-
though the back-propagation algorithm can therefore be
adapted to RNN training, it becomes challenging to
achieve training convergence as the large number of lay-
ers often results in exploding or vanishing gradients27.
In RC, instead of modifying all the RNN layers, only the
final readout layer is optimized during training, keeping
the (often randomly constructed) recurrent layer’s con-
nectivity W unmodified during the training procedure.
As a result, training convergence is efficiently achieved.
The linear readout layer W out (Fig. 2) is expressed as:

y(n) = W outx(n), (4)

where matrix W out ∈ RK×N is a readout map; K is the
output dimensionality, i.e. the number of parallel results
provided by y(n).

The linear readout weights Wout are obtained from
processed data samples (Eq. (3)), for example using the
following ridge regression:

Wout = (Mx ·MT
x + λ · I)−1(Mx ·TT), (5)

where λ � 1 is a small regularization constant. Mx ∈
RN×Q is a feature matrix of horizontally concatenated
state vectors x(n), T ∈ RK×Q is the teacher matrix,
which corresponds to the desired optimal computational
results provided by the RC. Q denotes the number of
training feature vectors typically identical to the number
of input examples T . As for the Reservoir feature matrix
Mx, T consists of horizontally concatenated state vectors
of the output target yT (n). Training according to Eq. (5)
requires targets yT (n) to be known in advance, hence the
scheme corresponds to supervised learning.

For classification tasks, the teacher is a one-hot encoded
matrix, i.e. consists of target answer vectors yT ∈ RK×1
where the only non-zero elements correspond to the cor-
rect class labels. For prediction tasks, the teacher is the
future value of the signal to be predicted from the input
data u(n). Due to the sensitivity of Reservoir state x(n)
to previously injected information, trained output y(n)
is capable of addressing such temporal problems.

C. Implementation in nonlinear photonic systems

The very architecture of ANNs was quickly identified
as a major implementation or emulation bottleneck. The
massive parallelism required for an efficient realization of
the large-scale matrix products, see Eqs. (1-4), cannot
be mapped directly onto the von Neumann architecture.
Improvements can be achieved by utilizing GPUs and
google’s TPU28, yet one can also approach the prob-
lem from a more fundamental point of view. Other
than electrons, photons are information carriers which
do not interact for low intensities and in the absence of
an interaction-mediating medium. The following discus-
sion’s validity is therefore restricted to low optical inten-
sities.

The spatial Fourier transforming property of a sim-
ple optical lens is an excellent illustration: under specific
conditions, an entire image’s Fourier-spectrum, including
all spatial-frequencies supported by the lens’s impulse re-
sponse function, is simultaneously provided at its back
focal plane29. The information contained within an im-
age is therefore processed in parallel, for example allow-
ing convolving two independent spatial distributions fully
in parallel30. Electrons, however, do interact strongly,
for example due to their Coulomb interaction. Informa-
tion encoded in the fundamental state of various elec-
trons would therefore be modified in a nontrivial fashion
by their nonlinear interaction, and parallel information-
transmission along the same channel is frustrated.

Another advantageous property of photons is their in-
herent propagation at the speed of light, only influenced
by the propagation medium’s refractive index. In partic-
ular, a photon’s propagation speed does not depend on
the length of a signal transmission line. This is signif-
icantly different for signal transmission using electrons.
The response time of an electronic transmission line is
given by its RC constant, where R and C are Ohmic re-
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sistance and capacity, respectively. In the leading order,
an electric transmission line’s RC constant linearly scales
with its length. This does not only induce delays, but also
results in a convolution of the original information by the
transmission line’s impulse response function. Increasing
the transmission line’s length does therefore inevitably
reduce the maximum bandwidth it supports.

These aspects are of particular importance for the
implementation of ANNs. Implementations in spatio-
temporal systems require a large number of connec-
tions, and their transmission line induced bandwidth
limitations cannot easily be overcome by feature size
reduction31. Also, in electronics one cannot easily lever-
age tools for increased parallelism such as wavelength or
space32 division multiplexing, well established photonic
techniques which for the case of wavelength multiplexing
already are exploited for photonic ANNs33. Implemen-
tations in electronic delay systems suffer even stronger.
One can easily increase photonic delays and thereby in-
crease the size of a photonic delay ANN without much in-
fluence on the system besides the delay time. In electron-
ics, long delay lines consisting of simple wire-connections
are effectively ruled out for the introduced bandwidth
limitations. One typically has to fall back to digital im-
plementations such a first-in-first-out memories (FIFO).

D. Delay systems for Artificial Neural Networks

Until this point, we have introduced ANNs as complex
and high dimensional (Eq. (1)) and spatio-temporal sys-
tems (Eq. (3)). Their dimensionality is related to the
number of independent neurons or nodes that a partic-
ular network architecture contains. Crucially, compara-
ble high dimensionality and complexity can be found in
purely temporal oscillators such as dynamical systems
with delayed feedback. For the case of continuous-time
oscillators, they can be mathematically described by de-
lay differential equations (DDEs). In a simple form,
DDEs with a single delay are given by

ẋ(t) = f(t,x(t),x(t− τD)), (6)

where τD is the delay time resulting in the delayed feed-
back signal x(t − τD) and f(. . . ) a potentially multi-
dimensional nonlinear transformation. A classical ex-
ample of Eq. (6) are one-dimensional nonlinear delay
system, which can be described by

TRẋ(t) + x(t) = f [x(t), βx(t− τD), ρu(t),b]. (7)

This particular DDE has already been adjusted to be sim-
ilar to the equational systems typically describing RNNs,
see Eq. (3). In Eq. (7), nonlinearity f(. . . ) is only one-
dimensional, TR is the system’s response time and β is
the feedback gain. Furthermore, Eq. (7) is extended by
adding an external input u(t), linearly scaled by ρ. Fi-
nally, b is a set of constant parameters.

