Molecularly precise electronic induction of on-surface tandem radical oligomerization

Gaolei Zhan1, Younes Makoudi1, Judicael Jeannoutot1, Michel Féron1, Frank Palmino1, Marie-Laure Bocquet2, Christophe M. Thomas3, and Frédéric Chérioux1

1Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B Avenue des Montboucons, F-25030 Besançon cedex, France
2Laboratoire PASTEUR, Département de chimie, Ecole Normale Supérieure de Paris, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
3Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France

Over the past decade, on-surface fabrication of organic nanostructures has been widely investigated for the development of molecular electronic devices, nanomachines, and new materials. Here, we introduce a new strategy to obtain alkyl oligomers in a controlled manner using on-surface radical tandem reactions that are triggered by the electrons between the sample surface and the tip of a scanning tunnelling microscope. The resulting radical-mediated mechanism is substantiated by a detailed theoretical study. This single-electron transfer event allows access to reactive radical species under exceptionally mild conditions and can effectively ‘switch on’ a tandem sequence leading to formation of oligomers of defined size distribution due to the on-surface confinement of reactive species. Our approach enables new ways to initiate and control radical oligomerisations with tunnelling electrons, leading to molecularly precise nanofabrication.