A DDE is an ordinary differential equation (ODE)
modified through an additional input: its state-variable

FIG. 3. A DDE as a convolution product between an impulse
response function h(t) and a nonlinear function f(x) having
the delayed variable x(t− τD) as its argument.

which is temporally shifted by time delay τD. While a
seemingly small modification to a standard ODE, the de-
layed term x(t − τD) strongly modifies the system’s di-
mensionality. Due to this simple delay term, initializing
the system requires defining its complete state during one
delay interval τD. As we are dealing with a temporally
continuous signal, in principle one requires an infinite
amount of initial conditions, and mathematically speak-
ing DDEs are equivalent to an infinite-dimensional sys-
tem of ODEs34. Technically, the time-continuous initial
state can be approximated by a discrete signal sampled at
least twice faster than response time TR. Since typically
Tr � τD, DDE’s are system’s of sufficiently high dimen-
sionality to implement the internal states of ANNs while
consisting of only one single nonlinear element. The dy-
namical evolution of a DDE can be numerically obtained
with standard numeric integration techniques such as the
Euler35 or the Runge-Kutta 4th order method.

Experimental realizations of delay-dynamical
systems36 have been implemented in many fields of
science and technology, including electronic10, electro-
optic (EO)37–40 and all-optical systems41. Employing
such systems, high performance broadband chaotic
communications42,43, optical low-coherence sources44,
ultra-stable microwave sources45–47, low-linewidth opti-
cal sources48 and random number generation49,50 have
been demonstrated. The fundamental properties of such
oscillators have also received significant attention51–57.
Interestingly, these different applications require the
delay oscillator to be operated in different regimes.
Chaos communication, random number generation and
low-coherence emission rely on chaotic dynamics, for ul-
tra high purity microwaves generation the delay systems
are operated in the periodic, and for the low-linewidth
optical sources in the stable regime. The asymptotic
steady state (equilibrium) regime is also most suited for
information processing based on these systems10,11,17.
Operation beyond this fixed-point typically results
in performance deterioration: the system’s rendered
inconsitent, as autonomous dynamics potentially result
in different responses to identical input data58. For the
case of autonomous periodic orbits simple mechanisms
can compensate some of their negative impact59. But
even for chaotic operation, consistent responses to
additional input drives, as a necessary condition for
information processing, can be achieved60.
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1. Spatio-temporal analogy

Conventional neural networks are based on equations
of coupled nonlinear elements. It might not be directly
apparent how time-continuous delay systems, as intro-
duced by Eq. (7), correspond to such a network com-
prising of discrete elements. However, a direct spatio-
temporal analogy between such networks and DDEs ex-
ists, illustrating that DDEs can be seen as a particular
class of RNNs. The analogy was first suggested in61 and
later formally shown to be equivalent to a ring network
topology in62. In Fig. 3, such a network-representation
of a delay system is schematically illustrated, and we will
show that transforming a DDE into such a system only
requires the system’s nonlinearity f(·) and its impulse
response function h(t). Considering the following DDE
based on Eq. (6)

TRẋ(t) + x(t) = f (βx(t− τD) + ρu(t) + Φ0) , (8)

please note that in contrast to classical ANN models, we
do not restrict f(·) the family of monotonous functions.
Often, a sinusoidal activation function is employed11,63,
for which Eq. (8) corresponds to the Ikeda delay equa-
tion. In this particular class of DDEs prominent in Op-
tics, f(·) is easily obtained through a phase-to-intensity
nonlinear transformation including optical interference
between two fields. Parameter Φ0 is a constant phase
offset, other parameters are as previously introduced.

We will now discuss in what sense state x(t) located
within one τD can be understood as state of a virtual
network node. For convenience, we first normalize Eq.
(8) by introducing dimensionless entities s := t/τD and
ε := TR/τD, resulting in

εẋ(s) + x(s) = f (βx(s− 1) + ρu(s) + Φ0) . (9)

x(s) during the normalized time interval of s ∈ [0; 1[ can
be regarded as the collective state, i.e. each delay in-
terval contains a state-snapshot. Therefore, the relation
between DDE-solutions and the virtual space-time rep-
resentation is

xσ(n) = x(s), n+ σ = s, n = 0, 1, 2, . . . , T, (10)

where σ ∈ [0, 1[ is a virtual space and n is a new discrete
time variable. Under such substitution the DDE has a
discrete time evolution along n of a functional trajectory
defined over time interval σ.

While this transformation translates temporal posi-
tions σ into a virtual space, it does not reveal the net-
work’s nonlinear nodes or its connectivity structure. To-
wards identifying these essential characteristics, we ana-
lyze the implications of the system’s response to a delta
perturbation, i.e. its impulse response function h(s). For
the low-pass system in Eq. (9), the response is

h(t) =

{
e−t/TR/TR; t ≥ 0

0; t < 0.
(11)

Graphically, Eq. (11) is illustrated by a blue curve in
Fig. 4. With the help of h(t), Eq. (9) can be rewritten as
a global convolution product between impulse response
function and the nonlinear function f(. . . ):

x(s) =

∫ s

−∞
h(s− ξ) · f (x(ξ − 1)) dξ. (12)

Using identity s = n+ σ in Eq. (12), we obtain

xσ(n) =

∫ n+σ

−∞
h (n+ σ − ξ) · f (x(ξ − 1)) dξ. (13)

The temporal dynamics of DDE Eq. (9) can therefore be
interpreted as a functional sequence Gn, n = 1, 2, . . . , T ,
where Gn : gn−1 → gn is a nonlinear integral operator
mapping a function onto itself:

xσ(n) = Aσ(n) + Iσ(n), σ ∈[0,1[ (14)

where Aσ(n) can be obtained via Eq. (13),

Aσ(n) =

∫ (n−1)+σ

−∞
h (s− ξ) · f [x(ξ − 1)] dξ. (15)

Typical for delay-systems employed for RC is a configu-
ration where ε� 1. Within the integration-limits of Eq.
(15) one can therefore assume the system’s response to
be negligible, leading to Aσ(n) ≈ 0. In the same manner,
Iσ(n) is obtained according to

Iσ(n) =

∫ n+σ

(n−1)+σ
h (s− ξ) · f [x(ξ − 1)] dξ. (16)

Substituting variable ξ′ = ξ − n, integral Iσ(n) obtains
the simpler form of

Iσ(n) =

∫ σ

σ−1
h (σ − ξ′) · f [xξ′(n− 1)] dξ′. (17)

Equation (14) has the structure of a dynamical system
being distributed along spatial dimension σ and evolv-
ing with discrete time n. Consequently, xσ(n − 1) cor-
responds to a recurrency in time much like in a RNN,
and Iσ to coupling along virtual space σ weighted by the
impulse response function’s amplitude at node-distance
σ−ξ′. However, network state xσ(n) is a time-continuous
signal within the interval σ ∈ [0, 1], while a networks’
constituents are discrete nodes. Yet, according to the
Nyquist–Shannon sampling theorem, continuous signals
can be discretized using a sampling interval less or equal
to half the signal’s fastest timescale. For an autonomous
DDE, continuous sequence σ ∈ [0, 1] then becomes a set
of discrete values temporally separated by δτ ≤ TR/2.
δτ is the temporal separation between discrete states
along virtual space σ, and node l is therefore located
at σl = l · δτ . Combined, δτ and h(t) address the dis-
crete nodes’ positions and their coupling, respectively.
Combined with Eq. (13), they provide the translation
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FIG. 4. Impulse response function h(t) (blue line), random
binary input modulation uint(t) and and illustrative response
of a low-pass Ikeda system x(t) (ε = 0.02, ), all in normal-
ized time s. The sample-and-hold time for the random in-
put sequence was Values located within a separation smaller
than h(t)’s decay are coupled through convolution by, see Eq.
(14). For example, modulation by a random binary sequence
(brown line) with a sample-and-hold time δτ = ε/3.2 contin-
uously keeps the system’s response (red line) from reaching a
steady state. Consequently, responses to consecutive values
in uin(t) are coupled through h(t).

of a time-continuous DDE into a recurrent network of
N = τD/δτ discrete nodes with nonlinearity f(·).

Yet, RNN’s are not autonomous, and an external drive
can exert considerable impact upon discrete system’s
symmetries introduced by τD and δτ . In Fig. 4, a non-
linear oscillator as in Eq. (8) is modulated by signal
uin(t) (brown line), in this case by a random Boolean
sequence whose temporal separation between samples is
significantly smaller than ε = TR/τD. We therefore can-
not rely on TR and the Nyquist–Shannon to define δτ ,
and typically δτ corresponds to the shortest timescales
of the injected signal. Temporal aspects of uin(t) define
δτ in most cases, also for δτ > TR. As uin(t) corre-
sponds to the information input into our recurrent delay
network, it corresponds to the process which links infor-
mation input to connection between virtual space σ(t)
and node l(t).

2. Time multiplexing: virtual photonic neurons

A delay-based reservoir computing architecture can be
summarized as follows. An initial temporal masking dis-
tributes information along a temporal window typically
close to delay time τD. This masking step addresses the
chain of N nonlinear oscillators as discussed in the previ-
ous section, which in turn nonlinearly transform the in-
put information. The computational result is produced
by the output layer, where again information during a
temporal window similar to τD is weighted by a temporal
masking according to the readout weights W out. These
three processes, schematically illustrated in Fig. 5, are
conceptually comparable to classical RNNs. Particular
to a delay-based reservoir is that, instead of each neuron

corresponding to an individual nonlinear node, a single
physical nonlinear node provides all nonlinear transfor-
mations.

Temporal input-masking needs to randomly map the
input information onto the delay Reservoir’s temporal di-
mensions according to W in. This is generally achieved
by a temporal encoding technique called time multi-
plexing, with time multiplexing according to a simple
input masking sequence visualized in the left panel of
Fig. 5. Entries of binary mask W in are multiplied onto
a scalar input point u(n), resulting in N -dimensional
vector uin = (uin1 , u

in
2 , . . . , u

in
N ) at each n, where n ∈

{1, 2, · · · , T} is integer time. Time multiplexing now as-
signs each entry of uin(n) to a temporal position given
by l · δτ, l ∈ {1, 2, · · · , N}. l is therefore a particular vir-
tual delay neuron’s index, δτ their temporal separation.
The temporal duration to complete the input masking
for one n is mask duration τM = N · τD. Injecting this
input-sequence into the delay system creates the essential
nonlinear and high-dimensional transformation, whose
details certainly depend on the delay-node’s particular
physical substrate. This process is repeated for each n,
and as such is the multiplication by W in and time mul-
tiplexing according to δτ . A delay-node’s input typically
consists of consecutive and non-overlapping sequences of
length τm.

Time multiplexing therefore links the input to the
reservoir layer. Linking the reservoir to the readout layer
naturally requires a time de-multiplexing step. As illus-
trated by x(t) in the reservoir layer panel in Fig. 5, the
delay-RNN’s state so far only exists as time continuous
signal x(t). Consequently, the first operation for time
de-multiplexing is to divide the delay-system’s contin-
uous output x(t) into non-overlapping intervals of du-
ration (n − 1)τm ≤ t < nτm. During each of these
τm intervals, one assigns node values x′l(n) to the in-
formation contained in x(t) during temporal intervals
t ∈ [(n − 1)τm + (l − 1)δτ, (n − 1)τm + lδτ [ for l ∈
{1, 2, · · · , N}. This step de-multiplexes the signal by
again assigning a temporal position to a virtual neuron
and creating the RNN’s state-vector. Once this state
vector is obtained, one can implement training the delay
RNN according to Sec. (I B) and the delay RNN’s output
is yout(n) = W out · x′(n).

While time multiplexing and de-multiplexing provides
the essential linkage between temporal positions and
nodes, it also creates the essential ingredient of a RNN,
the hidden layer’s internal connectivity. Two mecha-
nisms have been demonstrated. The first uses the sys-
tem’s infinite impulse response function. The other a de-
synchronization between delay and input mask duration
τD and τm, respectively.

The first demonstration of RC with a delay system10

uses the concept of dynamical coupling via impulse re-
sponse function h(t). For this, the temporal duration of
a single neuron δτ is kept shorter than the system’s re-
sponse time TR. In Fig. 4, the delay system’s response
(red data) was calculated for δτ = 0.2 · TR, keeping the
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FIG. 5. Schematic illustration of the individual processes involved in a delay-reservoir computer. The input layer is implemented
by modulating input u(n) with temporal mask W in(l) to create input uin(t), lδτ is the temporal position of node l during one
delay. The reservoir’s response autonomously creates state x(n) during one delay. Readout weights correspond to temporal
modulations of x(n) according to W out, and summing the resulting sequence over the delay-length creates output yout(n).

system constantly from reaching its steady state as the
broad h(t) convolves values of adjacent nodes, thereby in-
troducing the network’s internal coupling. Inertia-based
coupling therefore results in the convolution-response be-
tween h(t) and the neighboring nodes. Hence, its extent
is tunable via the ratio between δτ and TR, which modi-
fies the ’spatial’ decay over positions lδτ . Advantageous
of this concept is that it maximizes the delay RNN’s
speed and enables higher complexity internal connectiv-
ity via leveraging non-trivial impulse response functions.

The second approach was first demonstrated by Du-
port et al.13, increasing δτ significantly beyond TR and
therefore creating a systems with an effectively instan-
taneous response. A local coupling is introduced by
δτ = τD/(N + k), hence τm < τD. The consequence
of this mismatch is that node xl(n) is delay coupled to
node xl−k(n− 1). The advantage of this concept is that
the system closely resembles the nonlinear map of RNNs,
which generally simplifies the mathematical model and
a numerical simulation. The reduced operational band-
width can potentially be beneficial for the system’s signal
to noise ratio. Importantly, both approaches are not mu-
tually exclusive. One can therefore create more complex
network structures by merging both concepts.

Finally, we would like to touch upon some technical
details of the time multiplexing implementation of RNNs.
If input uin(n) is calculated off-line, one can carry out the
masking for each u(n) and concatenate the T resulting
column-vectors uin to the full input matrix uin,∈ RN×T .
The same is true for the recording the delay system’s
output x(t): the de-multiplexing can be done off-line and
in one batch for the entire data. This has significant
benefits for proof of concept experiments. As generally
the case of ANNs, the input can be an M -dimensional

feature vector um = (um1 , u
m
2 , . . . , u

m
M ). Then, the result

of masking by W in, vector uin = (uin1 , u
in
2 , . . . , u

in
N ), N >

M is a random weighting of the features from um. Also,
the input mask W in values is not restricted to binary
entires. And finally, xl(n) might be defined as the average
or some specific value, for example at the middle or the
end of discussed interval.

3. Advantages of delay implementations of RNN

Due to the recent success of ANNs, the scientific com-
munity needs explorer avenues for next generation imple-
mentations of such computational concepts. Even sim-
ple neuromorphic architectures might conceptually be
straight forward, yet they often are an exceptional chal-
lenge to be mapped directly onto corresponding hard-
ware. Spatial neural networks, as an example, comprise
hundreds or even thousands of neurons, each connected
to numerous other neurons in the network64. Conse-
quently, their hardware implementation require signifi-
cant early stage efforts only for establishing the basic
nonlinear network. Accordingly, in order to process in-
formation efficiently, alternative routes to emulate neural
network architectures are highly attractive65.

Due to the spatio-temporal analogy introduced in the
previous sections, delayed feedback systems offer a highly
attractive solution. In particular combined with the
advantages of photonic delay-lines, they are for now
one of the few well-controllable and efficient experimen-
tal demonstration of large scale ANNs in physical sub-
strates. While these systems are of significant value for
the demonstration of novel information processing con-
cepts, they simultaneously allow for a detailed investiga-



8

tion of the underlying relevant processes. Here we would
like to highlight a feature unique to nonlinear delay sys-
tems: all nonlinear transformations carried out by the
virtual spatio-temporal network rely on the same phys-
ical component. In many cases it is therefore straight
forward to obtain an accurate characterization of this
component, which creates an excellent situation for com-
paring experimental and numerical/theoretical findings.
In this aspects delay system’s occupy a strategic position
in the field’s future development.

II. PHOTONIC TIME DELAY RESERVOIRS

The implementation of RC into physical substrates was
quickly considered after the publication of the original
concept. Due to the fundamental spatio-temporal nature
of a Reservoir, first considerations equally attempted to
explore spatial dimensions for the implementation of the
RNN. First was a demonstration based on waves in a wa-
ter tank66, which however did not surpass the processing
performance beyond the linear system limit. This was
followed by the numerical demonstration in a network
of multiple semiconductor optical amplifiers67. However,
while progress in such spatio-temporal systems was slow,
RC based on delay systems quickly took off.

A. First electronic proof of concept

The first implementation of a delay reservoir was re-
alized in an electronic circuit by Appletant et al. in
201110. In this seminal work, the authors demonstrated
the fundamental operational concept based on the tem-
poral multiplexing routine introduced in Sect. (I D 2).
They investigated the impact of the temporal duration
of virtual nodes δτ , and findings from numerical simula-
tions were used as guideline in the electronic system’s de-
sign which consequently facilitated a tunable TR through
RC-circuits. Several tasks have been successfully demon-
strated, such as spoken digits recognition with NIST TI-
46 corpus dataset, NARMA10, and Santa Fe time series
prediction. This work can be considered as the starting
points for RC implementations in analog delay systems,
and physical substrates in general. However, in this tu-
torial we focus on the photonic implementations, which
quickly followed.

B. Electro-optical delay reservoirs

The first demonstrations of RC based on photonic
systems11,12 were realized electro-optically. Both used
comparable hardware setups, schematically illustrated in
Fig. 6. While punctually modified, each electro-optical
delay oscillator was based on earlier experiments in the
field of nonlinear Ikeda dynamics68. A fiber pig-tailed

FIG. 6. Electro-optical delay system RC11. The system is
based on telecommunication components, and the long time
delay is realized via an optical fiber spool. Multiple systems
based on similar architectures have been realized, including
ultra-fast implementation reaching 20 GSamples/s data injec-
tion rates63.

semiconductor laser, here operated around telecom wave-
lengths (λ ≈1550 nm), was connected to a Mach-Zehnder
modulator (MZM) creating a sin2 nonlinearity, whose
output was injected into a delay line created by a long
single mode optical fiber. The delayed optical signal was
detected by a photodiode, whose output was merged with
an external drive. The combined signals were injected
into the MZM’s radio-frequency port, thereby closing the
feedback loop. Depending on the details of the particular
implementation, multiple amplifiers can condition signals
at various stages. Finally, filters can be added at differ-
ent positions in the electronic section of the scheme, al-
lowing the implementation of low68 or bandpass filtered
dynamics69. Without dedicated filters, response time TR
depends on the slowest component of the electronic cir-
cuit.

For the here employed low-pass filtered system, the
resulting DDE is

εẋ(s) + x(s) = β sin2[µx(s− 1) + ρu(s) + Φ0]. (18)

Parameters and normalizations are as introduced in Secs.
(I D) and (I D 1), respectively, with Φ0 is a typically con-
stant DC phase-offset. Convenient to implementations
as the one shown in Fig. 6 is that each parameter of Eq.
(18) is accurately controlled by a dedicated component.
Feedback gain β either via the laser’s intensity11 or via
an optical attenuator placed inside the optical feedback
line12, phase offset Φ0 simply via the voltage applied to
the MZM’s DC-electrode. The system’s response time
TR can easily be characterized in an open-loop configura-
tions, where the delayed feedback is simply disconnected.
This modularity allows for a highly flexible experimental
system and enables access to most or even all relevant
system parameters via detailed characterization. Larger
et al. used fast modulation with δτ =42.18 ns, which
combined with TR = 240 ns resulted in δτ ∼ 0.18 · TR.
As introduced in Sec. (I D 2), reservoir internal connec-
tivity was therefore established via the system’s inertia11,
and τD =20.87 µs resulted in a reservoir with N =400
virtual neurons.



9

The system’s capacity to serve as a photonic RC was
first evaluated based on the TI46 spoken digit recognition
benchmark test. Spoken digit recognition corresponds to
grouping input data into labeled classes, a computational
task which does not necessarily require working mem-
ory. From the overall Ti46 corpus, the authors selected
500 samples originating from five different female speak-
ers uttering the digits from 0 to 9 with 10 repetitions.
The training target was to identify the number the spo-
ken digit represents. Readout weights W out were calcu-
lated using ridge regression based on the photonic reser-
voir’s response to 475 randomly selected training sam-
ples. The word error rate (WER) was evaluated based on
the remaining 25 test samples which were not involved in
the optimization of W out. Cross-validation ensured that
training and test samples were iterated such that each
sample was part of the testing set exactly once. The
system’s WER dependence on dynamical parameters β
and Φ0 was characterized in detail, revealing that clas-
sification accuracy sensitively depends on Φ0, with best
performance always located close but not exactly at the
nonlinear function’s local extrema. Bifurcation parame-
ter β proofed to be less delicate, and comparable perfor-
mance was achieved for the range of β ∈ [0.3; 0.6]. The
lowest error found was WER = 0.4 %, corresponding to
only 2 wrong classifications out of the 500 spoken digits.

To evaluate the performance when utilized for solving
a task explicitly requiring short term memory, the au-
thors predicted the evolution of a chaotic signal. The
used Santa Fe prediction challenge is a well established
prediction benchmark test, which requires the one-step
ahead prediction of a chaotic infra-red laser’s emission.
The training target therefore is the input information
shifted by one time step into the future. As before, read-
out weights W out were trained using 75 % of the data
set, while prediction performance was evaluated based
on the remaining 25 % data points of the test set. Opti-
mizing Φ0, the authors found that for this task, perfor-
mance was best for phase offsets closer to the nonlinear
function’s inflection point, where the system’s response
is more linear. Under such condition, the linear memory
capacity is larger than for operation around a local ex-
trema, where strong folding and stretching by the nonlin-
ear function quickly quenches the system’s linear echos.
Using the normalized mean square error as evaluation
criteria, the lowest prediction error was a deviation of
NMSE = 0.124 between reservoir output and the cor-
rect future value, found at Φ0 = 0.1π and β = 0.2.

Paquot et al.12 employed the alternative approach of
a temporal de-synchronization between mask (τm) and
delay time (τD) to introduce reservoir internal connec-
tivity, see Sec. (I D 2). With a delay system creating
τD =8.504 µs, they implemented a photonic reservoir
of N =50 nodes by using a temporal mask duration of
TR < δτ = 170 ns. In this case, the de-synchronization
between mask length and τD corresponded to the dura-
tion of one virtual neuron δτ , therefore k = 1.

As a fundamental characterization, the authors de-

termined the system’s linear (31.9), quadratic (4) and
cross (27.3) memory capacity, resulting in a total mem-
ory capacity of 48.6. The first task addressed by Paquot
et al. is to reproduce a Nonlinear Auto Regressive
Moving Average equation of order 10, driven by white
noise (NARMA10)12. Using the NMSE between target
and photonic reservoir output, they obtain NMSE =
0.1686 ± 0.015 both, in their experiment and in a nu-
merical model of the same system. This is an excellent
results as crucially it is comparable to digital reservoirs
of the same size, despite the noise inherent to analogue
physical substrates and experiments in general. As a sec-
ond task, the authors considered the nonlinear channel
equalization task already addressed in the work by Jaeger
et al.8. This task is of practical relevance, as it is a prob-
lem regularly encountered in wireless data transmission:
reflections off various objects (e.g. buildings) arrive after
different temporal delays and nonlinear transformations
at the receiver, resulting in a deterioration of the recorded
signal. The task is then to reconstruct the original mes-
sage from the recorded signal. At an original signal to
noise ratio of 28 dB, after being processed by the pho-
tonic reservoir the authors reported a symbol error rate
of SER = 1.4 · 10−4, which again matches those of com-
parable digital emulations. Finally, the authors too ad-
dressed the Ti46 spoken digit recognition task. Using an
enlarged reservoir of now N = 200 virtual neurons, they
report a WER = 0.4% as best obtained performance,
which matches the one reported by Larger et al..

Finally, the bandwidth of the electro-optical delay RC
was recently pushed to the full potential of telecommu-
nication components63. The setup was based on phase
instead of intensity modulation, where before detection
differential phase shift keying (phase shift δT = 402.7 ps)
converts phase shifts into amplitude modulations. A de-
lay of τD = 63.33 ns and a virtual neuron duration of
δτ = 56.9 ps results in N =1113. A new data injection
scheme referred to extended delay memory (EDM) too
was introduced. There, one τD is divided into NL sub-
reservoirs, each of which operated according to the same
procedures introduced before. Consequence of this divi-
sion is that input information u(n) mixes with u(n+NL).
Furthermore, the authors implement a modified readout
routine, applying a temporal spacing between readout
samples of δτ r = (1 + ξ)δτ . Input and readout clock
are therefore de-synchronized, and it is shown that de-
synchronization parameter ξ has significant impact upon
the system’s performance. As task, the authors ad-
dressed spoken digit recognition, this time under more
challenging conditions than for the Ti46 data set. To em-
ulate real-world environments, in the AURORA-2 spoken
digit benchmark voice recordings contain both sexes and
include adults and children. For β = 0.7, Φ0 = 2π/5,
N = 1000, NL = 3 and ξ = 5 · 10−4, the authors report a
WER = 0.4 %. Most impressively, this ultra-high band-
width implementation allows for a digit classification of
1 Million digits per second with such a simple device.

Electro-optical delay systems have paved the way for
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photonic RC and have by now been employed in multi-
ple configurations addressing a wide range of benchmark
problems with excellent performance. Due to the excel-
lent access to system parameters, they typically agree
very well with numerical models. Finally, they profit
from highly developed off-the-shelf telecommunication
industry components, making them equally attractive for
first proof of principle experiments as well as for high-
performance implementations.

C. Electro-optical reservoirs and extreme learning
machines

An interesting implementation option arises from the
general structure of delay systems. A radically simplis-
tic ANN concept exclusively uses the mapping of input
information onto individual, uncoupled nonlinear nodes.
The concept, referred to as extreme learning machines
(ELM)70, therefore does not require internal connections
between neurons. In delay systems, this corresponds to
setting δτ > TR and to disconnecting the delay. One
can therefore conveniently alternate between operating
the same photonic system as a delay RC and a pho-
tonic ELM, simple by modifying a single hardware con-
nection. Such a photonic ELM and its comparison to a
photonic delay RC was implemented based on the first
introduced electro-optical experimental setup11. Hence,
this experiment demonstrated a unified framework for
RC and ELMs based on identical hardware71. Results
obtained for the ELM were compared with the RC ap-
proach and confirmed via numerical models, including a
compensation of inherent working memory loss via the
data injection approach when the system was operated
in the ELM configuration.

D. All-optical Reservoirs

The transition from opto-electronic to all-optical RC
is of fundamental importance for multiple reasons. First,
because such systems avoid conversions between optical
and electronic signals. These potentially result in addi-
tional sources of noise, bandwidth limitations and in an
reduction of the overall energy efficiency. Second, many
sensors as well as information communication protocols
operate with optical signals; those and all-optical ANNs
could therefore be interfaced directly. Based on numeri-
cal simulations, the earliest consideration of an all-optical
RC suggested the connection of various semiconductor
optical amplifiers (SOAs) into a simple spatio-temporal
network67. The architecture directly targeted integration
into a photonic chip, and a integrated system having the
same architecture yet avoiding the nonlinear SOAs was
published in 201472.

The first all-optical demonstration of a Reservoir was
based on a delay loop which included a semiconductor
optical amplifier (SOA) acting as all-optical nonlinearity,

FIG. 7. All-optical RC based on a semiconductor optical am-
plifier (SOA), acting as all-optical nonlinearity, located within
a long delay loop13. The SOA is driven below the lasing
threshold of the ring-cavity laser, and information is injected
all optically. A delay time of τD = 7.9437 µs and N = 50 vir-
tual neurons resulted in a modulation bandwidth of 6 MHz.

see Fig. 7. When driven into saturation, these devices
experience a nonlinearity which resembles a hyperbolic
tangent. This particular nonlinearity is very popular in
ANNs and computational neuro-science, since it approx-
imates the spiking rate of biological neurons. Duport et
al.13 located the SOA within a long fiber optical delay
loop with a delay of τD = 7.9437 µs. In this configu-
ration the SOA acts as amplification medium within a
ring-cavity, and optical attenuation inside the cavity and
SOA bias current were adjusted such that the ring laser
was operated below its lasing threshold. The authors
implemented a reservoir of N = 50 virtual nodes, em-
ploying de-synchronization of k = 1 between mask and
delay length τm and τD, as introduced in Sec. (I D 2).
The system was injected with the light of a semiconduc-
tor superluminescent diode, which was modulated via a
MZM to encode the masked input information. The au-
thors evaluated the system’s memory capacity, obtaining
a linear and total memory capacity of 20.8 and 28.84, re-
spectively, which is significantly below the one previously
reported for their opto-electronic system. Implementing
the previously introduced channel equalization task, the
authors obtained a symbol error rate of ∼ 5.5 · 10−4 for
a signal to noise ration of 28 dB.

Shortly after, another all-optical implementation was
demonstrated by Brunner et al.14, where they realized
the first ANN based on a semiconductor laser. The par-
ticular appeal of semiconductor lasers ANNs has been
discussed previously73. Specifically, semiconductor lasers
are energy efficient, high-bandwidth and react strongly
nonlinear to optical injection74. The experimental setup
is schematically illustrated in Fig. 8. This form of all-
optical Reservoir was efficiently implemented, and con-
sisted only of the telecommunication laser diode, a fiber
circulator (Circ.), a polarization controller (aligned to ro-
tated feedback polarization), an optical attenuator and
two optical fiber splitter for signal injection and read-
out. The fiber optical delay line had a round-trip de-
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lay of τd = 77.6 ns, and N = 388 virtual neurons were
implemented using a 5 GHz modulation bandwidth. In-
formation injection was implemented all-optically via an
external injection laser, as well as electrically via direct
modulation of the laser’s bias current. For that, the laser
was biased with a bias-tee, whose rf-port allowed high
frequency current modulation.

Using the Ti46 spoken digit recognition benchmark as
introduced in Sec. (II B), the authors compared both in-
formation injection techniques and their performance de-
pendence on the laser’s DC-bias current. Electrical signal
injection resulted in a word error rate of 0.64 %, while
for all optical operation the error dropped dramatically
to 0.014 %. Simultaneously, the authors extended the
test and utilized the same Reservoir responses to iden-
tify the speaker of the digit with an error rate of 0.88 %.
At the data-rate used in this experiment, the recognition
rate was 300,000 spoken digit per second. Exploiting
the recurrent nature of the system, the authors trained
the same Reservoir for the prediction of the Santa Fe
chaotic laser benchmark, where they achieved a predic-
tion NMSE of 0.106.

This demonstration of all-optical RC based on a stan-
dard, off-the-shelf semiconductor laser inspired numer-
ous follow up experiments. The same group of authors
demonstrated fast all-optical vector and matrix opera-
tions based on the same system75 and later extended the
computation performance analysis with a detailed study
focusing on parameters crucial for drive-response laser
systems76. Finally, they published the numerical model
of the experiment77. A modification of the laser RC sys-
tem was presented by Nguimdo et al.78, where they used
a semiconductor ring laser to solve two different tasks in
parallel utilizing the clock and counter-clockwise propa-
gating beams. In a comparable system, the same group of
authors showed that one can significantly reduce the sys-
tem’s sensitivity to phase drifts by combining the Reser-
voir’s original output and an additional copy delayed by
more than a delay time τD

79. The main authors also in-
vestigated RC based on a Erbium doped microlaser, both
in experiments and numerical simulations80.

Finally, other all-optical implementations of RC were
demonstrated on a passive resonator81 and a saturable
absorber82. Particular to both systems is that they do
not contain an optical gain-element and are therefore low
noise. The passive resonator RC demonstrated excellent
performance in the nonlinear channel equalization task,
while the authors found the saturable absorber RC to
provide an excellent linear memory capacity of 36.8.

E. Improvements to photonic delay RC

Multiple studies investigated possible strategies in or-
der to improve the performance of the photonic delay
RC. Properties of the input mask can be seen as an in-
tuitive starting point, as it is the first operation carried
out on the data to be processed. In the first delay RC

FIG. 8. All-optical RC based on a semiconductor laser diode,
acting as all-optical nonlinearity, coupled to a long delay
loop14. A delay time of τD = 77.6 ns and 388 virtual neurons
resulted in a modulation bandwidth of 5 GHz. Information
was injected, both, optically via an external injection laser,
and electrically via modulating the laser’s bias current.

demonstration, the originally uniformly and randomly
distributed mask was replaced by a random Boolean
sequence10. Soriano et al.83 investigated how increas-
ing the number of masking values from 2 to 6 sup-
presses the impact of digitization noise. Nakayama et
al.84 went one step further and analyzed the impact of
complex masks. They found that, for prediction, using
a chaotic mask whose highest spectral density is located
at the delay-laser’s relaxation oscillation frequency νRO
improves performance. Finally, Appeltant et al.85 con-
structed a Boolean mask based on the minimal length
sequence technique, resulting in a reduced length and
hence a reduced number of nodes resulting in a faster
system update rate at same performance.

Another strategy to elevate performance of a pho-
tonic delay RC was to implement multiple delays. This
was first demonstrated by Martinenghi et al.17 based
a electro-optical systems based on complex wavelength
dynamics63. The authors added numerous delays of
length shorter τD to the delay architecture. For the reser-

voir of N = 150 virtual neurons, they included NI =
N

10
additional delays of randomly selected integer multiples
of δτ . Besides the short range coupling via the impulse
response function h(s), the delay therefore adds addi-
tional internal connections between 10 % of the virtual
neurons. Recently, Hou et al.86 have investigated the im-

pact of adding a second delay which is τ2d = τ1d +
1

2νRO
and τ1d = τm+δτ , where τ1d , τ2d are time delay of the first
and second delay loop, respectively. In their numerical
simulations, they found that prediction performance for
such a double delay configuration does not require fine
tuning of δτ and generally shows improved performance.
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FIG. 9. Implementation of all of a delay-reservoir computer’s
layers in photonic hardware87. Starting from the input super-
luminescent diode, the first two MZMs realize the input signal
u(n) and its temporal masking according to W in(l), realizing
signal uin(t). The following delay-reservoir is identical to12.
Readout weights W out are based on the final, dual-output
MZM, which is combined with a balanced-detection PD in
order to allow for bipolar readout weights.

F. Electro-optical reservoirs with input and output weights

Until this stage, matrix multiplications according to in-
put mask W in(t) and read out weights W out have been
implemented off-line, typically after transferring data be-
tween the experiment and a standard desktop PC. Such
data preprocessing is common-sense for proof-of-concept
experiments. They correspond to simple linear multipli-
cations and until now the focus was on the implementa-
tion and investigation of the physical Reservoir. Yet, for
creating a fully implemented and potentially standalone
photonic RC, input mask and output weights need to
be incorporated in hardware as well. Such an analogue
photonic neural network could significantly increase the
system’s energy efficiency, and removal of the off-line pro-
cess will strongly speed up the operation as it enables
operations of the full computing system in realtime.

The first demonstrations of an analog implementation
of input masks88, and finally of input as well as the sys-
tem’s output weights87 were both demonstrated based on
the opto-electronic setup of Sec. (II B). The experimental
implementation of the experiment is schematically illus-
trated in Fig. 9. Following the temporal multiplexing
and de-multiplexing concept of Sec. (I D 2), input mask
W in and readout weights W out are temporal sequences

to be linearly multiplied with input u(n) and reservoir
state x(t), respectively. As illustrated by Fig. 9, input
signal u(n) is realized by modulating the optical intensity
I0 of a superluminiscent light emitting diode via inten-
sity modulator MZM1, whose rf-input is connected to
information input u(t). A second modulator (MZM2)
follows and realizes the input masking, for which the au-
thors demonstrated a novel strategy. Instead of masking
via a random sequence, the mask is defined by the addi-
tion of two sinusoidal functions at frequencies p/τD, and
q/τD, with p, q integers. The resulting signal is nonlin-
early mapped by MZM2, causing the final mask W in to
be of higher complexity:

W in =
1

2
{1 + sin[−π

4
cos(

2πp

τD
t)

− π

4
cos(

2πq

τD
t)]}.

(19)

While this strategy certainly will not be able to create
the high-dimensional mapping of a random input mask,
it introduces an elegant strategy for fully-analog photonic
implementation of a RC’s input layer. Finally, an optical
attenuator adjust the intensity of the created input sig-
nal, corresponding to the Reservoir’s input scaling ρ. The
reservoir layer itself follows the same scheme introduced
in Sec. II B.

Light transmitted to the output is now divided into
30% to be detected by a readout photodiode, used for
off-line training in order to calculate the output weights
W out. The remaining 70% feeds the dual output MZM4,
which after the off-line training will be driven by W out

provided by an AWG. Both MZM output-ports provide
complimentary signals which are detected by balance
photodiodes, therefore allowing the implementation of bi-
polar readout weights. Combining a dual-port MZM and
balanced detection is of significant importance, as the
otherwise always positive optical signals would severely
hinder system optimization via Eq. (5), consequently
strongly deteriorate the quality of computation. Finally,
creating the reservoirs output y(t) requires integration
of x(t) weighted by W out(t) during one delay τD. Here,
the authors resort to a simple filtering via a low-pass
RLC filter. This scheme has successfully demonstrated
nonlinear channel equalization, the NARMA10 task and
demonstrated radar signal forecasting87.

G. Autonomous photonic delay Reservoirs via FPGA
interfacing

Finally, the demonstration of fully stand-alone pho-
tonic delay RC was realized using a field-programmable
gate array (FPGA) as auxiliary infrastructure providing
real-time control of the system. The importance of this
demonstration is two-fold. First, it shows that real-time
and high-bandwidth photonic ANNs are feasible. Second,
in many applications one is forced to consider the impact
of a slowly changing environment modifying parameters
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FIG. 10. Backpropagation in hardware90: the light is emit-
ted by a superluminescent diode (SLD) and passes through
two coupled Mach-Zender interferometers MZM1 and MZM2.
The first interferometer is controlled by voltage V1 (feedback
signal) and the second one, by voltage V2 (input signal).

of the physical RC as well as the target signal. In order to
compensate for these modifications, the readout weights
may need to be updated online. This requires a flexible
standalone system. A combination of analog-digital sub-
systems is used to facilitate this functionality, where the
is Reservoir analog, while input and readout layers are
implemented by the FPGA. An FPGA device consists of
electrical circuits (logical gates) that are interconnected
using internal memory (lookup tables). Programming
FPGAs is achieved via setting the lookup tables’ val-
ues, which provides device rewiring without performing
a manual interconnection. With this technique, FPGAs
can be set to perform data preprocessing, input mask-
ing, and linear readout. Finally, readout weights can be
adjusted online, i.e. on a running RC system.

Since FPGAs are essentially digital devices, they are
interfaced to analog reservoirs via analog to digital and
digital to analog converters. The conjunction of FPGAs
and analog optical reservoirs was successfully demon-
strated by Antonik et al.15. In this work, a gradient
descent algorithm was executed by an FPGA in order to
update the readout values according to a certain target
signal. The reservoir was operated with the delay-mask
de-synchronization, introduced in Sec. I D 2. This opto-
electronic implementation has been successfully applied
to the nonlinear channel equalization15 and chaotic time
series prediction89 tasks.

H. Back propagation through time

Reservoir Computing is based on random feature ex-
traction, hence a high dimensional state space is required
to increase the probability of creating a successful reser-
voir dynamics91. In a single-node architecture, this may
be achieved by increasing the delay time, which, how-
ever, reduces the system’s computation speed. A viable
alternative to completely random connections is full op-
timization of the machine learning model. A technique
called backpropagation through time92,93 enables system

optimization while at the same time keeping the reser-
voir’s dimensionality N relatively small. The advantage
of the proposed scheme is the ability to perform back-
propagation directly in hardware, thus resolving the need
for computer simulations. The technique is an extension
of a common ANN training scheme22 to continuous-time
recurrent networks.

The general idea of the backpropagation method is first
to run the system in forward direction and measure the
error signal. Then, the error gradient is propagated in
reverse direction, i.e. starting with the output layer, tak-
ing into account the dynamical system memory effect. In
hardware that is achieved using a reciprocal system, i.e.
reversing the roles of the receiver and transmitter, which
is fed a time-reversed error signal. Since the dynamical
system is typically fixed in delay RC, the backpropaga-
tion may be used to optimize both the readout W out and
the input mask W in.

A first implementation of back propagation training
in an optoelectronic system was demonstrated by Her-
mans et al.94. More recently, an experimental photonic
demonstration90 was based on an optoelectronic sys-
tem consisting of a superluminescent diode, two coupled
Mach-Zehnder modulators, a long spool of fiber as an
optical delay line, interfaced with an FPGA to generate
and record signals, and a computer controlling the exper-
iment (Fig. 10). The system was configured such that
the pair of Mach-Zehnder modulators was used either as
a sine function in forward pass or as a cosine (reciprocal
system) in the backward pass. The evaluated benchmark
tests were predictions tasks NARMA10 and VARDEL5
and TIMIT phoneme classification. The authors showed
that training both input mask and readout provides a
better accuracy than just training the readout as in con-
ventional RC.

I. Beyond delay reservoirs

The implementation of RNNs in photonic delay sys-
tems has had a profound impact upon the physical im-
plementation of ANNs. This is mostly due to the con-
cept’s elegance and simplicity when it comes to physi-
cally implementing the hidden recurrent layer. However,
there is no free lunch, and the simplicity is bought in
expense of time multiplexing and de-multiplexing in the
input and readout layer. Both processes require accu-
rate clocking plus the non-volatile storage of input and
readout weights. As a consequence, until now this func-
tionality has only been realized either based on off-line
pre and post-processing, or by heavy usage of an auxiliary
infrastructure i.e. in form of a FPGA. Furthermore, tem-
poral multiplexing results in a reduction of the system’s
overall processing bandwidth by the number of neurons
N . Where for a fully implemented spatio-temporal net-
work, the entire system’s state would be available after
δτ , in delay systems this update requires τm = δτ · N .
Plenty of promising and interesting approaches to im-
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plement ANNs in physical hardware substrates therefore
remain to be explored.

III. OUTLOOK

After the highly successful demonstrations of the past
decade, photonic RNNs in delay system’s will continue to
enable both, technological applications as well as provid-
ing fundamental insight. These directions of future de-
velopment fundamentally profit from the unique proper-
ties of delay systems: an almost unbeatable experimental
simplicity combined with the potentially high complex-
ity resulting from their infinite dimensional phase space.
This will allow easy transfer of a technological applica-
tion to the most recent and powerful nonlinear substrate.
An example is the successful experimental and numerical
demonstration of channel equalization in short-range and
long-haul optical communication systems16, another the
detection of extreme-event95.

At the same time, delay systems elegantly implement
a perfectly symmetric ring-network, creating excellent
conditions for investigating the interplay between fun-
damental properties of the photonic networks and their
capability to process information59,96. These include the
symmetry breaking via novel input masking or by more
complex multiple delay architectures. Simulateneously,
the delay concept enables easy direct access to each vir-
tual node for networks of almost arbitrary size, which
could shift the focus to more local analysis of the pho-
tonic RNN58.

Implementation into novel substrates certainly will be
an additional avenue of potentially important future de-
velopment. These include possibilities arising from ultra-
high speed optical nonlinearities as well as novel photonic
devices with superior energy efficiency97. Finally, explo-
rations beyond the single delay node photonic RC ar-
chitecture are of pressing importance. These include in-
vestigation of multi-node Reservoirs98, implementations
into large scale spatio-temporal networks64 and into in-
tegrated photonic chips99–101.
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